Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
J Sex Med ; 20(1): 1-13, 2023 01 14.
Article in English | MEDLINE | ID: mdl-36897236

ABSTRACT

BACKGROUND: Sex steroids have been demonstrated as important modulators of vaginal function. The RhoA/ROCK calcium-sensitizing pathway plays a role in genital smooth muscle contractile mechanism, but its regulation has never been elucidated. AIM: This study investigated the sex steroid regulation of the vaginal smooth muscle RhoA/ROCK pathway using a validated animal model. METHODS: Ovariectomized (OVX) Sprague-Dawley rats were treated with 17ß-estradiol (E2), testosterone (T), and T with letrozole (T + L) and compared with intact animals. Contractility studies were performed to test the effect of the ROCK inhibitor Y-27632 and the nitric oxide (NO) synthase inhibitor L-NAME. In vaginal tissues, ROCK1 immunolocalization was investigated; mRNA expression was analyzed by semiquantitative reverse transcriptase-polymerase chain reaction; and RhoA membrane translocation was evaluated by Western blot. Finally, rat vaginal smooth muscle cells (rvSMCs) were isolated from the distal vagina of intact and OVX animals, and quantification of the RhoA inhibitory protein RhoGDI was performed after stimulation with NO donor sodium nitroprusside, with or without administration of the soluble guanylate cyclase inhibitor ODQ or PRKG1 inhibitor KT5823. OUTCOMES: Androgens are critical in inhibiting the RhoA/ROCK pathway of the smooth muscle compartment in the distal vagina. RESULTS: ROCK1 was immunolocalized in the smooth muscle bundles and blood vessel wall of the vagina, with weak positivity detected in the epithelium. Y-27632 induced a dose-dependent relaxation of noradrenaline precontracted vaginal strips, decreased by OVX and restored by E2, while T and T + L decreased it below the OVX level. In Western blot analysis, when compared with control, OVX significantly induced RhoA activation, as revealed by its membrane translocation, with T reverting it at a level significantly lower than in controls. This effect was not exerted by E2. Abolishing NO formation via L-NAME increased Y-27632 responsiveness in the OVX + T group; L-NAME had partial effects in controls while not modulating Y-27632 responsiveness in the OVX and OVX + E2 groups. Finally, stimulation of rvSMCs from control animals with sodium nitroprusside significantly increased RhoGDI protein expression, counteracted by ODQ and partially by KT5823 incubation; no effect was observed in rvSMCs from OVX rats. CLINICAL IMPLICATIONS: Androgens, by inhibiting the RhoA/ROCK pathway, could positively contribute to vaginal smooth muscle relaxation, favoring sexual intercourse. STRENGTHS AND LIMITATIONS: This study describes the role of androgens in maintaining vaginal well-being. The absence of a sham-operated animal group and the use of the only intact animal as control represented a limitation to the study.


Subject(s)
Androgens , Testosterone , Female , Rats , Animals , Humans , Rats, Sprague-Dawley , Nitroprusside , NG-Nitroarginine Methyl Ester , Estradiol/pharmacology , Letrozole , Vagina/physiology , Enzyme Inhibitors , rho-Specific Guanine Nucleotide Dissociation Inhibitors/metabolism , Ovariectomy , rhoA GTP-Binding Protein/metabolism
2.
World J Surg Oncol ; 21(1): 192, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37370080

ABSTRACT

BACKGROUND: Pheochromocytoma (PHEO) and paraganglioma (PGL) are rare neuroendocrine tumors characterized by hemodynamic instability, caused by the paroxysmal release of catecholamines. Patients may develop cardiovascular complications in the perioperative phase due to the massive release of catecholamines, particularly during anesthetic induction and surgical manipulation of the tumor. The aim of this retrospective study was to evaluate the risk factors involved in perioperative hemodynamic instability in patients who underwent surgery for chromaffin tumors. METHODS: Forty patients (median age 55 [36.50-64.50]) undergone surgery for PHEO/abdominal PGL from January 2011 to December 2016 at the AOU Careggi (Florence, Italy) were retrospectively evaluated. Systolic, diastolic, and mean blood pressure were considered at baseline and during surgery. Patients with blood pressure steadily < 140/90 mmHg before surgery were considered "adequately prepared". A preoperative therapy with doxazosin, a selective alpha-1 blocker, was started in all patients for at least 14 days prior to the surgery. The presence of hemodynamic instability was reported. RESULTS: Comparing males and females, a significant difference in doxazosin daily dose (p = 0.018), systolic blood pressure (p = 0.048), and in the proportion of adequately prepared patients (p = 0.031) emerged. A positive correlation between preoperative daily dose of doxazosin, tumor size (B = 0.60, p < 0.001), and urinary normetanephrine levels (B = 0.64, p < 0.001) was also observed. Hemodynamic instability occurred in 30.0% of patients. The absence of adequate preparation (p = 0.012) before surgery, urinary normetanephrine levels (NMNur p = 0.039), and surgery time (minutes) (p = 0.021) resulted as risk factors of hemodynamic instability in our series. The use of intraoperative drugs was higher in patients with hemodynamic instability (p < 0.001). A pre-surgical SBP level of > 133 mmHg (OR = 6 CI95% 1.37-26.20, p = 0.017) and an intraoperative SBP and MBP levels of > 127 mmHg (OR = 28.80 CI95% 2.23-371.0, p = 0.010) and > 90 mmHg (OR = 18.90 CI95% 1.82-196.0, p = 0.014), respectively, were identified as effective thresholds to recognize patients at higher risk of HI. CONCLUSIONS: A preoperative therapy with alpha-blockers is useful, but not sufficient to avoid surgical risks. Patients with higher pre-surgical levels of NMNur, pre-surgical SBP > 133 mmHg, and/or intraoperative SBP > 127 mmHg and MBP > 90 mmHg, should be carefully monitored. A multidisciplinary approach is indispensable to optimize the management of PHEOs/abdominal PGLs in order to reduce surgical complications.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Vascular Diseases , Male , Female , Humans , Middle Aged , Pheochromocytoma/surgery , Pheochromocytoma/pathology , Retrospective Studies , Doxazosin/pharmacology , Normetanephrine/pharmacology , Paraganglioma/surgery , Paraganglioma/pathology , Hemodynamics , Adrenal Gland Neoplasms/surgery , Adrenal Gland Neoplasms/pathology , Catecholamines/pharmacology
3.
Medicina (Kaunas) ; 58(8)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36013579

ABSTRACT

Background: Pheochromocytoma (Pheo) and paraganglioma (PGL) are rare tumors, mostly resulting from pathogenic variants of predisposing genes, with a genetic contribution that now stands at around 70%. Germline variants account for approximately 40%, while the remaining 30% is attributable to somatic variants. Objective: This study aimed to describe a new PHD2 (EGLN1) variant in a patient affected by metastatic Pheo and chronic myeloid leukemia (CML) without polycythemia and to emphasize the need to adopt a comprehensive next-generation sequencing (NGS) panel. Methods: Genetic analysis was carried out by NGS. This analysis was initially performed using a panel of genes known for tumor predisposition (EGLN1, EPAS1, FH, KIF1Bß, MAX, NF1, RET, SDHA, SDHAF2, SDHB, SDHC, SDHD, TMEM127, and VHL), followed initially by SNP-CGH array, to exclude the presence of the pathogenic Copy Number Variants (CNVs) and the loss of heterozygosity (LOH) and subsequently by whole exome sequencing (WES) comparative sequence analysis of the DNA extracted from tumor fragments and peripheral blood. Results: We found a novel germline PHD2 (EGLN1) gene variant, c.153G>A, p.W51*, in a patient affected by metastatic Pheo and chronic myeloid leukemia (CML) in the absence of polycythemia. Conclusions: According to the latest guidelines, it is mandatory to perform genetic analysis in all Pheo/PGL cases regardless of phenotype. In patients with metastatic disease and no evidence of polycythemia, we propose testing for PHD2 (EGLN1) gene variants. A possible correlation between PHD2 (EGLN1) pathogenic variants and CML clinical course should be considered.


Subject(s)
Adrenal Gland Neoplasms , Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Paraganglioma , Pheochromocytoma , Polycythemia , Adrenal Gland Neoplasms/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Humans , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Paraganglioma/genetics , Paraganglioma/pathology , Pheochromocytoma/genetics , Polycythemia/genetics
4.
Cell Tissue Res ; 374(3): 473-485, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30159755

ABSTRACT

Pheochromocytomas and paragangliomas (PGLs) due to mutations of succinate dehydrogenase (SDH) B, a subunit of the SDH complex with a role in the Krebs cycle and the respiratory chain, tend to be larger at diagnosis and more prone to metastatic disease than other tumors. This presentation contrasts with the behavior of some cell line models of SDHB impairment, which show reduced growth compared to wild type. We hypothesize that reduced growth of SDHB-impaired monolayer culture models might reflect lack of support from sources within the tumor microenvironment. The present study therefore investigates how the microenvironment, modeled here by fibroblast co-culture, modulates cell metabolism, growth and invasion in an Sdhb-impaired mouse pheochromocytoma cell line. We employed two different constructs of short hairpin RNA to knockdown Sdhb and compared growth in a monolayer with and without fibroblast co-culture. Sdhb-silenced cells showed functional impairment of SDH with elevated succinate to fumarate ratio and decreased oxidative capacity. Cell growth was delayed with an increase in doubling time of 2 h or 20 h. Clonogenic cell survival and viability, on the other hand, were either unchanged or increased compared to control. In standard monolayer culture, no differences in pro-metastatic features were present. Co-culture with primary mouse fibroblast reversed the difference of proliferation between control and Sdhb knockdown but was unable to significantly influence invasiveness under these culture conditions. Metabolic studies identified that lactate secreted by fibroblasts was taken up preferentially by Sdhb-silenced cells. In summary, the present study identified a potential role for the tumor microenvironment in influencing phenotypic features of SDHB-mutated PGLs, providing a basis for the use of therapies targeted towards the tumor microenvironment.


Subject(s)
Adrenal Gland Neoplasms/metabolism , Adrenal Gland Neoplasms/pathology , Fibroblasts/metabolism , Pheochromocytoma/metabolism , Pheochromocytoma/pathology , Succinate Dehydrogenase/metabolism , Animals , Cell Line, Tumor , Cell Proliferation , Cells, Cultured , Coculture Techniques , Gene Knockdown Techniques , Gene Silencing , Mice , Phenotype , RNA, Messenger/genetics , RNA, Messenger/metabolism , Succinate Dehydrogenase/genetics
6.
Biomedicines ; 12(7)2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39061972

ABSTRACT

The functions of the gut are closely related to those of many other organs in the human body. Indeed, the gut microbiota (GM) metabolize several nutrients and compounds that, once released in the bloodstream, can reach distant organs, thus influencing the metabolic and inflammatory tone of the host. The main microbiota-derived metabolites responsible for the modulation of endocrine responses are short-chain fatty acids (SCFAs), bile acids and glucagon-like peptide 1 (GLP-1). These molecules can (i) regulate the pancreatic hormones (insulin and glucagon), (ii) increase glycogen synthesis in the liver, and (iii) boost energy expenditure, especially in skeletal muscles and brown adipose tissue. In other words, they are critical in maintaining glucose and lipid homeostasis. In GM dysbiosis, the imbalance of microbiota-related products can affect the proper endocrine and metabolic functions, including those related to the gut-liver-pancreas axis (GLPA). In addition, the dysbiosis can contribute to the onset of some diseases such as non-alcoholic steatohepatitis (NASH)/non-alcoholic fatty liver disease (NAFLD), hepatocellular carcinoma (HCC), and type 2 diabetes (T2D). In this review, we explored the roles of the gut microbiota-derived metabolites and their involvement in onset and progression of these diseases. In addition, we detailed the main microbiota-modulating strategies that could improve the diseases' development by restoring the healthy balance of the GLPA.

7.
Biomedicines ; 12(3)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38540229

ABSTRACT

Autoimmune diseases are complex multifactorial disorders, and a mixture of genetic and environmental factors play a role in their onset. In recent years, the microbiota has gained attention as it helps to maintain host health and immune homeostasis and is a relevant player in the interaction between our body and the outside world. Alterations (dysbiosis) in its composition or function have been linked to different pathologies, including autoimmune diseases. Among the different microbiota functions, there is the activation/modulation of immune cells that can protect against infections. However, if dysbiosis occurs, it can compromise the host's ability to protect against pathogens, contributing to the development and progression of autoimmune diseases. In some cases, infections can trigger autoimmune diseases by several mechanisms, including the alteration of gut permeability and the activation of innate immune cells to produce pro-inflammatory cytokines that recruit autoreactive T and B cells. In this complex scenario, we cannot neglect critical hormones' roles in regulating immune responses. Different hormones, especially estrogens, have been shown to influence the development and progression of autoimmune diseases by modulating the activity and function of the immune system in different ways. In this review, we summarized the main mechanisms of connection between infections, microbiota, immunity, and hormones in autoimmune diseases' onset and progression given the influence of some infections and hormone levels on their pathogenesis. In detail, we focused on rheumatoid arthritis, multiple sclerosis, and systemic lupus erythematosus.

8.
Article in English | MEDLINE | ID: mdl-38532440

ABSTRACT

OBJECTIVE: The aim of this study was to demonstrate the establishment of adrenal sparing in intrauterine growth restricted (IUGR) human fetuses. IUGR fetuses are a subgroup of small for gestational age (SGA) fetuses that are unable to reach their own growth potential because of chronic hypoxia and undernutrition. We hypothesized that in IUGR fetuses the adrenal gland is relatively larger and secretion of noradrenaline (NA), adrenaline (A), and cortisol is increased. STUDY DESIGN: This is a prospective observational study including 65 singleton pregnancies (42 IUGR and 23 controls). Using two-dimensional ultrasound, we measured fetal adrenal diameters and adrenal/abdominal circumference (AD/AC) ratio between 25 and 37 weeks. We considered only one measurement per fetus. In 21 pregnancies we also measured NA, A, and cortisol levels in arterial and venous fetal cord blood collected at the time of delivery. RESULTS: The AD/AC ratio was significantly higher in IUGR fetuses than in controls. Cord NA and A levels were significantly higher in IUGR fetuses than in controls. An increase in cortisol secretion in IUGR fetuses was observed but the difference was not statistically significant. CONCLUSIONS: Adrenal sparing correlates with a relative increase in adrenal measurements and function.

9.
Sci Rep ; 14(1): 8044, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580769

ABSTRACT

The crosstalk between the chromaffin and adrenocortical cells is essential for the endocrine activity of the adrenal glands. This interaction is also likely important for tumorigenesis and progression of adrenocortical cancer and pheochromocytoma. We developed a unique in vitro 3D model of the whole adrenal gland called Adrenoid consisting in adrenocortical carcinoma H295R and pheochromocytoma MTT cell lines. Adrenoids showed a round compact morphology with a growth rate significantly higher compared to MTT-spheroids. Confocal analysis of differential fluorescence staining of H295R and MTT cells demonstrated that H295R organized into small clusters inside Adrenoids dispersed in a core of MTT cells. Transmission electron microscopy confirmed the strict cell-cell interaction occurring between H295R and MTT cells in Adrenoids, which displayed ultrastructural features of more functional cells compared to the single cell type monolayer cultures. Adrenoid maintenance of the dual endocrine activity was demonstrated by the expression not only of cortical and chromaffin markers (steroidogenic factor 1, and chromogranin) but also by protein detection of the main enzymes involved in steroidogenesis (steroidogenic acute regulatory protein, and CYP11B1) and in catecholamine production (tyrosine hydroxylase and phenylethanolamine N-methyltransferase). Mass spectrometry detection of steroid hormones and liquid chromatography measurement of catecholamines confirmed Adrenoid functional activity. In conclusion, Adrenoids represent an innovative in vitro 3D-model that mimics the spatial and functional complexity of the adrenal gland, thus being a useful tool to investigate the crosstalk between the two endocrine components in the pathophysiology of this endocrine organ.


Subject(s)
Adrenal Gland Neoplasms , Pheochromocytoma , Humans , Adrenal Glands/metabolism , Catecholamines/metabolism , Chromogranins/metabolism
10.
J Cell Mol Med ; 17(11): 1385-96, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24237791

ABSTRACT

Aberrant JAK2 signalling plays a central role in myeloproliferative neoplasms (MPN). JAK2 inhibitors have proven to be clinically efficacious, however, they are not mutation-specific and competent enough to suppress neoplastic clonal haematopoiesis. We hypothesized that, by simultaneously targeting multiple activated signalling pathways, MPN could be more effectively treated. To this end we investigated the efficacy of BEZ235, a dual PI3K/mTOR inhibitor, alone and in combination with the JAK1/JAK2 inhibitor ruxolitinib, in different preclinical models of MPN. Single-agent BEZ235 inhibited the proliferation and induced cell cycle arrest and apoptosis of mouse and human JAK2V617F mutated cell lines at concentrations significantly lower than those required to inhibit the wild-type counterpart, and preferentially prevented colony formation from JAK2V617F knock-in mice and patients' progenitor cells compared with normal ones. Co-treatment of BEZ235 and ruxolitinib produced significant synergism in all these in-vitro models. Co-treatment was also more effective than single drugs in reducing the extent of disease and prolonging survival of immunodeficient mice injected with JAK2V617F-mutated Ba/F3-EPOR cells and in reducing spleen size, decreasing reticulocyte count and improving spleen histopathology in conditional JAK2V617F knock-in mice. In conclusion, combined inhibition of PI3K/mTOR and JAK2 signalling may represent a novel therapeutic strategy in MPN.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Janus Kinase 2/genetics , Myeloproliferative Disorders/drug therapy , Phosphoinositide-3 Kinase Inhibitors , TOR Serine-Threonine Kinases/antagonists & inhibitors , Animals , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Apoptosis/drug effects , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Drug Synergism , Female , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/enzymology , Hematopoietic Stem Cells/drug effects , Hematopoietic Stem Cells/physiology , Humans , Imidazoles/administration & dosage , Inhibitory Concentration 50 , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/metabolism , K562 Cells , Mice , Mice, SCID , Mice, Transgenic , Molecular Targeted Therapy , Mutation, Missense , Myeloproliferative Disorders/enzymology , Neoplasm Transplantation , Nitriles , Phosphatidylinositol 3-Kinases/metabolism , Pyrazoles/administration & dosage , Pyrimidines , Quinolines/administration & dosage , Splenomegaly/prevention & control , TOR Serine-Threonine Kinases/metabolism
11.
Front Endocrinol (Lausanne) ; 14: 1137456, 2023.
Article in English | MEDLINE | ID: mdl-37033265

ABSTRACT

Pheochromocytomas and Paragangliomas (Pheo/PGL) are rare catecholamine-producing tumours derived from adrenal medulla or from the extra-adrenal paraganglia respectively. Around 10-15% of Pheo/PGL develop metastatic forms and have a poor prognosis with a 37% of mortality rate at 5 years. These tumours have a strong genetic determinism, and the presence of succinate dehydrogenase B (SDHB) mutations are highly associated with metastatic forms. To date, no effective treatment is present for metastatic forms. In addition to cancer cells, the tumour microenvironment (TME) is also composed of non-neoplastic cells and non-cellular components, which are essential for tumour initiation and progression in multiple cancers, including Pheo/PGL. This review, for the first time, provides an overview of the roles of TME cells such as cancer-associated fibroblasts (CAFs) and tumour-associated macrophages (TAMs) on Pheo/PGL growth and progression. Moreover, the functions of the non-cellular components of the TME, among which the most representatives are growth factors, extracellular vesicles and extracellular matrix (ECM) are explored. The importance of succinate as an oncometabolite is emerging and since Pheo/PGL SDH mutated accumulate high levels of succinate, the role of succinate and of its receptor (SUCNR1) in the modulation of the carcinogenesis process is also analysed. Further understanding of the mechanism behind the complicated effects of TME on Pheo/PGL growth and spread could suggest novel therapeutic targets for further clinical treatments.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Humans , Pheochromocytoma/genetics , Pheochromocytoma/pathology , Tumor Microenvironment , Paraganglioma/genetics , Paraganglioma/pathology , Adrenal Gland Neoplasms/genetics , Adrenal Gland Neoplasms/pathology , Succinates
12.
Microorganisms ; 11(10)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37894065

ABSTRACT

Fecal microbiota transplantation (FMT) is a procedure that involves transferring fecal bacteria from a healthy donor to a patients' intestines to restore gut-immunity homeostasis. While FMT was primarily supposed to treat gastrointestinal disorders such as inflammatory bowel disease and irritable bowel syndrome-and especially Clostridium difficile infection (currently the only used as clinical treatment)-recent research has suggested that it may also become a potential treatment for gynecological disorders, including endometriosis and polycystic ovary syndrome (PCOS). On the contrary, vaginal microbiota transplantation (VMT) is a newer and less commonly used procedure than the FMT approach, and its potential applications are still being explored. It involves direct grafting of the entire vaginal microbiota of healthy women into the vaginal tract of patients to easily rebuild the local microbiota environment, restoring vaginal eubiosis and relieving symptoms. Like FMT, VMT is thought to have potential in treating different microbiota-related conditions. In fact, many gynecological disorders, such as bacterial vaginosis and vulvovaginal candidiasis, are thought to be caused by an imbalance in the vaginal microbiota. In this review, we will summarize the development, current challenges, and future perspectives of microbiota transplant, with the aim of exploring new strategies for its employment as a promising avenue for treating a broad range of gynecological diseases.

13.
Nutrients ; 15(20)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37892482

ABSTRACT

Gastrointestinal (GI) cancers are a group of highly prevalent malignant tumors affecting the gastrointestinal tract. Globally, one in four cancer cases and one in three cancer deaths are estimated to be GI cancers. They can alter digestive and absorption functions, leading to severe malnutrition which may worsen the prognosis of the patients. Therefore, nutritional intervention and monitoring play a fundamental role in managing metabolic alterations and cancer symptoms, as well as minimizing side effects and increasing the effectiveness of chemotherapy. In this scenario, the use of immunonutrients that are able to modulate the immune system and the modification/regulation of the gut microbiota composition have gained attention as a possible strategy to improve the conditions of these patients. The complex interaction between nutrients and microbiota might contribute to maintaining the homeostasis of each individual's immune system; therefore, concurrent use of specific nutrients in combination with traditional cancer treatments may synergistically improve the overall care of GI cancer patients. This work aims to review and discuss the role of immunonutrition and microbiota modulation in improving nutritional status, postoperative recovery, and response to therapies in patients with GI cancer.


Subject(s)
Gastrointestinal Neoplasms , Microbiota , Humans , Immunonutrition Diet , Gastrointestinal Neoplasms/therapy , Microbiota/physiology , Nutritional Status
14.
Endocr Relat Cancer ; 30(10)2023 10 01.
Article in English | MEDLINE | ID: mdl-37493200

ABSTRACT

Pheochromocytomas/paragangliomas (PPGLs) are neuroendocrine tumours, mostly resulting from mutations in predisposing genes. Mutations of succinate dehydrogenase (SDH) subunit B (SDHB) are associated with high probability of metastatic disease. Since bioelectrical properties and signalling in cancer are an emerging field, we investigated the metabolic, functional and electrophysiological characteristics in human succinate dehydrogenase subunit B (SDHB)-deficient pheochromocytoma cells. These cells exhibited reduced SDH function with elevated succinate-to-fumarate ratio and reduced intracellular ATP levels. The analysis of membrane passive properties revealed a more hyperpolarized membrane potential and a lower cell capacitance of SDHB-deficient cells compared to the parental ones. These bioelectrical changes were associated with reduced proliferation and adhesion capacity of SDHB-deficient cells. Only in SDHB-deficient cells, we also observed an increased amplitude of potassium currents suggesting an activation of ATP-sensitive potassium channels (KATP). Indeed, exposure of the SDHB-deficient cells to glibenclamide, a specific KATP inhibitor, or to ATP caused normalization of potassium current features and altered proliferation and adhesion. In this work, we show for the first time that reduced intracellular ATP levels in SDHB-deficient chromaffin cells impaired cell bioelectrical properties, which, in turn, are associated with an increased cell aggressiveness. Moreover, we first ever demonstrated that glibenclamide not only reduced the outward potassium currents in SDHB-deficient cells but increased their growth capacity, reduced their ability to migrate and shifted their phenotype towards one more similar to that of parental one.


Subject(s)
Adrenal Gland Neoplasms , Chromaffin Cells , Paraganglioma , Pheochromocytoma , Humans , Succinate Dehydrogenase/genetics , Glyburide/pharmacology , Paraganglioma/genetics , Pheochromocytoma/genetics , Adrenal Gland Neoplasms/genetics , Chromaffin Cells/metabolism , Chromaffin Cells/pathology , Adenosine Triphosphate
15.
Front Endocrinol (Lausanne) ; 14: 1320722, 2023.
Article in English | MEDLINE | ID: mdl-38269251

ABSTRACT

Purpose: Adrenocortical carcinoma (ACC) is a rare and aggressive tumor. ACC male patients under adjuvant mitotane therapy (AMT) frequently develop hypogonadism, however sexual function has never been assessed in this setting. The aim of this retrospective study was to evaluate in AMT treated ACC patients the changes in Luteinizing hormone (LH), Sex Hormone Binding Globulin (SHBG), total testosterone (TT) and calculated free testosterone (cFT), the prevalence and type of hypogonadism and sexual function, the latter before and after androgen replacement therapy (ART). Methods: LH, SHBG, TT and cFT were assessed in ten ACC patients at baseline (T0) and six (T1), twelve (T2), and eighteen (T3) months after AMT. At T3, ART was initiated in eight hypogonadal patients, and LH, SHBG, TT and cFT levels were evaluated after six months (T4). In six patients, sexual function was evaluated before (T3) and after (T4) ART using the International Index of Erectile Function-15 (IIEF-15) questionnaire. Results: Under AMT we observed higher SHBG and LH and lower cFT levels at T1-T3 compared to T0 (all p<0.05). At T3, hypergonadotropic hypogonadism and erectile dysfunction (ED) were detected in 80% and 83.3% of cases. At T4, we observed a significant cFT increase in men treated with T gel, and a significant improvement in IIEF-15 total and subdomains scores and ED prevalence (16.7%) in men under ART. Conclusion: AMT was associated with hypergonatropic hypogonadism and ED, while ART led to a significant improvement of cFT levels and sexual function in the hypogonadal ACC patients. Therefore, we suggest to evaluate LH, SHBG, TT and cFT and sexual function during AMT, and start ART in the hypogonadal ACC patients with sexual dysfunction.


Subject(s)
Adrenal Cortex Neoplasms , Adrenocortical Carcinoma , Erectile Dysfunction , Hypogonadism , Humans , Male , Mitotane/therapeutic use , Retrospective Studies , Testosterone , Luteinizing Hormone , Hypogonadism/drug therapy
16.
Cancers (Basel) ; 14(14)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35884532

ABSTRACT

Pheochromocytoma/paragangliomas (PPGLs) are neuroendocrine tumours, often non-metastatic, but without available effective treatment for their metastatic form. Recent studies have shown that metformin exhibits antiproliferative activity in many human cancers, including PPGLs. Nevertheless, no data are available on the role of metformin on PPGL cells (two-dimension, 2D) and spheroids (three-dimension, 3D) migration/invasion. In this study, we observed that metformin exerts an antiproliferative effect on 2D and 3D cultures of pheochromocytoma mouse tumour tissue (MTT), either silenced or not for the SDHB subunit. However, metformin did not affect MTT migration. On the other hand, metformin did not have a short-term effect on the proliferation of mouse primary fibroblasts, but significantly decreased their ability to migrate. Although the metabolic changes induced by metformin were similar between MTT and fibroblasts (i.e., an overall decrease of ATP production and an increase in intracellular lactate concentration) the activated signalling pathways were different. Indeed, after metformin administration, MTT showed a reduced phosphorylation of Akt and Erk1/2, while fibroblasts exhibited a downregulation of N-Cadherin and an upregulation of E-Cadherin. Herein, we demonstrated that metformin has different effects on cell growth and spread depending on the cell type nature, underlining the importance of the tumour microenvironment in dictating the drug response.

17.
Mol Cell Endocrinol ; 547: 111594, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35149119

ABSTRACT

Germline mutations in more than 20 genes, including those encoding for the succinate dehydrogenase (SDH), predispose to rare tumours, such as pheochromocytoma/paraganglioma (PPGL). Despite encoding for the same enzymatic complex, SDHC and SDHD mutated PHEO/PGLs are generally benign, while up to 80% of SDHB mutated ones are malignant. In this study, we evaluated the different effects of tumour microenvironment on tumour cell migration/invasion, by co-culturing SDHB or SDHD silenced tumour spheroids with primary cancer-associated fibroblasts (CAFs). We observed that SDHD silenced spheroids had an intermediate migration pattern, compared to the highest migration capability of SDHB and the lowest one of the wild type (Wt) spheroids. Interestingly, we noticed that co-culturing Wt, SDHB and SDHD silenced spheroids with CAFs in low glucose (1 g/l) medium, caused a decreased migration of all the spheroids, but only for SDHB silenced ones this reduction was significant. Moreover, the collective migration, observed in high glucose (4.5 g/l) and characteristic of the SDHB silenced cells, was completely lost in low glucose. Importantly, migration could not be recovered even adding glucose (3.5 g/l) to low glucose conditioned medium. When we investigated cell metabolism, we found that low glucose concentration led to a reduction of oxygen consumption rate (OCR), basal and maximal oxidative metabolism, and ATP production only in CAFs, but not in tumour cells. These results suggest that CAFs metabolism impairment was responsible for the decreased invasion process of tumour cells, most likely preventing the release of the pro-migratory factors produced by CAFs. In conclusion, the interplay between CAFs and tumour cells is distinctive depending on the gene involved, and highlights the possibility to inhibit CAF-induced migration by impairing CAFs metabolism, indicating new potential therapeutic scenarios for medical therapy.


Subject(s)
Adrenal Gland Neoplasms , Paraganglioma , Pheochromocytoma , Adrenal Gland Neoplasms/metabolism , Germ-Line Mutation , Humans , Paraganglioma/genetics , Paraganglioma/pathology , Pheochromocytoma/metabolism , Succinate Dehydrogenase/genetics , Succinate Dehydrogenase/metabolism , Tumor Microenvironment
18.
Mol Cell Endocrinol ; 537: 111419, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34389446

ABSTRACT

PURPOSE: Hyponatraemia is frequently observed in cancer patients and can be due to the syndrome of inappropriate anti-diuresis (SIAD), related to ectopic vasopressin secretion, particularly in small cell lung cancer (SCLC). Hyponatraemia is associated with a worse outcome in cancer patients. The vasopressin receptor antagonist tolvaptan effectively corrects hyponatraemia secondary to SIAD and there is in vitro evidence that it has also an antiproliferative effect in cancer cells. The purpose of this study was i) to analyse the effect of low serum sodium concentrations ([Na+]) in SCLC cells and ii) to determine whether tolvaptan counteracts tumor progression. METHODS: We evaluated cell proliferation, cell cycle, apoptosis, oxidative stress, invasivity in low [Na+] as well as after exposure to tolvaptan. We also analysed the intracellular signalling pathways involved. RESULTS: In reduced [Na+] cell proliferation was significantly increased compared to normal [Na+] and cells were mostly distributed in the G2/M phase. Apoptosis appeared reduced. In addition, the ability to cross matrigel-coated membranes markedly increased. As observed in other cancer cell models, the expression of the heme-oxigenase-1 gene was increased. Finally, we found that in cells cultured in low [Na+] the RhoA/ROCK1/2 pathway, which is involved in the regulation of actin cytoskeleton, was activated. On the other hand, we found that tolvaptan effectively inhibited cell proliferation, anchorage-independent growth, invasivity and promoted apoptosis. Accordingly, the RhoA/ROCK-1/2 pathway was inhibited. CONCLUSIONS: These findings demonstrate for the first time that low [Na+] favours tumor progression in SCLC cells, whereas tolvaptan effectively inhibits cell proliferation, survival and invasivity.


Subject(s)
Lung Neoplasms/pathology , Small Cell Lung Carcinoma/pathology , Sodium/pharmacology , Tolvaptan/pharmacology , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Heme Oxygenase-1/metabolism , Humans , Neoplasm Invasiveness , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects , rho-Associated Kinases/metabolism , rhoA GTP-Binding Protein/metabolism
19.
Endocr Connect ; 9(12): R251-R260, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33252357

ABSTRACT

Pheochromocytomas/paragangliomas (PPGLs) are rare neuroendocrine tumours linked to more than 15 susceptibility genes. PPGLs present with very different genotype/phenotype correlations. Certainly, depending on the mutated gene, and the activated intracellular signalling pathways, as well as their metastatic potential, each tumour is immensely different. One of the major challenges in in vitro research, whatever the study field, is to choose the best cellular model for that study. Unfortunately, most of the time there is not 'a best' cell model. Thus, in order to avoid observations that could be related to and/or dependent on a specific cell line, researchers often perform the same experiments using different cell lines simultaneously. The situation is even more complicated when there are only very few cell models obtained in different species for a disease. This is the case for PPGLs. In this review, we will describe the characteristics of the different cell lines and of mouse models, trying to understand if there is one that is more appropriate to use, depending on which aspect of the tumours one is trying to investigate.

SELECTION OF CITATIONS
SEARCH DETAIL