Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Eur J Neurosci ; 59(8): 1977-1992, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311960

ABSTRACT

In a great partnership, the Federation of European Neuroscience Societies (FENS) and the Hertie Foundation organized the FENS-Hertie 2022 Winter School on 'Neuro-immune interactions in health and disease'. The school selected 27 PhD students and 13 postdoctoral fellows from 20 countries and involved 14 faculty members experts in the field. The Winter School focused on a rising field of research, the interactions between the nervous and both innate and adaptive immune systems under pathological and physiological conditions. A fine-tuned neuro-immune crosstalk is fundamental for healthy development, while disrupted neuro-immune communication might play a role in neurodegeneration, neuroinflammation and aging. However, much is yet to be understood about the underlying mechanisms of these neuro-immune interactions in the healthy brain and under pathological scenarios. In addition to new findings in this emerging field, novel methodologies and animal models were presented to foment research on neuro-immunology. The FENS-Hertie 2022 Winter School provided an insightful knowledge exchange between students and faculty focusing on the latest discoveries in the biology of neuro-immune interactions while fostering great academic and professional opportunities for early-career neuroscientists from around the world.


Subject(s)
Neuroimmunomodulation , Neurosciences , Animals , Humans , Brain , Schools , Aging
2.
Ann Neurol ; 94(4): 745-761, 2023 10.
Article in English | MEDLINE | ID: mdl-37341588

ABSTRACT

OBJECTIVE: Temporal lobe epilepsy (TLE) is characterized by recurrent seizures generated in the limbic system, particularly in the hippocampus. In TLE, recurrent mossy fiber sprouting from dentate gyrus granule cells (DGCs) crea an aberrant epileptogenic network between DGCs which operates via ectopically expressed GluK2/GluK5-containing kainate receptors (KARs). TLE patients are often resistant to anti-seizure medications and suffer significant comorbidities; hence, there is an urgent need for novel therapies. Previously, we have shown that GluK2 knockout mice are protected from seizures. This study aims at providing evidence that downregulating KARs in the hippocampus using gene therapy reduces chronic epileptic discharges in TLE. METHODS: We combined molecular biology and electrophysiology in rodent models of TLE and in hippocampal slices surgically resected from patients with drug-resistant TLE. RESULTS: Here, we confirmed the translational potential of KAR suppression using a non-selective KAR antagonist that markedly attenuated interictal-like epileptiform discharges (IEDs) in TLE patient-derived hippocampal slices. An adeno-associated virus (AAV) serotype-9 vector expressing anti-grik2 miRNA was engineered to specifically downregulate GluK2 expression. Direct delivery of AAV9-anti grik2 miRNA into the hippocampus of TLE mice led to a marked reduction in seizure activity. Transduction of TLE patient hippocampal slices reduced levels of GluK2 protein and, most importantly, significantly reduced IEDs. INTERPRETATION: Our gene silencing strategy to knock down aberrant GluK2 expression demonstrates inhibition of chronic seizure in a mouse TLE model and IEDs in cultured slices derived from TLE patients. These results provide proof-of-concept for a gene therapy approach targeting GluK2 KARs for drug-resistant TLE patients. ANN NEUROL 2023;94:745-761.


Subject(s)
Drug Resistant Epilepsy , Epilepsy, Temporal Lobe , MicroRNAs , Humans , Mice , Animals , Epilepsy, Temporal Lobe/therapy , Temporal Lobe , Hippocampus , Drug Resistant Epilepsy/genetics , Drug Resistant Epilepsy/therapy , Seizures
3.
Cereb Cortex ; 29(10): 4253-4262, 2019 09 13.
Article in English | MEDLINE | ID: mdl-30534979

ABSTRACT

Subcortical band heterotopia (SBH), also known as double-cortex syndrome, is a neuronal migration disorder characterized by an accumulation of neurons in a heterotopic band below the normotopic cortex. The majority of patients with SBH have mild to moderate intellectual disability and intractable epilepsy. However, it is still not clear how cortical networks are organized in SBH patients and how this abnormal organization contributes to improper brain function. In this study, cortical networks were investigated in the barrel cortex in an animal model of SBH induced by in utero knockdown of Dcx, main causative gene of this condition in human patients. When the SBH was localized below the Barrel Field (BF), layer (L) four projection to correctly positioned L2/3 pyramidal cells was weakened due to lower connectivity. Conversely, when the SBH was below an adjacent cortical region, the excitatory L4 to L2/3 projection was stronger due to increased L4 neuron excitability, synaptic strength and excitation/inhibition ratio of L4 to L2/3 connection. We propose that these developmental alterations contribute to the spectrum of clinical dysfunctions reported in patients with SBH.


Subject(s)
Classical Lissencephalies and Subcortical Band Heterotopias/physiopathology , Neurons/physiology , Somatosensory Cortex/physiopathology , Synapses/physiology , Animals , Disease Models, Animal , Doublecortin Domain Proteins , Doublecortin Protein , Gene Knockdown Techniques , Membrane Potentials , Microtubule-Associated Proteins/genetics , Neuropeptides/genetics , Rats, Wistar , Somatosensory Cortex/pathology
4.
Cereb Cortex ; 28(8): 2976-2990, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29788228

ABSTRACT

The neocortex is a 6-layered laminated structure with a precise anatomical and functional organization ensuring proper function. Laminar positioning of cortical neurons, as determined by termination of neuronal migration, is a key determinant of their ability to assemble into functional circuits. However, the exact contribution of laminar placement to dendrite morphogenesis and synapse formation remains unclear. Here we manipulated the laminar position of cortical neurons by knocking down doublecortin (Dcx), a crucial effector of migration, and show that misplaced neurons fail to properly form dendrites, spines, and functional glutamatergic and GABAergic synapses. We further show that knocking down Dcx in properly positioned neurons induces similar but milder defects, suggesting that the laminar misplacement is the primary cause of altered neuronal development. Thus, the specific laminar environment of their fated layers is crucial for the maturation of cortical neurons, and influences their functional integration into developing cortical circuits.


Subject(s)
Dendrites/physiology , Neurons/cytology , Somatosensory Cortex/cytology , Synapses/physiology , Animals , Animals, Newborn , Disks Large Homolog 4 Protein/genetics , Disks Large Homolog 4 Protein/metabolism , Doublecortin Domain Proteins , Doublecortin Protein , Electric Stimulation , Embryo, Mammalian , Glutamic Acid/metabolism , In Vitro Techniques , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Mice , MicroRNAs/genetics , MicroRNAs/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Neurogenesis/genetics , Neuropeptides/genetics , Neuropeptides/metabolism , Patch-Clamp Techniques , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Somatosensory Cortex/growth & development , Transduction, Genetic
5.
Development ; 140(15): 3107-17, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23824572

ABSTRACT

Neural stem cells are maintained in the adult brain, sustaining structural and functional plasticity and to some extent participating in brain repair. A thorough understanding of the mechanisms and factors involved in endogenous stem/progenitor cell mobilization is a major challenge in the promotion of spontaneous brain repair. The main neural stem cell niche in the adult brain is the subventricular zone (SVZ). Following demyelination insults, SVZ-derived progenitors act in concert with oligodendrocyte precursors to repopulate the lesion and replace lost oligodendrocytes. Here, we showed robust vascular reactivity within the SVZ after focal demyelination of the corpus callosum in adult mice, together with a remarkable physical association between these vessels and neural progenitors exiting from their niche. Endogenous progenitor cell recruitment towards the lesion was significantly reduced by inhibiting post-lesional angiogenesis in the SVZ using anti-VEGF blocking antibody injections, suggesting a facilitating role of blood vessels for progenitor cell migration towards the lesion. We identified netrin 1 (NTN1) as a key factor upregulated within the SVZ after demyelination and involved in local angiogenesis and progenitor cell migration. Blocking NTN1 expression using a neutralizing antibody inhibited both lesion-induced vascular reactivity and progenitor cell recruitment at the lesion site. We propose a model in which SVZ progenitors respond to a demyelination lesion by NTN1 secretion that both directly promotes cell emigration and contributes to local angiogenesis, which in turn indirectly facilitates progenitor cell emigration from the niche.


Subject(s)
Brain/blood supply , Brain/cytology , Nerve Growth Factors/physiology , Neural Stem Cells/physiology , Tumor Suppressor Proteins/physiology , Animals , Brain/physiology , Cell Movement , Corpus Callosum/pathology , Corpus Callosum/physiopathology , Demyelinating Diseases/genetics , Demyelinating Diseases/pathology , Demyelinating Diseases/physiopathology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Neurological , Neovascularization, Physiologic , Nerve Growth Factors/antagonists & inhibitors , Nerve Growth Factors/genetics , Netrin-1 , Stem Cell Niche , Transcriptome , Tumor Suppressor Proteins/antagonists & inhibitors , Tumor Suppressor Proteins/genetics
6.
Sci Adv ; 8(9): eabj0112, 2022 03 04.
Article in English | MEDLINE | ID: mdl-35245123

ABSTRACT

Microglia interact with neurons to facilitate synapse plasticity; however, signal(s) contributing to microglia activation for synapse elimination in pathology are not fully understood. Here, using in vitro organotypic hippocampal slice cultures and transient middle cerebral artery occlusion (MCAO) in genetically engineered mice in vivo, we report that at 24 hours after ischemia, microglia release brain-derived neurotrophic factor (BDNF) to downregulate glutamatergic and GABAergic synapses within the peri-infarct area. Analysis of the cornu ammonis 1 (CA1) in vitro shows that proBDNF and mBDNF downregulate glutamatergic dendritic spines and gephyrin scaffold stability through p75 neurotrophin receptor (p75NTR) and tropomyosin receptor kinase B (TrkB) receptors, respectively. After MCAO, we report that in the peri-infarct area and in the corresponding contralateral hemisphere, similar neuroplasticity occurs through microglia activation and gephyrin phosphorylation at serine-268 and serine-270 in vivo. Targeted deletion of the Bdnf gene in microglia or GphnS268A/S270A (phospho-null) point mutations protects against ischemic brain damage, neuroinflammation, and synapse downregulation after MCAO.


Subject(s)
Brain Ischemia , Brain-Derived Neurotrophic Factor , Animals , Brain-Derived Neurotrophic Factor/genetics , Infarction , Mice , Microglia , Receptor, trkB , Serine , Synapses
7.
Brain Res ; 1711: 146-155, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30689978

ABSTRACT

Subcortical band heterotopia (SBH), also known as doublecortex syndrome, is a malformation of cortical development resulting from mutations in the doublecortin gene (DCX). It is characterized by a lack of migration of cortical neurons that accumulate in the white matter forming a heterotopic band. Patients with SBH may present mild to moderate intellectual disability as well as epilepsy. The SBH condition can be modeled in rats by in utero knockdown (KD) of Dcx. The affected cells form an SBH reminiscent of that observed in human patients and the animals develop a chronic epileptic condition in adulthood. Here, we investigated if the presence of a SBH is sufficient to induce cognitive impairment in juvenile Dcx-KD rats, before the onset of epilepsy. Using a wide range of behavioral tests, we found that the presence of SBH did not appear to affect motor control or somatosensory processing. In addition, cognitive abilities such as learning, short-term and long-term memory, were normal in pre-epileptic Dcx-KD rats. We suggest that the SBH presence is not sufficient to impair these behavioral functions.


Subject(s)
Behavior, Animal , Classical Lissencephalies and Subcortical Band Heterotopias/psychology , Cognition , Disease Models, Animal , Epilepsy/genetics , Intellectual Disability/genetics , Animals , Anxiety/genetics , Asymptomatic Diseases , Cell Movement , Classical Lissencephalies and Subcortical Band Heterotopias/complications , Classical Lissencephalies and Subcortical Band Heterotopias/embryology , Classical Lissencephalies and Subcortical Band Heterotopias/genetics , Doublecortin Domain Proteins , Doublecortin Protein , Electroporation , Exploratory Behavior , Gray Matter/abnormalities , Gray Matter/embryology , Learning , Maze Learning , Memory , Microtubule-Associated Proteins/deficiency , Microtubule-Associated Proteins/genetics , Mosaicism , Neuropeptides/deficiency , Neuropeptides/genetics , RNA, Small Interfering/administration & dosage , RNA, Small Interfering/toxicity , Rats , Rotarod Performance Test , Sensation , White Matter/abnormalities , White Matter/embryology
SELECTION OF CITATIONS
SEARCH DETAIL