Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 159
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(25): e2218896120, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37327313

ABSTRACT

Programmed ferroptotic death eliminates cells in all major organs and tissues with imbalanced redox metabolism due to overwhelming iron-catalyzed lipid peroxidation under insufficient control by thiols (Glutathione (GSH)). Ferroptosis has been associated with the pathogenesis of major chronic degenerative diseases and acute injuries of the brain, cardiovascular system, liver, kidneys, and other organs, and its manipulation offers a promising new strategy for anticancer therapy. This explains the high interest in designing new small-molecule-specific inhibitors against ferroptosis. Given the role of 15-lipoxygenase (15LOX) association with phosphatidylethanolamine (PE)-binding protein 1 (PEBP1) in initiating ferroptosis-specific peroxidation of polyunsaturated PE, we propose a strategy of discovering antiferroptotic agents as inhibitors of the 15LOX/PEBP1 catalytic complex rather than 15LOX alone. Here we designed, synthesized, and tested a customized library of 26 compounds using biochemical, molecular, and cell biology models along with redox lipidomic and computational analyses. We selected two lead compounds, FerroLOXIN-1 and 2, which effectively suppressed ferroptosis in vitro and in vivo without affecting the biosynthesis of pro-/anti-inflammatory lipid mediators in vivo. The effectiveness of these lead compounds is not due to radical scavenging or iron-chelation but results from their specific mechanisms of interaction with the 15LOX-2/PEBP1 complex, which either alters the binding pose of the substrate [eicosatetraenoyl-PE (ETE-PE)] in a nonproductive way or blocks the predominant oxygen channel thus preventing the catalysis of ETE-PE peroxidation. Our successful strategy may be adapted to the design of additional chemical libraries to reveal new ferroptosis-targeting therapeutic modalities.


Subject(s)
Ferroptosis , Phosphatidylethanolamine Binding Protein , Glutathione/metabolism , Iron/metabolism , Lipid Peroxidation , Lipids , Oxidation-Reduction , Phosphatidylethanolamine Binding Protein/antagonists & inhibitors
2.
Hum Mol Genet ; 31(17): 2989-3000, 2022 08 25.
Article in English | MEDLINE | ID: mdl-35419606

ABSTRACT

Spinal muscular atrophy (SMA) is a neurodegenerative disease caused by reduced expression of the survival motor neuron (SMN) protein. Current disease-modifying therapies increase SMN levels and dramatically improve survival and motor function of SMA patients. Nevertheless, current treatments are not cures and autopsy data suggest that SMN induction is variable. Our group and others have shown that combinatorial approaches that target different modalities can improve outcomes in rodent models of SMA. Here we explore if slowing SMN protein degradation and correcting SMN splicing defects could synergistically increase SMN production and improve the SMA phenotype in model mice. We show that co-administering ML372, which inhibits SMN ubiquitination, with an SMN-modifying antisense oligonucleotide (ASO) increases SMN production in SMA cells and model mice. In addition, we observed improved spinal cord, neuromuscular junction and muscle pathology when ML372 and the ASO were administered in combination. Importantly, the combinatorial approach resulted in increased motor function and extended survival of SMA mice. Our results demonstrate that a combination of treatment modalities synergistically increases SMN levels and improves pathophysiology of SMA model mice over individual treatment.


Subject(s)
Muscular Atrophy, Spinal , Neurodegenerative Diseases , Animals , Disease Models, Animal , Mice , Muscular Atrophy, Spinal/genetics , Muscular Atrophy, Spinal/pathology , Muscular Atrophy, Spinal/therapy , Oligonucleotides/pharmacology , Oligonucleotides, Antisense/pharmacology , Survival of Motor Neuron 1 Protein/genetics
3.
Exp Cell Res ; 412(1): 113007, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34990619

ABSTRACT

Mucopolysaccharidosis type II (MPS II), also known as Hunter syndrome, is a rare, lysosomal disorder caused by mutations in a gene encoding iduronate-2-sulfatase (IDS). IDS deficiency results in an accumulation of glycosaminoglycans (GAGs) and secondary accumulations of other lipids in lysosomes. Symptoms of MPS II include a variety of soft and hard tissue problems, developmental delay, and deterioration of multiple organs. Enzyme replacement therapy is an approved treatment for MPS II, but fails to improve neuronal symptoms. Cell-based neuronal models of MPS II disease are needed for compound screening and drug development for the treatment of the neuronal symptoms in MPS II. In this study, three induced pluripotent stem cell (iPSC) lines were generated from three MPS II patient-derived dermal fibroblast cell lines that were differentiated into neural stem cells and neurons. The disease phenotypes were measured using immunofluorescence staining and Nile red dye staining. In addition, the therapeutic effects of recombinant human IDS enzyme, delta-tocopherol (DT), and hydroxypropyl-beta-cyclodextrin (HPBCD) were determined in the MPS II disease cells. Finally, the neural stem cells from two of the MPS II iPSC lines exhibited typical disease features including a deficiency of IDS activity, abnormal glycosaminoglycan storage, and secondary lipid accumulation. Enzyme replacement therapy partially rescued the disease phenotypes in these cells. DT showed a significant effect in reducing the secondary accumulation of lipids in the MPS II neural stem cells. In contrast, HPBCD displayed limited or no effect in these cells. Our data indicate that these MPS II cells can be used as a cell-based disease model to study disease pathogenesis, evaluate drug efficacy, and screen compounds for drug development.


Subject(s)
Induced Pluripotent Stem Cells/drug effects , Induced Pluripotent Stem Cells/metabolism , Mucopolysaccharidosis II/drug therapy , Mucopolysaccharidosis II/metabolism , Neural Stem Cells/drug effects , Neural Stem Cells/metabolism , 2-Hydroxypropyl-beta-cyclodextrin/therapeutic use , Cell Line , Enzyme Replacement Therapy , Glycosaminoglycans/metabolism , Humans , Iduronate Sulfatase/therapeutic use , Induced Pluripotent Stem Cells/pathology , Lipid Metabolism/drug effects , Models, Neurological , Mucopolysaccharidosis II/pathology , Neural Stem Cells/pathology , Phenotype , Recombinant Proteins/therapeutic use , Tocopherols/therapeutic use
4.
Int J Mol Sci ; 24(6)2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36982411

ABSTRACT

It is extremely difficult to achieve functional recovery after axonal injury in the adult central nervous system. The activation of G-protein coupled receptor 110 (GPR110, ADGRF1) has been shown to stimulate neurite extension in developing neurons and after axonal injury in adult mice. Here, we demonstrate that GPR110 activation partially restores visual function impaired by optic nerve injury in adult mice. Intravitreal injection of GPR110 ligands, synaptamide and its stable analogue dimethylsynaptamide (A8) after optic nerve crush significantly reduced axonal degeneration and improved axonal integrity and visual function in wild-type but not gpr110 knockout mice. The retina obtained from the injured mice treated with GPR110 ligands also showed a significant reduction in the crush-induced loss of retinal ganglion cells. Our data suggest that targeting GPR110 may be a viable strategy for functional recovery after optic nerve injury.


Subject(s)
Optic Nerve Injuries , Animals , Mice , Axons , Ligands , Mice, Knockout , Nerve Crush , Nerve Regeneration/physiology , Receptors, G-Protein-Coupled/genetics , Retina , Retinal Ganglion Cells/physiology
5.
Hum Mol Genet ; 28(13): 2120-2132, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30806670

ABSTRACT

Duchenne muscular dystrophy (DMD) is a lethal, muscle degenerative disease causing premature death of affected children. DMD is characterized by mutations in the dystrophin gene that result in a loss of the dystrophin protein. Loss of dystrophin causes an associated reduction in proteins of the dystrophin glycoprotein complex, leading to contraction-induced sarcolemmal weakening, muscle tearing, fibrotic infiltration and rounds of degeneration and failed regeneration affecting satellite cell populations. The α7ß1 integrin has been implicated in increasing myogenic capacity of satellite cells, therefore restoring muscle viability, increasing muscle force and preserving muscle function in dystrophic mouse models. In this study, we show that a Food and Drug Administration (FDA)-approved small molecule, Sunitinib, is a potent α7 integrin enhancer capable of promoting myogenic regeneration by stimulating satellite cell activation and increasing myofiber fusion. Sunitinib exerts its regenerative effects via transient inhibition of SHP-2 and subsequent activation of the STAT3 pathway. Treatment of mdx mice with Sunitinib demonstrated decreased membrane leakiness and damage owing to myofiber regeneration and enhanced support at the extracellular matrix. The decreased myofiber damage translated into a significant increase in muscle force production. This study identifies an already FDA-approved compound, Sunitinib, as a possible DMD therapeutic with the potential to treat other muscular dystrophies in which there is defective muscle repair.


Subject(s)
Muscle, Skeletal/drug effects , Muscular Dystrophy, Duchenne/drug therapy , Myoblasts/drug effects , Sunitinib/therapeutic use , Animals , Cell Line , Disease Models, Animal , Disease Progression , Integrins/metabolism , Male , Mice , Mice, Inbred mdx , Muscle Development/drug effects , Muscle, Skeletal/metabolism , MyoD Protein/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Myogenin/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/drug effects , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Regeneration , STAT3 Transcription Factor/drug effects , STAT3 Transcription Factor/metabolism , Satellite Cells, Skeletal Muscle/drug effects , Satellite Cells, Skeletal Muscle/metabolism , Sunitinib/pharmacology
6.
J Neuroinflammation ; 18(1): 157, 2021 Jul 17.
Article in English | MEDLINE | ID: mdl-34273979

ABSTRACT

BACKGROUND: Repetitive mild traumatic brain injury (mTBI) can result in chronic visual dysfunction. G-protein receptor 110 (GPR110, ADGRF1) is the target receptor of N-docosahexaenoylethanolamine (synaptamide) mediating the anti-neuroinflammatory function of synaptamide. In this study, we evaluated the effect of an endogenous and a synthetic ligand of GPR110, synaptamide and (4Z,7Z,10Z,13Z,16Z,19Z)-N-(2-hydroxy-2-methylpropyl) docosa-4,7,10,13,16,19-hexaenamide (dimethylsynaptamide, A8), on the mTBI-induced long-term optic tract histopathology and visual dysfunction using Closed-Head Impact Model of Engineered Rotational Acceleration (CHIMERA), a clinically relevant model of mTBI. METHODS: The brain injury in wild-type (WT) and GPR110 knockout (KO) mice was induced by CHIMERA applied daily for 3 days, and GPR110 ligands were intraperitoneally injected immediately following each impact. The expression of GPR110 and proinflammatory mediator tumor necrosis factor (TNF) in the brain was measured by using real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) in an acute phase. Chronic inflammatory responses in the optic tract and visual dysfunction were assessed by immunostaining for Iba-1 and GFAP and visual evoked potential (VEP), respectively. The effect of GPR110 ligands in vitro was evaluated by the cyclic adenosine monophosphate (cAMP) production in primary microglia isolated from adult WT or KO mouse brains. RESULTS: CHIMERA injury acutely upregulated the GPR110 and TNF gene level in mouse brain. Repetitive CHIMERA (rCHIMERA) increased the GFAP and Iba-1 immunostaining of glia cells and silver staining of degenerating axons in the optic tract with significant reduction of N1 amplitude of visual evoked potential at up to 3.5 months after injury. Both GPR110 ligands dose- and GPR110-dependently increased cAMP in cultured primary microglia with A8, a ligand with improved stability, being more effective than synaptamide. Intraperitoneal injection of A8 at 1 mg/kg or synaptamide at 5 mg/kg significantly reduced the acute expression of TNF mRNA in the brain and ameliorated chronic optic tract microgliosis, astrogliosis, and axonal degeneration as well as visual deficit caused by injury in WT but not in GPR110 KO mice. CONCLUSION: Our data demonstrate that ligand-induced activation of the GPR110/cAMP system upregulated after injury ameliorates the long-term optic tract histopathology and visual impairment caused by rCHIMERA. Based on the anti-inflammatory nature of GPR110 activation, we suggest that GPR110 ligands may have therapeutic potential for chronic visual dysfunction associated with mTBI.


Subject(s)
Brain Concussion/complications , Ethanolamines/metabolism , Ethanolamines/pharmacology , Gliosis/drug therapy , Gliosis/metabolism , Optic Tract/drug effects , Optic Tract/pathology , Receptors, G-Protein-Coupled/metabolism , Animals , Brain/metabolism , Brain/pathology , Brain Concussion/pathology , Cell Culture Techniques , Cyclic AMP/metabolism , Disease Models, Animal , Electroretinography , Evoked Potentials, Visual , Gliosis/complications , Inflammation , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , Microglia/metabolism , Optic Tract/injuries , Tumor Necrosis Factor-alpha/metabolism , Vision, Ocular
7.
Int J Mol Sci ; 22(7)2021 Mar 25.
Article in English | MEDLINE | ID: mdl-33806166

ABSTRACT

Recovery from axonal injury is extremely difficult, especially for adult neurons. Here, we demonstrate that the activation of G-protein coupled receptor 110 (GPR110, ADGRF1) is a mechanism to stimulate axon growth after injury. N-docosahexaenoylethanolamine (synaptamide), an endogenous ligand of GPR110 that promotes neurite outgrowth and synaptogenesis in developing neurons, and a synthetic GPR110 ligand stimulated neurite growth in axotomized cortical neurons and in retinal explant cultures. Intravitreal injection of GPR110 ligands following optic nerve crush injury promoted axon extension in adult wild-type, but not in gpr110 knockout, mice. In vitro axotomy or in vivo optic nerve injury rapidly induced the neuronal expression of gpr110. Activating the developmental mechanism of neurite outgrowth by specifically targeting GPR110 that is upregulated upon injury may provide a novel strategy for stimulating axon growth after nerve injury in adults.


Subject(s)
Axons/metabolism , Ethanolamines/pharmacology , Nerve Regeneration , Receptors, G-Protein-Coupled/metabolism , Animals , Female , Ligands , Mice , Mice, Inbred C57BL , Mice, Knockout , Microfluidics , Molecular Docking Simulation , Nerve Crush , Neurogenesis , Neurons/metabolism , Optic Nerve/metabolism , Retina/metabolism
8.
FASEB J ; 33(11): 12435-12446, 2019 11.
Article in English | MEDLINE | ID: mdl-31419161

ABSTRACT

Fibrosis is an underlying cause of cirrhosis and hepatic failure resulting in end stage liver disease with limited pharmacological options. The beneficial effects of relaxin peptide treatment were demonstrated in clinically relevant animal models of liver fibrosis. However, the use of relaxin is problematic because of a short half-life. The aim of this study was to test the therapeutic effects of recently identified small molecule agonists of the human relaxin receptor, relaxin family peptide receptor 1 (RXFP1). The lead compound of this series, ML290, was selected based on its effects on the expression of fibrosis-related genes in primary human stellate cells. RNA sequencing analysis of TGF-ß1-activated LX-2 cells showed that ML290 treatment primarily affected extracellular matrix remodeling and cytokine signaling, with expression profiles indicating an antifibrotic effect of ML290. ML290 treatment in human liver organoids with LPS-induced fibrotic phenotype resulted in a significant reduction of type I collagen. The pharmacokinetics of ML290 in mice demonstrated its high stability in vivo, as evidenced by the sustained concentrations of compound in the liver. In mice expressing human RXFP1 gene treated with carbon tetrachloride, ML290 significantly reduced collagen content, α-smooth muscle actin expression, and cell proliferation around portal ducts. In conclusion, ML290 demonstrated antifibrotic effects in liver fibrosis.-Kaftanovskaya, E. M., Ng, H. H., Soula, M., Rivas, B., Myhr, C., Ho, B. A., Cervantes, B. A., Shupe, T. D., Devarasetty, M., Hu, X., Xu, X., Patnaik, S., Wilson, K. J., Barnaeva, E., Ferrer, M., Southall, N. T., Marugan, J. J., Bishop, C. E., Agoulnik, I. U., Agoulnik, A. I. Therapeutic effects of a small molecule agonist of the relaxin receptor ML290 in liver fibrosis.


Subject(s)
Carbon Tetrachloride Poisoning/drug therapy , Cell Proliferation/drug effects , Liver Cirrhosis/drug therapy , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, Peptide/antagonists & inhibitors , Signal Transduction/drug effects , Animals , Carbon Tetrachloride Poisoning/genetics , Cell Line, Transformed , Cell Proliferation/genetics , Cytokines/genetics , Cytokines/metabolism , Humans , Liver Cirrhosis/chemically induced , Liver Cirrhosis/genetics , Liver Cirrhosis/metabolism , Mice , Mice, Transgenic , Organoids/metabolism , Organoids/pathology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Receptors, Peptide/genetics , Receptors, Peptide/metabolism , Signal Transduction/genetics
9.
Regul Toxicol Pharmacol ; 116: 104716, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32619635

ABSTRACT

Pancreatic cancer is a leading cause of cancer-related deaths in the U.S. Ninety percent of patients with stage IV pancreatic cancer die within one year of diagnosis due to complications of metastasis. A metastatic potential of cancer cells has been shown to be closely associated with formation of perinucleolar compartment (PNC). Metarrestin, a first-in-class PNC inhibitor, was evaluated for its toxicity, toxicokinetics, and safety pharmacology in beagle dogs following every other day oral (capsule) administration for 28 days to support its introduction into clinical trials. The study consisted of four dose groups: vehicle; 0.25, 0.75 and 1.50 mg/kg/dose. Metarrestin reached its maximum concentration in blood at 3 h (overall median Tmax) across all doses with a mean t1/2 over 168 h of 55.5 h. Dose dependent increase in systemic exposure (Cmax and AUClast) with no sex difference was observed on days 1 and 27. Metarrestin accumulated from Day 1 to Day 27 at all dose levels and in both sexes by an overall factor of about 2.34. No mortality occurred during the dosing period; however, treatment-related clinical signs of toxicity consisting of hypoactivity, shaking/shivering, thinness, irritability, salivation, abnormal gait, tremors, ataxia and intermittent seizure-like activity were seen in both sexes at mid and high dose groups. Treatment-related effects on body weight and food consumption were seen at the mid and high dose levels. Safety pharmacology study showed no treatment-related effects on blood pressure, heart rate, corrected QT, PR, RR, or QRS intervals, or respiratory function parameters (respiratory rate, tidal volume, minute volume). There were no histopathological changes observed, with the exception of transient thymic atrophy which was considered to be non-adverse. Based primarily on clinical signs of toxicity, the No Observed Adverse Effect Level (NOAEL) in dogs was considered to be 0.25 mg/kg metarrestin after every other day dosing for 28 days with a mean of male and female Cmax = 82.5 ng/mL and AUClast = 2521 h*ng/mL, on Day 27.


Subject(s)
Antineoplastic Agents , Pyrimidines , Pyrroles , Administration, Oral , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/toxicity , Dogs , Drug Evaluation, Preclinical , ERG1 Potassium Channel/genetics , ERG1 Potassium Channel/physiology , Female , HEK293 Cells , Humans , Male , No-Observed-Adverse-Effect Level , Pancreatic Neoplasms/drug therapy , Pyrimidines/administration & dosage , Pyrimidines/pharmacokinetics , Pyrimidines/toxicity , Pyrroles/administration & dosage , Pyrroles/pharmacokinetics , Pyrroles/toxicity
10.
J Lipid Res ; 60(3): 683-693, 2019 03.
Article in English | MEDLINE | ID: mdl-30626625

ABSTRACT

The minor phospholipid, phosphatidylinositol 4-phosphate (PI4P), is emerging as a key regulator of lipid transfer in ER-membrane contact sites. Four different phosphatidylinositol 4-kinase (PI4K) enzymes generate PI4P in different membrane compartments supporting distinct cellular processes, many of which are crucial for the maintenance of cellular integrity but also hijacked by intracellular pathogens. While type III PI4Ks have been targeted by small molecular inhibitors, thus helping decipher their importance in cellular physiology, no inhibitors are available for the type II PI4Ks, which hinders investigations into their cellular functions. Here, we describe the identification of small molecular inhibitors of PI4K type II alpha (PI4K2A) by implementing a large scale small molecule high-throughput screening. A novel assay was developed that allows testing of selected inhibitors against PI4K2A in intact cells using a bioluminescence resonance energy transfer approach adapted to plate readers. The compounds disclosed here will pave the way to the optimization of PI4K2A inhibitors that can be used in cellular and animal studies to better understand the role of this enzyme in both normal and pathological states.


Subject(s)
1-Phosphatidylinositol 4-Kinase/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , High-Throughput Screening Assays , 1-Phosphatidylinositol 4-Kinase/chemistry , 1-Phosphatidylinositol 4-Kinase/metabolism , Animals , Biological Transport , COS Cells , Chlorocebus aethiops , Drug Evaluation, Preclinical , Endosomes/drug effects , Endosomes/metabolism , Enzyme Inhibitors/metabolism , Golgi Apparatus/drug effects , Golgi Apparatus/metabolism , HEK293 Cells , Humans , Molecular Docking Simulation , Protein Conformation
11.
J Pharmacol Exp Ther ; 370(3): 823-833, 2019 09.
Article in English | MEDLINE | ID: mdl-31101681

ABSTRACT

Induction of lysosomal exocytosis alleviates lysosomal storage of undigested metabolites in cell models of lysosomal disorders (LDs). However, whether this strategy affects other vesicular compartments, e.g., those involved in endocytosis, is unknown. This is important both to predict side effects and to use this strategy in combination with therapies that require endocytosis for intracellular delivery, such as lysosomal enzyme replacement therapy (ERT). We investigated this using δ-tocopherol as a model previously shown to induce lysosomal exocytosis and cell models of type A Niemann-Pick disease, a LD characterized by acid sphingomyelinase (ASM) deficiency and sphingomyelin storage. δ-Tocopherol and derivative CF3-T reduced net accumulation of fluid phase, ligands, and polymer particles via phagocytic, caveolae-, clathrin-, and cell adhesion molecule (CAM)-mediated pathways, yet the latter route was less affected due to receptor overexpression. In agreement, δ-tocopherol lowered uptake of recombinant ASM by deficient cells (known to occur via the clathrin pathway) and via targeting intercellular adhesion molecule-1 (associated to the CAM pathway). However, the net enzyme activity delivered and lysosomal storage attenuation were greater via the latter route. Data suggest stimulation of exocytosis by tocopherols is not specific of lysosomes and affects endocytic cargo. However, this effect was transient and became unnoticeable several hours after tocopherol removal. Therefore, induction of exocytosis in combination with therapies requiring endocytic uptake, such as ERT, may represent a new type of drug interaction, yet this strategy could be valuable if properly timed for minimal interference.


Subject(s)
Endocytosis/drug effects , Enzyme Replacement Therapy/methods , Niemann-Pick Disease, Type A/drug therapy , Sphingomyelin Phosphodiesterase/therapeutic use , Tocopherols/pharmacology , Animals , Cell Adhesion Molecules/metabolism , Cells, Cultured , Combined Modality Therapy , Drug Interactions , Exocytosis/drug effects , Humans , Nanoparticles , Recombinant Proteins/pharmacokinetics , Sphingomyelin Phosphodiesterase/administration & dosage , Sphingomyelin Phosphodiesterase/pharmacokinetics
12.
Bioorg Med Chem Lett ; 29(9): 1113-1119, 2019 05 01.
Article in English | MEDLINE | ID: mdl-30852083

ABSTRACT

Nonstructural protein 1 (NS1) plays a crucial function in the replication, spread, and pathogenesis of influenza virus by inhibiting the host innate immune response. Here we report the discovery and optimization of novel pyrazolopyridine NS1 antagonists that can potently inhibit influenza A/PR/8/34 replication in MDCK cells, rescue MDCK cells from cytopathic effects of seasonal influenza A strains, reverse NS1-dependent inhibition of IFN-ß gene expression, and suppress the slow growth phenotype in NS1-expressing yeast. These pyrazolopyridines will enable researchers to investigate NS1 function during infection and how antagonists can be utilized in the next generation of treatments for influenza infection.


Subject(s)
Antiviral Agents/chemical synthesis , Drug Design , Influenza A virus/metabolism , Pyrazoles/chemistry , Pyridines/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Animals , Antiviral Agents/metabolism , Antiviral Agents/pharmacology , Dogs , HEK293 Cells , Half-Life , Humans , Interferon-beta/metabolism , Madin Darby Canine Kidney Cells , Male , Mice , Mice, Inbred C57BL , Pyrazoles/metabolism , Pyrazoles/pharmacology , Pyridines/metabolism , Pyridines/pharmacology , Structure-Activity Relationship , Viral Nonstructural Proteins/metabolism , Virus Replication/drug effects
14.
J Infect Dis ; 217(11): 1761-1769, 2018 05 05.
Article in English | MEDLINE | ID: mdl-29373739

ABSTRACT

Hepatitis C virus (HCV) is a small, single-stranded, positive-sense RNA virus that infects more than an estimated 70 million people worldwide. Untreated, persistent HCV infection often results in chronic hepatitis, cirrhosis, or liver failure, with progression to hepatocellular carcinoma. Current anti-HCV regimens comprising direct acting antivirals (DAAs) can provide curative treatment; however, due to high costs there remains a need for effective, shorter-duration, and affordable treatments. Recently, we disclosed anti-HCV activity of the cheap antihistamine chlorcyclizine, targeting viral entry. Following our hit-to-lead optimization campaign, we report evaluation of preclinical in vitro absorption, distribution, metabolism, and excretion properties, and in vivo pharmacokinetic profiles of lead compounds. This led to selection of a new lead compound and evaluation of efficacy in chimeric mice engrafted with primary human hepatocytes infected with HCV. Further development and incorporation of this compound into DAA regimens has the potential to improve treatment efficacy, affordability, and accessibility.


Subject(s)
Antiviral Agents/pharmacology , Hepacivirus/drug effects , Hepatitis C, Chronic/drug therapy , Piperazines/pharmacology , Animals , Carcinoma, Hepatocellular/virology , Cell Line , Genotype , Hepatocytes/virology , Humans , Liver Cirrhosis/virology , Liver Neoplasms/virology , Male , Mice , Mice, SCID , Virus Internalization/drug effects
15.
J Pharmacol Exp Ther ; 364(1): 38-45, 2018 01.
Article in English | MEDLINE | ID: mdl-29089368

ABSTRACT

Recently, we showed that TSH-enhanced differentiation of a human preosteoblast-like cell model involved a ß-arrestin 1 (ß-Arr 1)-mediated pathway. To study this pathway in more detail, we sought to discover a small molecule ligand that was functionally selective toward human TSH receptor (TSHR) activation of ß-Arr 1. High-throughput screening using a cell line stably expressing mutated TSHRs and mutated ß-Arr 1 (DiscoverX1 cells) led to the discovery of agonists that stimulated translocation of ß-Arr 1 to the TSHR, but did not activate Gs-mediated signaling pathways, i.e., cAMP production. D3-ßArr (NCGC00379308) was selected. In DiscoverX1 cells, D3-ßArr stimulated ß-Arr 1 translocation with a 5.1-fold greater efficacy than TSH and therefore potentiated the effect of TSH in stimulating ß-Arr 1 translocation. In human U2OS-TSHR cells expressing wild-type TSHRs, which is a model of human preosteoblast-like cells, TSH upregulated the osteoblast-specific genes osteopontin (OPN) and alkaline phosphatase (ALPL). D3-ßArr alone had only a weak effect to upregulate these bone markers, but D3-ßArr potentiated TSH-induced upregulation of ALPL and OPN mRNA levels 1.6-fold and 5.5-fold, respectively, at the maximum dose of ligands. Furthermore, the positive allosteric modulator effect of D3-ßArr resulted in an increase of TSH-induced secretion of OPN protein. In summary, we have discovered the first small molecule positive allosteric modulator of TSHR. As D3-ßArr potentiates the effect of TSH to enhance differentiation of a human preosteoblast in an in vitro model, it will allow a novel experimental approach for probing the role of TSH-induced ß-Arr 1 signaling in osteoblast differentiation.


Subject(s)
Cell Differentiation/drug effects , Drug Discovery/methods , Osteoblasts/drug effects , Receptors, Thyrotropin/agonists , Thyrotropin/pharmacology , Allosteric Regulation/drug effects , Allosteric Regulation/physiology , Animals , CHO Cells , Cell Differentiation/physiology , Cell Line, Tumor , Cells, Cultured , Cricetinae , Cricetulus , High-Throughput Screening Assays/methods , Humans , Osteoblasts/physiology , Receptors, Thyrotropin/physiology , Thyroid Epithelial Cells/drug effects , Thyroid Epithelial Cells/metabolism , Thyrotropin/analogs & derivatives
16.
PLoS Pathog ; 12(6): e1005717, 2016 06.
Article in English | MEDLINE | ID: mdl-27336364

ABSTRACT

Infection with human cytomegalovirus (HCMV) is a threat for pregnant women and immunocompromised hosts. Although limited drugs are available, development of new agents against HCMV is desired. Through screening of the LOPAC library, we identified emetine as HCMV inhibitor. Additional studies confirmed its anti-HCMV activities in human foreskin fibroblasts: EC50-40±1.72 nM, CC50-8±0.56 µM, and selectivity index of 200. HCMV inhibition occurred after virus entry, but before DNA replication, and resulted in decreased expression of viral proteins. Synergistic virus inhibition was achieved when emetine was combined with ganciclovir. In a mouse CMV (MCMV) model, emetine was well-tolerated, displayed long half-life, preferential distribution to tissues over plasma, and effectively suppressed MCMV. Since the in vitro anti-HCMV activity of emetine decreased significantly in low-density cells, a mechanism involving cell cycle regulation was suspected. HCMV inhibition by emetine depended on ribosomal processing S14 (RPS14) binding to MDM2, leading to disruption of HCMV-induced MDM2-p53 and MDM2-IE2 interactions. Irrespective of cell density, emetine induced RPS14 translocation into the nucleus during infection. In infected high-density cells, MDM2 was available for interaction with RPS14, resulting in disruption of MDM2-p53 interaction. However, in low-density cells the pre-existing interaction of MDM2-p53 could not be disrupted, and RPS14 could not interact with MDM2. In high-density cells the interaction of MDM2-RPS14 resulted in ubiquitination and degradation of RPS14, which was not observed in low-density cells. In infected-only or in non-infected emetine-treated cells, RPS14 failed to translocate into the nucleus, hence could not interact with MDM2, and was not ubiquitinated. HCMV replicated similarly in RPS14 knockdown or control cells, but emetine did not inhibit virus replication in the former cell line. The interaction of MDM2-p53 was maintained in infected RPS14 knockdown cells despite emetine treatment, confirming a unique mechanism by which emetine exploits RPS14 to disrupt MDM2-p53 interaction. Summarized, emetine may represent a promising candidate for HCMV therapy alone or in combination with ganciclovir through a novel host-dependent mechanism.


Subject(s)
Antiviral Agents/pharmacology , Cytomegalovirus Infections , Cytomegalovirus/drug effects , Emetine/pharmacology , Animals , Cell Survival/drug effects , Cells, Cultured , Disease Models, Animal , Fluorescent Antibody Technique , Humans , Immunoblotting , Immunoprecipitation , Male , Mice , Mice, Inbred BALB C , Microscopy, Confocal , Polymerase Chain Reaction , Virus Replication/drug effects
17.
Mol Ther ; 25(6): 1395-1407, 2017 06 07.
Article in English | MEDLINE | ID: mdl-28391962

ABSTRACT

Duchenne muscular dystrophy (DMD) is a fatal muscle disease caused by mutations in the dystrophin gene, resulting in a complete loss of the dystrophin protein. Dystrophin is a critical component of the dystrophin glycoprotein complex (DGC), which links laminin in the extracellular matrix to the actin cytoskeleton within myofibers and provides resistance to shear stresses during muscle activity. Loss of dystrophin in DMD patients results in a fragile sarcolemma prone to contraction-induced muscle damage. The α7ß1 integrin is a laminin receptor protein complex in skeletal and cardiac muscle and a major modifier of disease progression in DMD. In a muscle cell-based screen for α7 integrin transcriptional enhancers, we identified a small molecule, SU9516, that promoted increased α7ß1 integrin expression. Here we show that SU9516 leads to increased α7B integrin in murine C2C12 and human DMD patient myogenic cell lines. Oral administration of SU9516 in the mdx mouse model of DMD increased α7ß1 integrin in skeletal muscle, ameliorated pathology, and improved muscle function. We show that these improvements are mediated through SU9516 inhibitory actions on the p65-NF-κB pro-inflammatory and Ste20-related proline alanine rich kinase (SPAK)/OSR1 signaling pathways. This study identifies a first in-class α7 integrin-enhancing small-molecule compound with potential for the treatment of DMD.


Subject(s)
Imidazoles/pharmacology , Indoles/pharmacology , Integrins/metabolism , Muscular Dystrophy, Duchenne/metabolism , Muscular Dystrophy, Duchenne/pathology , Animals , Cell Differentiation/drug effects , Cell Line , Disease Models, Animal , Disease Progression , Female , Fibrosis , Humans , Integrins/agonists , Mice , Mice, Inbred mdx , Models, Biological , Muscle Development/drug effects , Muscle Strength , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/drug therapy , Myoblasts, Skeletal/cytology , Myoblasts, Skeletal/drug effects , Myoblasts, Skeletal/metabolism , NF-kappa B/metabolism , Protein Serine-Threonine Kinases/metabolism , Regeneration/drug effects , Signal Transduction/drug effects
18.
Proc Natl Acad Sci U S A ; 112(11): E1373-81, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25733853

ABSTRACT

Upon nutrient starvation, autophagy digests unwanted cellular components to generate catabolites that are required for housekeeping biosynthesis processes. A complete execution of autophagy demands an enhancement in lysosome function and biogenesis to match the increase in autophagosome formation. Here, we report that mucolipin-1 (also known as TRPML1 or ML1), a Ca(2+) channel in the lysosome that regulates many aspects of lysosomal trafficking, plays a central role in this quality-control process. By using Ca(2+) imaging and whole-lysosome patch clamping, lysosomal Ca(2+) release and ML1 currents were detected within hours of nutrient starvation and were potently up-regulated. In contrast, lysosomal Na(+)-selective currents were not up-regulated. Inhibition of mammalian target of rapamycin (mTOR) or activation of transcription factor EB (TFEB) mimicked a starvation effect in fed cells. The starvation effect also included an increase in lysosomal proteostasis and enhanced clearance of lysosomal storage, including cholesterol accumulation in Niemann-Pick disease type C (NPC) cells. However, this effect was not observed when ML1 was pharmacologically inhibited or genetically deleted. Furthermore, overexpression of ML1 mimicked the starvation effect. Hence, lysosomal adaptation to environmental cues such as nutrient levels requires mTOR/TFEB-dependent, lysosome-to-nucleus regulation of lysosomal ML1 channels and Ca(2+) signaling.


Subject(s)
Amino Acids/deficiency , Lysosomes/metabolism , Transient Receptor Potential Channels/metabolism , Up-Regulation , Amino Acids/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Calcium/metabolism , Cell Line , Cell Nucleus/metabolism , Cholesterol/metabolism , Gene Expression Regulation , Humans , Mutation/genetics , Niemann-Pick Diseases/metabolism , Phosphatidylinositol Phosphates/metabolism , Protein Biosynthesis , Protein Transport , Proteolysis , Sodium/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription, Genetic
19.
J Neurosci ; 36(29): 7693-706, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27445146

ABSTRACT

UNLABELLED: Parkinson's disease (PD) is characterized by the accumulation of α-synuclein (α-syn) within Lewy body inclusions in the nervous system. There are currently no disease-modifying therapies capable of reducing α-syn inclusions in PD. Recent data has indicated that loss-of-function mutations in the GBA1 gene that encodes lysosomal ß-glucocerebrosidase (GCase) represent an important risk factor for PD, and can lead to α-syn accumulation. Here we use a small-molecule modulator of GCase to determine whether GCase activation within lysosomes can reduce α-syn levels and ameliorate downstream toxicity. Using induced pluripotent stem cell (iPSC)-derived human midbrain dopamine (DA) neurons from synucleinopathy patients with different PD-linked mutations, we find that a non-inhibitory small molecule modulator of GCase specifically enhanced activity within lysosomal compartments. This resulted in reduction of GCase substrates and clearance of pathological α-syn, regardless of the disease causing mutations. Importantly, the reduction of α-syn was sufficient to reverse downstream cellular pathologies induced by α-syn, including perturbations in hydrolase maturation and lysosomal dysfunction. These results indicate that enhancement of a single lysosomal hydrolase, GCase, can effectively reduce α-syn and provide therapeutic benefit in human midbrain neurons. This suggests that GCase activators may prove beneficial as treatments for PD and related synucleinopathies. SIGNIFICANCE STATEMENT: The presence of Lewy body inclusions comprised of fibrillar α-syn within affected regions of PD brain has been firmly documented, however no treatments exist that are capable of clearing Lewy bodies. Here, we used a mechanistic-based approach to examine the effect of GCase activation on α-syn clearance in human midbrain DA models that naturally accumulate α-syn through genetic mutations. Small molecule-mediated activation of GCase was effective at reducing α-syn inclusions in neurons, as well as associated downstream toxicity, demonstrating a therapeutic effect. Our work provides an example of how human iPSC-derived midbrain models could be used for testing potential treatments for neurodegenerative disorders, and identifies GCase as a critical therapeutic convergence point for a wide range of synucleinopathies.


Subject(s)
Dopaminergic Neurons/metabolism , Glucosylceramidase/metabolism , Lysosomes/metabolism , Mesencephalon/pathology , Parkinson Disease/pathology , alpha-Synuclein/metabolism , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line, Tumor , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/ultrastructure , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Gene Expression Regulation/genetics , Humans , Induced Pluripotent Stem Cells , Lysosomal-Associated Membrane Protein 2/metabolism , Mutation/genetics , Neuroblastoma/pathology , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Proton-Translocating ATPases/metabolism , Subcellular Fractions/metabolism , Subcellular Fractions/pathology , Synaptophysin/metabolism
20.
J Neurosci ; 36(28): 7441-52, 2016 07 13.
Article in English | MEDLINE | ID: mdl-27413154

ABSTRACT

UNLABELLED: Among the known genetic risk factors for Parkinson disease, mutations in GBA1, the gene responsible for the lysosomal disorder Gaucher disease, are the most common. This genetic link has directed attention to the role of the lysosome in the pathogenesis of parkinsonism. To study how glucocerebrosidase impacts parkinsonism and to evaluate new therapeutics, we generated induced human pluripotent stem cells from four patients with Type 1 (non-neuronopathic) Gaucher disease, two with and two without parkinsonism, and one patient with Type 2 (acute neuronopathic) Gaucher disease, and differentiated them into macrophages and dopaminergic neurons. These cells exhibited decreased glucocerebrosidase activity and stored the glycolipid substrates glucosylceramide and glucosylsphingosine, demonstrating their similarity to patients with Gaucher disease. Dopaminergic neurons from patients with Type 2 and Type 1 Gaucher disease with parkinsonism had reduced dopamine storage and dopamine transporter reuptake. Levels of α-synuclein, a protein present as aggregates in Parkinson disease and related synucleinopathies, were selectively elevated in neurons from the patients with parkinsonism or Type 2 Gaucher disease. The cells were then treated with NCGC607, a small-molecule noninhibitory chaperone of glucocerebrosidase identified by high-throughput screening and medicinal chemistry structure optimization. This compound successfully chaperoned the mutant enzyme, restored glucocerebrosidase activity and protein levels, and reduced glycolipid storage in both iPSC-derived macrophages and dopaminergic neurons, indicating its potential for treating neuronopathic Gaucher disease. In addition, NCGC607 reduced α-synuclein levels in dopaminergic neurons from the patients with parkinsonism, suggesting that noninhibitory small-molecule chaperones of glucocerebrosidase may prove useful for the treatment of Parkinson disease. SIGNIFICANCE STATEMENT: Because GBA1 mutations are the most common genetic risk factor for Parkinson disease, dopaminergic neurons were generated from iPSC lines derived from patients with Gaucher disease with and without parkinsonism. These cells exhibit deficient enzymatic activity, reduced lysosomal glucocerebrosidase levels, and storage of glucosylceramide and glucosylsphingosine. Lines generated from the patients with parkinsonism demonstrated elevated levels of α-synuclein. To reverse the observed phenotype, the neurons were treated with a novel noninhibitory glucocerebrosidase chaperone, which successfully restored glucocerebrosidase activity and protein levels and reduced glycolipid storage. In addition, the small-molecule chaperone reduced α-synuclein levels in dopaminergic neurons, indicating that chaperoning glucocerebrosidase to the lysosome may provide a novel therapeutic strategy for both Parkinson disease and neuronopathic forms of Gaucher disease.


Subject(s)
Dopaminergic Neurons/metabolism , Gaucher Disease/pathology , Glucosylceramides/antagonists & inhibitors , Glycolipids/metabolism , Induced Pluripotent Stem Cells/drug effects , Parkinsonian Disorders/pathology , alpha-Synuclein/metabolism , Acetanilides/pharmacology , Benzamides/pharmacology , Catecholamines/metabolism , Cell Differentiation/genetics , Dopaminergic Neurons/drug effects , Female , Glucosylceramidase , Glucosylceramides/metabolism , Humans , Induced Pluripotent Stem Cells/metabolism , Inhibitory Postsynaptic Potentials/drug effects , Inhibitory Postsynaptic Potentials/genetics , Lysosomal-Associated Membrane Protein 2/metabolism , Macrophages/drug effects , Macrophages/metabolism , Male , Membrane Potentials/drug effects , Membrane Potentials/genetics , Mutation/genetics , Patch-Clamp Techniques , beta-Glucosidase/genetics
SELECTION OF CITATIONS
SEARCH DETAIL