ABSTRACT
BACKGROUND: Fumonisin B1 (FB1 ) is a mycotoxin produced by several Fusarium species and is a very common contaminant of maize-based food and feed throughout the world. The selection and use of FB1 -degrading microorganisms appears as a promising alternative to cope with the problem of toxicity towards humans and livestock. High moisture maize grain silage, which is based on natural maize fermentation, could be an interesting reservoir of such microorganisms. RESULTS: Using an in vitro simulated silage model with FB1 naturally contaminated grains, we demonstrated a significant raw decrease in FB1 during ensiling process ascribed to biodegradation mechanisms. A panel of 98 bacteria and yeasts were isolated from this matrix and selected for their ability to use FB1 as the sole source of C and N. For nine of them, the ability to degrade FB1 in vitro was evidenced. Notably, two bacteria identified as Lactobacillus sp. were highlighted for their efficient FB1 -degrading capacity and production of hydrolysed FB1 as intermediate degradation metabolite. CONCLUSION: Fermentation of high moisture maize grain contaminated with FB1 leads to a significant reduction of the toxin and allows the isolation of FB1 -degrading microorganisms that could further be used as FB1 decontaminating agents. © 2016 Society of Chemical Industry.
Subject(s)
Bacteria/metabolism , Fumonisins/metabolism , Seeds/microbiology , Yeasts/metabolism , Zea mays/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/isolation & purification , Fermentation , Food Contamination/analysis , Fumonisins/analysis , Seeds/chemistry , Silage/analysis , Silage/microbiology , Water/analysis , Yeasts/classification , Yeasts/genetics , Yeasts/isolation & purification , Zea mays/chemistryABSTRACT
Bread can vary in textural and nutritional attributes based on differences in the bread making process (e.g., flour type, fermentation agent, fermentation time). Four bread recipes (BRs) made with sourdough preferments (BR1, white flour; BR2, whole grain flour) or regular yeast breads (BR3, white flour; BR4, whole grain flour) were evaluated for texture, digestibility, and their effect on the metabolic activity and composition of the gut microbiota using texture profile analysis (TPA) coupled with in vitro upper gastrointestinal (GIT) digestion and colonic fermentation (Colon-on-a-plate™ model), using fecal samples from eight healthy human donors. TPA revealed significantly higher values for hardness, fracturability, gumminess, and chewiness, and significantly lower values for springiness, cohesiveness, and resilience with whole grain versus white breads (all p < 0.001); values for springiness, cohesiveness, and resilience were significantly higher for sourdough versus yeast bread (p < 0.001). Nutrient composition and bioaccessibility were generally comparable between sourdough and yeast bread with similar flours. Following simulation of upper GIT digestion, all BRs demonstrated good digestibility of minerals, carbohydrates, and proteins. Colonic fermentation revealed changes in gut microbiota composition, significant increases in short-chain fatty acids, and a significant decrease in branched short-chain fatty acids with all BRs versus a blank. Overall, new insights into wheat bread digestibility and colonic fermentation were provided, which are important aspects to fully characterize bread nutritional profile and potential.