ABSTRACT
Titanium alloy (Ti6Al4V) is one of the most prominent biomaterials for bone contact because of its ability to bear mechanical loading and resist corrosion. The success of Ti6Al4V implants depends on bone formation on the implant surface. Hence, implant coatings which promote adhesion, proliferation and differentiation of bone-forming cells are desirable. One coating strategy is by adsorption of biomacromolecules. In this study, Ti6Al4V substrates produced by additive manufacturing (AM) were coated with whey protein isolate (WPI) fibrils, obtained at pH 2, and heparin or tinzaparin (a low molecular weight heparin LMWH) in order to improve the proliferation and differentiation of bone-forming cells. WPI fibrils proved to be an excellent support for the growth of human bone marrow stromal cells (hBMSC). Indeed, WPI fibrils were resistant to sterilization and were stable during storage. This WPI-heparin-enriched coating, especially the LMWH, enhanced the differentiation of hBMSC by increasing tissue non-specific alkaline phosphatase (TNAP) activity. Finally, the coating increased the hydrophilicity of the material. The results confirmed that WPI fibrils are an excellent biomaterial which can be used for biomedical coatings, as they are easily modifiable and resistant to heat treatments. Indeed, the already known positive effect on osteogenic integration of WPI-only coated substrates has been further enhanced by a simple adsorption procedure.
Subject(s)
Alloys/pharmacology , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Heparin/pharmacology , Hydrophobic and Hydrophilic Interactions/drug effects , Mesenchymal Stem Cells/drug effects , Titanium/pharmacology , Whey Proteins/pharmacology , Adult , Alkaline Phosphatase/metabolism , Biocompatible Materials/pharmacology , Bone and Bones/drug effects , Bone and Bones/metabolism , Cells, Cultured , Coated Materials, Biocompatible/pharmacology , Humans , Male , Mesenchymal Stem Cells/metabolism , Osteogenesis/drug effectsABSTRACT
To improve the integration of a biomaterial with surrounding tissue, its surface properties may be modified by adsorption of biomacromolecules, e.g., fibrils. Whey protein isolate (WPI), a dairy industry by-product, supports osteoblastic cell growth. WPI's main component, ß-lactoglobulin, forms fibrils in acidic solutions. In this study, aiming to develop coatings for biomaterials for bone contact, substrates were coated with WPI fibrils obtained at pH 2 or 3.5. Importantly, WPI fibrils coatings withstood autoclave sterilization and appeared to promote spreading and differentiation of human bone marrow stromal cells (hBMSC). In the future, WPI fibrils coatings could facilitate immobilization of biomolecules with growth stimulating or antimicrobial properties.
Subject(s)
Cell Differentiation/drug effects , Cell Proliferation/drug effects , Osteogenesis/drug effects , Whey Proteins/pharmacology , Adsorption/drug effects , Bone Development/drug effects , Humans , Mesenchymal Stem Cells/drug effects , Milk Proteins/chemistry , Milk Proteins/pharmacology , Osteoblasts/drug effects , Whey Proteins/chemistryABSTRACT
The adsorption of biomolecules on biomaterial surfaces can promote their integration with surrounding tissue without changing their bulk properties. For biomaterials in bone reconstruction, the promotion of osteogenic differentiation and reduction of inflammation are desirable. Fibrillar coatings are interesting because of fibrils' high surface area-volume ratio, aiding adsorption and adhesion. Fibrils also serve as a matrix for the immobilization of biomolecules with biological activity, such as the phenolic compound phloroglucinol (PG), the subunit of marine polyphenols. The aim of this work was to investigate the influence of PG coatings on fibroblast- and osteoblast-like cells to increase the osseointegration of titanium implants. Collagen fibril coatings, containing PG at low and high concentrations, were produced on titanium alloy (Ti6Al4V) scaffolds generated by additive manufacturing (AM). These coatings, especially PG-enriched coatings, reduced hydrophobicity and modulated the behavior of human osteosarcoma SaOS-2 and mouse embryonic fibroblast 3T3 cell lines. Both osteoblastic and fibroblastic cells spread and adhered well on PG-enriched coatings. Coatings significantly reduced the inflammatory response. Moreover, osteogenic differentiation was promoted by collagen coatings with a high PG concentration. Thus, the enrichment of collagen fibril coatings with PG is a promising strategy to improve Ti6Al4V implants for bone contact in orthopedics and dentistry and is worthy of further investigation.
Subject(s)
Alloys/chemistry , Cell Differentiation , Collagen/chemistry , Inflammation/prevention & control , Osseointegration , Osteoblasts/cytology , Osteogenesis , Titanium/chemistry , Animals , Cell Proliferation , Cells, Cultured , Coated Materials, Biocompatible/chemistry , Humans , Mice , Osteoblasts/metabolismABSTRACT
While blood-contacting materials are widely deployed in medicine in vascular stents, catheters, and cannulas, devices fail in situ because of thrombosis and restenosis. Furthermore, microbial attachment and biofilm formation is not an uncommon problem for medical devices. Even incremental improvements in hemocompatible materials can provide significant benefits for patients in terms of safety and patency as well as substantial cost savings. Herein, a novel but simple strategy is described for coating a range of medical materials, that can be applied to objects of complex geometry, involving plasma-grafting of an ultrathin hyperbranched polyglycerol coating (HPG). Plasma activation creates highly reactive surface oxygen moieties that readily react with glycidol. Irrespective of the substrate, coatings are uniform and pinhole free, comprising OâCâO repeats, with HPG chains packing in a fashion that holds reversibly binding proteins at the coating surface. In vitro assays with planar test samples show that HPG prevents platelet adhesion and activation, as well as reducing (>3 log) bacterial attachment and preventing biofilm formation. Ex vivo and preclinical studies show that HPG-coated nitinol stents do not elicit thrombosis or restenosis, nor complement or neutrophil activation. Subcutaneous implantation of HPG coated disks under the skin of mice shows no evidence of toxicity nor inflammation.