Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Hum Mol Genet ; 32(16): 2600-2610, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37260376

ABSTRACT

Friedreich's ataxia (FA) is a devastating, multi-systemic neurodegenerative disease affecting thousands of people worldwide. We previously reported that oxygen is a key environmental variable that can modify FA pathogenesis. In particular, we showed that chronic, continuous normobaric hypoxia (11% FIO2) prevents ataxia and neurological disease in a murine model of FA, although it did not improve cardiovascular pathology or lifespan. Here, we report the pre-clinical evaluation of seven 'hypoxia-inspired' regimens in the shFxn mouse model of FA, with the long-term goal of designing a safe, practical and effective regimen for clinical translation. We report three chief results. First, a daily, intermittent hypoxia regimen (16 h 11% O2/8 h 21% O2) conferred no benefit and was in fact harmful, resulting in elevated cardiac stress and accelerated mortality. The detrimental effect of this regimen is likely owing to transient tissue hyperoxia that results when daily exposure to 21% O2 combines with chronic polycythemia, as we could blunt this toxicity by pharmacologically inhibiting polycythemia. Second, we report that more mild regimens of chronic hypoxia (17% O2) confer a modest benefit by delaying the onset of ataxia. Third, excitingly, we show that initiating chronic, continuous 11% O2 breathing once advanced neurological disease has already started can rapidly reverse ataxia. Our studies showcase both the promise and limitations of candidate hypoxia-inspired regimens for FA and underscore the need for additional pre-clinical optimization before future translation into humans.


Subject(s)
Friedreich Ataxia , Neurodegenerative Diseases , Polycythemia , Humans , Mice , Animals , Friedreich Ataxia/genetics , Disease Models, Animal , Hypoxia , Oxygen , Ataxia
2.
Angew Chem Int Ed Engl ; 63(6): e202317487, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-38100749

ABSTRACT

Hydrogen sulfide (H2 S) is an endogenous gasotransmitter that plays important roles in redox signaling. H2 S overproduction has been linked to a variety of disease states and therefore, H2 S-depleting agents, such as scavengers, are needed to understand the significance of H2 S-based therapy. It is known that elevated H2 S can induce oxidative stress with elevated reactive oxygen species (ROS) formation, such as in H2 S acute intoxication. We explored the possibility of developing catalytic scavengers to simultaneously remove H2 S and ROS. Herein, we studied a series of selenium-based molecules as catalytic H2 S/H2 O2 scavengers. Inspired by the high reactivity of selenoxide compounds towards H2 S, 14 diselenide/monoselenide compounds were tested. Several promising candidates such as S6 were identified. Their activities in buffers, as well as in plasma- and cell lysate-containing solutions were evaluated. We also studied the reaction mechanism of this scavenging process. Finally, the combination of the diselenide catalyst and photosensitizers was used to achieve light-induced H2 S removal. These Se-based scavengers can be useful tools for understanding H2 S/ROS regulations.


Subject(s)
Gasotransmitters , Hydrogen Sulfide , Selenium , Reactive Oxygen Species , Oxidative Stress , Hydrogen Peroxide/pharmacology
3.
Nitric Oxide ; 125-126: 47-56, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35716999

ABSTRACT

RATIONALE: Nitric oxide (NO) exerts its biological effects primarily via activation of guanylate cyclase (GC) and production of cyclic guanosine monophosphate. Inhaled NO improves outcomes after cardiac arrest and cardiopulmonary resuscitation (CPR). However, mechanisms of the protective effects of breathing NO after cardiac arrest are incompletely understood. OBJECTIVE: To elucidate the mechanisms of beneficial effects of inhaled NO on outcomes after cardiac arrest. METHODS: Adult male C57BL/6J wild-type (WT) mice, GC-1 knockout mice, and chimeric WT mice with WT or GC-1 knockout bone marrow were subjected to 8 min of potassium-induced cardiac arrest to determine the role of GC-1 in bone marrow-derived cells. Mice breathed air or 40 parts per million NO for 23 h starting at 1 h after CPR. RESULTS: Breathing NO after CPR prevented hypercoagulability, cerebral microvascular occlusion, an increase in circulating polymorphonuclear neutrophils and neutrophil-to-lymphocyte ratio, and right ventricular dysfunction in WT mice, but not in GC-1 knockout mice, after cardiac arrest. The lack of GC-1 in bone marrow-derived cells diminished the beneficial effects of NO breathing after CPR. CONCLUSIONS: GC-dependent signaling in bone marrow-derived cells is essential for the beneficial effects of inhaled NO after cardiac arrest and CPR.


Subject(s)
Heart Arrest , Nitric Oxide , Animals , Bone Marrow , Guanylate Cyclase , Heart Arrest/drug therapy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/pharmacology , Receptors, Cell Surface
4.
Anesthesiology ; 137(6): 716-732, 2022 12 01.
Article in English | MEDLINE | ID: mdl-36170545

ABSTRACT

BACKGROUND: Patients resuscitated from cardiac arrest are routinely sedated during targeted temperature management, while the effects of sedation on cerebral physiology and outcomes after cardiac arrest remain to be determined. The authors hypothesized that sedation would improve survival and neurologic outcomes in mice after cardiac arrest. METHODS: Adult C57BL/6J mice of both sexes were subjected to potassium chloride-induced cardiac arrest and cardiopulmonary resuscitation. Starting at the return of spontaneous circulation or at 60 min after return of spontaneous circulation, mice received intravenous infusion of propofol at 40 mg · kg-1 · h-1, dexmedetomidine at 1 µg · kg-1 · h-1, or normal saline for 2 h. Body temperature was lowered and maintained at 33°C during sedation. Cerebral blood flow was measured for 4 h postresuscitation. Telemetric electroencephalogram (EEG) was recorded in freely moving mice from 3 days before up to 7 days after cardiac arrest. RESULTS: Sedation with propofol or dexmedetomidine starting at return of spontaneous circulation improved survival in hypothermia-treated mice (propofol [13 of 16, 81%] vs. no sedation [4 of 16, 25%], P = 0.008; dexmedetomidine [14 of 16, 88%] vs. no sedation [4 of 16, 25%], P = 0.002). Mice receiving no sedation exhibited cerebral hyperemia immediately after resuscitation and EEG power remained less than 30% of the baseline in the first 6 h postresuscitation. Administration of propofol or dexmedetomidine starting at return of spontaneous circulation attenuated cerebral hyperemia and increased EEG slow oscillation power during and early after sedation (40 to 80% of the baseline). In contrast, delayed sedation failed to improve outcomes, without attenuating cerebral hyperemia and inducing slow-wave activity. CONCLUSIONS: Early administration of sedation with propofol or dexmedetomidine improved survival and neurologic outcomes in mice resuscitated from cardiac arrest and treated with hypothermia. The beneficial effects of sedation were accompanied by attenuation of the cerebral hyperemic response and enhancement of electroencephalographic slow-wave activity.


Subject(s)
Cardiopulmonary Resuscitation , Dexmedetomidine , Heart Arrest , Hyperemia , Hypothermia, Induced , Hypothermia , Propofol , Male , Female , Animals , Mice , Propofol/adverse effects , Dexmedetomidine/adverse effects , Hyperemia/therapy , Mice, Inbred C57BL , Heart Arrest/drug therapy , Disease Models, Animal , Electroencephalography
5.
Arch Toxicol ; 96(12): 3363-3371, 2022 12.
Article in English | MEDLINE | ID: mdl-36195745

ABSTRACT

Electronic cigarettes (e-cigarettes) have been used widely as an alternative to conventional cigarettes and have become particularly popular among young adults. A growing body of evidence has shown that e-cigarettes are associated with acute lung injury and adverse effects in multiple other organs. Previous studies showed that high emissions of aldehydes (formaldehyde and acetaldehyde) in aerosols were associated with increased usage of the same e-cigarette coils. However, the impact on lung function of using aged coils has not been reported. We investigated the relationship between coil age and acute lung injury in mice exposed to experimental vaping for 1 h (2 puffs/min, 100 ml/puff). The e-liquid contains propylene glycol and vegetable glycerin (50:50, vol) only. The concentrations of formaldehyde and acetaldehyde in the vaping aerosols increased with age of the nichrome coils starting at 1200 puffs. Mice exposed to e-cigarette aerosols produced from 1800, but not 0 or 900, puff-aged coils caused acute lung injury, increased lung wet/dry weight ratio, and induced lung inflammation (IL-6, TNF-α, IL-1ß, MIP-2). Exposure to vaping aerosols from 1800 puff-aged coils decreased heart rate, respiratory rate, and oxygen saturation in mice compared to mice exposed to air or aerosols from new coils. In conclusion, we observed that the concentration of aldehydes (formaldehyde and acetaldehyde) increased with repeated and prolonged usage of e-cigarette coils. Exposure to high levels of aldehyde in vaping aerosol was associated with acute lung injury in mice. These findings show significant risk of lung injury associated with prolonged use of e-cigarette devices.


Subject(s)
Acute Lung Injury , Electronic Nicotine Delivery Systems , Vaping , Animals , Mice , Acetaldehyde , Acute Lung Injury/chemically induced , Aldehydes/toxicity , Formaldehyde/toxicity , Glycerol , Interleukin-6 , Propylene Glycol/toxicity , Respiratory Aerosols and Droplets , Tumor Necrosis Factor-alpha
6.
Mol Genet Metab ; 133(1): 83-93, 2021 05.
Article in English | MEDLINE | ID: mdl-33752971

ABSTRACT

Leigh syndrome is a severe mitochondrial neurodegenerative disease with no effective treatment. In the Ndufs4-/- mouse model of Leigh syndrome, continuously breathing 11% O2 (hypoxia) prevents neurodegeneration and leads to a dramatic extension (~5-fold) in lifespan. We investigated the effect of hypoxia on the brain metabolism of Ndufs4-/- mice by studying blood gas tensions and metabolite levels in simultaneously sampled arterial and cerebral internal jugular venous (IJV) blood. Relatively healthy Ndufs4-/- and wildtype (WT) mice breathing air until postnatal age ~38 d were compared to Ndufs4-/- and WT mice breathing air until ~38 days old followed by 4-weeks of breathing 11% O2. Compared to WT control mice, Ndufs4-/- mice breathing air have reduced brain O2 consumption as evidenced by an elevated partial pressure of O2 in IJV blood (PijvO2) despite a normal PO2 in arterial blood, and higher lactate/pyruvate (L/P) ratios in IJV plasma revealed by metabolic profiling. In Ndufs4-/- mice, hypoxia treatment normalized the cerebral venous PijvO2 and L/P ratios, and decreased levels of nicotinate in IJV plasma. Brain concentrations of nicotinamide adenine dinucleotide (NAD+) were lower in Ndufs4-/- mice breathing air than in WT mice, but preserved at WT levels with hypoxia treatment. Although mild hypoxia (17% O2) has been shown to be an ineffective therapy for Ndufs4-/- mice, we find that when combined with nicotinic acid supplementation it provides a modest improvement in neurodegeneration and lifespan. Therapies targeting both brain hyperoxia and NAD+ deficiency may hold promise for treating Leigh syndrome.


Subject(s)
Brain/metabolism , Electron Transport Complex I/genetics , Leigh Disease/metabolism , NAD/genetics , Oxygen/metabolism , Animals , Brain/pathology , Cell Hypoxia/physiology , Disease Models, Animal , Electron Transport Complex I/metabolism , Humans , Leigh Disease/genetics , Leigh Disease/therapy , Metabolomics , Mice , Mitochondria , NAD/deficiency , Neurodegenerative Diseases , Respiration/genetics
7.
Circulation ; 139(6): 815-827, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30586713

ABSTRACT

BACKGROUND: The biological effects of nitric oxide are mediated via protein S-nitrosylation. Levels of S-nitrosylated protein are controlled in part by the denitrosylase, S-nitrosoglutathione reductase (GSNOR). The objective of this study was to examine whether GSNOR inhibition improves outcomes after cardiac arrest and cardiopulmonary resuscitation (CA/CPR). METHODS: Adult wild-type C57BL/6 and GSNOR-deleted (GSNOR-/-) mice were subjected to potassium chloride-induced CA and subsequently resuscitated. Fifteen minutes after a return of spontaneous circulation, wild-type mice were randomized to receive the GSNOR inhibitor, SPL-334.1, or normal saline as placebo. Mortality, neurological outcome, GSNOR activity, and levels of S-nitrosylated proteins were evaluated. Plasma GSNOR activity was measured in plasma samples obtained from post-CA patients, preoperative cardiac surgery patients, and healthy volunteers. RESULTS: GSNOR activity was increased in plasma and multiple organs of mice, including brain in particular. Levels of protein S-nitrosylation were decreased in the brain 6 hours after CA/CPR. Administration of SPL-334.1 attenuated the increase in GSNOR activity in brain, heart, liver, spleen, and plasma, and restored S-nitrosylated protein levels in the brain. Inhibition of GSNOR attenuated ischemic brain injury and improved survival in wild-type mice after CA/CPR (81.8% in SPL-334.1 versus 36.4% in placebo; log rank P=0.031). Similarly, GSNOR deletion prevented the reduction in the number of S-nitrosylated proteins in the brain, mitigated brain injury, and improved neurological recovery and survival after CA/CPR. Both GSNOR inhibition and deletion attenuated CA/CPR-induced disruption of blood brain barrier. Post-CA patients had higher plasma GSNOR activity than did preoperative cardiac surgery patients or healthy volunteers ( P<0.0001). Plasma GSNOR activity was positively correlated with initial lactate levels in postarrest patients (Spearman correlation coefficient=0.48; P=0.045). CONCLUSIONS: CA and CPR activated GSNOR and reduced the number of S-nitrosylated proteins in the brain. Pharmacological inhibition or genetic deletion of GSNOR prevented ischemic brain injury and improved survival rates by restoring S-nitrosylated protein levels in the brain after CA/CPR in mice. Our observations suggest that GSNOR is a novel biomarker of postarrest brain injury as well as a molecular target to improve outcomes after CA.


Subject(s)
Aldehyde Oxidoreductases/antagonists & inhibitors , Benzoates/therapeutic use , Heart Arrest/therapy , Heart/drug effects , Pyrimidinones/therapeutic use , Aldehyde Oxidoreductases/genetics , Animals , Benzoates/pharmacology , Disease Models, Animal , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Oxidation-Reduction , Pyrimidinones/pharmacology , Resuscitation , Treatment Outcome
8.
Am J Physiol Lung Cell Mol Physiol ; 316(2): L391-L399, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30520688

ABSTRACT

Hypoxic pulmonary vasoconstriction (HPV) is a physiological vasomotor response that maintains systemic oxygenation by matching perfusion to ventilation during alveolar hypoxia. Although mitochondria appear to play an essential role in HPV, the impact of mitochondrial dysfunction on HPV remains incompletely defined. Mice lacking the mitochondrial complex I (CI) subunit Ndufs4 ( Ndufs4-/-) develop a fatal progressive encephalopathy and serve as a model for Leigh syndrome, the most common mitochondrial disease in children. Breathing normobaric 11% O2 prevents neurological disease and improves survival in Ndufs4-/- mice. In this study, we found that either genetic Ndufs4 deficiency or pharmacological inhibition of CI using piericidin A impaired the ability of left mainstem bronchus occlusion (LMBO) to induce HPV. In mice breathing air, the partial pressure of arterial oxygen during LMBO was lower in Ndufs4-/- and in piericidin A-treated Ndufs4+/+ mice than in respective controls. Impairment of HPV in Ndufs4-/- mice was not a result of nonspecific dysfunction of the pulmonary vascular contractile apparatus or pulmonary inflammation. In Ndufs4-deficient mice, 3 wk of breathing 11% O2 restored HPV in response to LMBO. When compared with Ndufs4-/- mice breathing air, chronic hypoxia improved systemic oxygenation during LMBO. The results of this study show that, when breathing air, mice with a congenital Ndufs4 deficiency or chemically inhibited CI function have impaired HPV. Our study raises the possibility that patients with inborn errors of mitochondrial function may also have defects in HPV.


Subject(s)
Electron Transport Complex I/deficiency , Hypoxia/physiopathology , Leigh Disease/physiopathology , Vasoconstriction/physiology , Animals , Bronchi/metabolism , Disease Models, Animal , Hypoxia/metabolism , Lung/metabolism , Lung/physiopathology , Mice, Transgenic , Mitochondria/metabolism , Pulmonary Artery/metabolism , Pulmonary Circulation/physiology
9.
Angew Chem Int Ed Engl ; 58(32): 10898-10902, 2019 08 05.
Article in English | MEDLINE | ID: mdl-31194894

ABSTRACT

Hydrogen sulfide (H2 S) is an important signaling molecule whose up- and down-regulation have specific biological consequences. Although significant advances in H2 S up-regulation, by the development of H2 S donors, have been achieved in recent years, precise H2 S down-regulation is still challenging. The lack of potent/specific inhibitors for H2 S-producing enzymes contributes to this problem. We expect the development of H2 S scavengers is an alternative approach to address this problem. Since chemical sensors and scavengers of H2 S share the same criteria, we constructed a H2 S sensor database, which summarizes key parameters of reported sensors. Data-driven analysis led to the selection of 30 potential compounds. Further evaluation of these compounds identified a group of promising scavengers, based on the sulfonyl azide template. The efficiency of these scavengers in in vitro and in vivo experiments was demonstrated.


Subject(s)
Free Radical Scavengers/chemistry , Hydrogen Sulfide/analysis , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Free Radical Scavengers/pharmacology , HeLa Cells , Humans , Hydrogen Sulfide/antagonists & inhibitors , Hydrogen Sulfide/pharmacology , Methylene Blue/chemistry , Mice , Molecular Structure , Structure-Activity Relationship , Survival Analysis
11.
Nitric Oxide ; 46: 87-92, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25461302

ABSTRACT

Increasing evidence suggests that the pathogenesis of neuropathic pain is mediated through activation of microglia in the spinal cord. Hydrogen sulfide attenuates microglial activation and central nervous system inflammation; however, the role of hydrogen sulfide in neuropathic pain is unclear. In this study, we examined the effects of hydrogen sulfide breathing on neuropathic pain in mice. C57BL/6J mice were subjected to chronic constriction injury (CCI) of the sciatic nerve. After CCI, mice breathed air alone or air mixed with hydrogen sulfide at 40 ppm for 8 h on 7 consecutive days. The expression levels of inflammatory cytokines including interleukin 6 (IL-6) were measured in the spinal cord. Effects of hydrogen sulfide on IL-6-induced activation of microglia were examined in primary rat microglia. Mice that breathed air alone exhibited the neuropathic pain behavior including mechanical allodynia and thermal hyperalgesia and increased mRNA levels of IL-6 and chemokine CC motif ligand 2 (CCL2) after CCI. Inhaled hydrogen sulfide prevented the neuropathic pain behavior and attenuated the upregulation of inflammatory cytokines. Sodium sulfide inhibited IL-6-induced activation of primary microglia. These results suggest that inhaled hydrogen sulfide prevents the development of neuropathic pain in mice possibly via inhibition of the activation of microglia in the spinal cord.


Subject(s)
Analgesics/pharmacology , Hydrogen Sulfide/pharmacology , Peripheral Nerve Injuries/drug therapy , Sciatic Nerve/injuries , Administration, Inhalation , Animals , Behavior, Animal/drug effects , Hyperalgesia , Interleukin-6/metabolism , Male , Mice , Mice, Inbred C57BL , Microglia/drug effects , Pain Management/methods , Peripheral Nerve Injuries/physiopathology , Rats, Sprague-Dawley , Sciatic Nerve/drug effects , Spinal Cord/chemistry , Spinal Cord/drug effects , Spinal Cord/metabolism
12.
Nitric Oxide ; 49: 90-6, 2015 Sep 15.
Article in English | MEDLINE | ID: mdl-25960429

ABSTRACT

AIMS: Mitochondria-targeted hydrogen sulfide donor AP39, [(10-oxo-10-(4-(3-thioxo-3H-1,2-dithiol-5yl)phenoxy)decyl) triphenylphosphonium bromide], exhibits cytoprotective effects against oxidative stress in vitro. We examined whether or not AP39 improves the neurological function and long term survival in mice subjected to cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). METHODS: Adult C57BL/6 male mice were subjected to 8 min of CA and subsequent CPR. We examined the effects of AP39 (10, 100, 1000 nmol kg(-1)) or vehicle administered intravenously at 2 min before CPR (Experiment 1). Systemic oxidative stress levels, mitochondrial permeability transition, and histological brain injury were assessed. We also examined the effects of AP39 (10, 1000 nmol kg(-1)) or vehicle administered intravenously at 1 min after return of spontaneous circulation (ROSC) (Experiment 2). ROSC was defined as the return of sinus rhythm with a mean arterial pressure >40 mm Hg lasting at least 10 seconds. RESULTS: Vehicle treated mice subjected to CA/CPR had poor neurological function and 10-day survival rate (Experiment 1; 15%, Experiment 2; 23%). Administration of AP39 (100 and 1000 nmol kg(-1)) 2 min before CPR significantly improved the neurological function and 10-day survival rate (54% and 62%, respectively) after CA/CPR. Administration of AP39 before CPR attenuated mitochondrial permeability transition pore opening, reactive oxygen species generation, and neuronal degeneration after CA/CPR. Administration of AP39 1 min after ROSC at 10 nmol kg(-1), but not at 1000 nmol kg(-1), significantly improved the neurological function and 10-day survival rate (69%) after CA/CPR. CONCLUSION: The current results suggest that administration of mitochondria-targeted sulfide donor AP39 at the time of CPR or after ROSC improves the neurological function and long term survival rates after CA/CPR by maintaining mitochondrial integrity and reducing oxidative stress.


Subject(s)
Heart Arrest/metabolism , Hydrogen Sulfide/metabolism , Mitochondria/metabolism , Protective Agents/pharmacology , Animals , Blood Pressure/drug effects , Brain Chemistry/drug effects , Male , Mice , Mice, Inbred C57BL , Protective Agents/chemistry , Thiophenes/chemistry , Thiophenes/pharmacology
13.
Anesthesiology ; 121(6): 1248-57, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25260144

ABSTRACT

BACKGROUND: Acute lung injury is characterized by neutrophilic inflammation and increased lung permeability. Thiosulfate is a stable metabolite of hydrogen sulfide, a gaseous mediator that exerts antiinflammatory effects. Although sodium thiosulfate (STS) has been used as an antidote, the effect of STS on acute lung injury is unknown. The authors assessed the effects of STS on mice lung and vascular endothelial cells subjected to acute inflammation. METHODS: Lung injury was assessed in mice challenged with intratracheal lipopolysaccharide or subjected to cecal ligation and puncture with or without STS. Effects of STS on endothelial permeability and the production of inflammatory cytokines and reactive oxygen species were examined in cultured endothelial cells incubated with lipopolysaccharide or tumor necrosis factor-α. Levels of sulfide and sulfane sulfur were measured using novel fluorescence probes. RESULTS: STS inhibited lipopolysaccharide-induced production of cytokines (interleukin-6 [pg/ml]; 313±164, lipopolysaccharide; 79±27, lipopolysaccharide+STS [n=10]), lung permeability, histologic lung injury, and nuclear factor-κB activation in the lung. STS also prevented up-regulation of interleukin-6 in the mouse lung subjected to cecal ligation and puncture. In endothelial cells, STS increased intracellular levels of sulfide and sulfane sulfur and inhibited lipopolysaccharide or tumor necrosis factor-α-induced production of cytokines and reactive oxygen species. The beneficial effects of STS were associated with attenuation of the lipopolysaccharide-induced nuclear factor-κB activation through the inhibition of tumor necrosis factor receptor-associated factor 6 ubiquitination. CONCLUSIONS: STS exerts robust antiinflammatory effects in mice lung and vascular endothelium. The results suggest a therapeutic potential of STS in acute lung injury.


Subject(s)
Acute Lung Injury/drug therapy , Antioxidants/therapeutic use , Thiosulfates/therapeutic use , Acute Lung Injury/chemically induced , Acute Lung Injury/pathology , Animals , Cecum/injuries , Cells, Cultured , Cytokines/biosynthesis , Humans , Lipopolysaccharides/pharmacology , Lung/pathology , Male , Mice , Mice, Inbred C57BL , NF-kappa B/antagonists & inhibitors , Reactive Oxygen Species/metabolism , Signal Transduction/drug effects
14.
J Clin Invest ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38870029

ABSTRACT

Leigh syndrome is the most common inherited mitochondrial disease in children and is often fatal within the first few years of life. In 2020, mutations in the gene encoding sulfide:quinone oxidoreductase (SQOR), a mitochondrial protein, were identified as a cause of Leigh syndrome. Here, we report that mice with a mutation in the gene encoding SQOR (SqorΔN/ΔN mice), which prevented SQOR from entering mitochondria, had clinical and pathological manifestations of Leigh syndrome. SqorΔN/ΔN mice had increased blood lactate levels that were associated with markedly decreased complex IV activity and increased hydrogens sulfide (H2S) levels. Because H2S is produced by both gut microbiota and host tissue, we tested whether metronidazole (a broad-spectrum antibiotic) or a sulfur-restricted diet rescues SqorΔN/ΔN mice from developing Leigh syndrome. Daily treatment with metronidazole alleviated increased H2S levels, normalized complex IV activity and blood lactate levels, and prolonged the survival of SqorΔN/ΔN mice. Similarly, a sulfur-restricted diet normalized blood lactate levels and inhibited the development of Leigh syndrome. Taken together, these observations suggest that mitochondrial SQOR is essential to prevent systemic accumulation of H2S. Administration of metronidazole or a sulfur-restricted diet may be therapeutic approaches to treatment of patients with Leigh syndrome caused by mutations in SQOR.

15.
J Biol Chem ; 287(38): 32124-35, 2012 Sep 14.
Article in English | MEDLINE | ID: mdl-22815476

ABSTRACT

Physiological levels of H(2)S exert neuroprotective effects, whereas high concentrations of H(2)S may cause neurotoxicity in part via activation of NMDAR. To characterize the neuroprotective effects of combination of exogenous H(2)S and NMDAR antagonism, we synthesized a novel H(2)S-releasing NMDAR antagonist N-((1r,3R,5S,7r)-3,5-dimethyladamantan-1-yl)-4-(3-thioxo-3H-1,2-dithiol-4-yl)-benzamide (S-memantine) and examined its effects in vitro and in vivo. S-memantine was synthesized by chemically combining a slow releasing H(2)S donor 4-(3-thioxo-3H-1,2-dithiol-4-yl)-benzoic acid (ACS48) with a NMDAR antagonist memantine. S-memantine increased intracellular sulfide levels in human neuroblastoma cells (SH-SY5Y) 10-fold as high as that was achieved by ACS48. Incubation with S-memantine after reoxygenation following oxygen and glucose deprivation (OGD) protected SH-SY5Y cells and murine primary cortical neurons more markedly than did ACS48 or memantine. Glutamate-induced intracellular calcium accumulation in primary cortical neurons were aggravated by sodium sulfide (Na(2)S) or ACS48, but suppressed by memantine and S-memantine. S-memantine prevented glutamate-induced glutathione depletion in SH-SY5Y cells more markedly than did Na(2)S or ACS48. Administration of S-memantine after global cerebral ischemia and reperfusion more robustly decreased cerebral infarct volume and improved survival and neurological function of mice than did ACS48 or memantine. These results suggest that an H(2)S-releasing NMDAR antagonist derivative S-memantine prevents ischemic neuronal death, providing a novel therapeutic strategy for ischemic brain injury.


Subject(s)
Brain Injuries/prevention & control , Brain Ischemia/drug therapy , Hydrogen Sulfide/chemistry , Neurons/pathology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Animals , Brain Ischemia/pathology , Cell Death , Cell Line, Tumor , Cells, Cultured , Drug Design , Excitatory Amino Acid Antagonists/pharmacology , Glucose/metabolism , Glutathione/chemistry , Humans , Ischemia , Male , Memantine/pharmacology , Mice , Mice, Inbred C57BL , Models, Chemical , Oxygen/chemistry , Reperfusion Injury
16.
Redox Biol ; 60: 102620, 2023 04.
Article in English | MEDLINE | ID: mdl-36753926

ABSTRACT

BACKGROUND: Delayed paraplegia is a devastating complication of thoracoabdominal aortic surgery. Hydrogen sulfide (H2S) was reported to be protective in a mouse model of spinal cord ischemia and the beneficial effect of H2S has been attributed to polysulfides. The objective of this study was to investigate the effects of polysulfides on delayed paraplegia after spinal cord ischemia. METHODS AND RESULTS: Spinal cord ischemia was induced in male and female C57BL/6J mice by clamping the aortic arch and the left subclavian artery. Glutathione trisulfide (GSSSG), glutathione (GSH), glutathione disulfide (GSSG), or vehicle alone was administered intranasally at 0, 8, 23, and 32 h after surgery. All mice treated with vehicle alone developed paraplegia within 48 h after surgery. GSSSG, but not GSH or GSSG, prevented paraplegia in 8 of 11 male mice (73%) and 6 of 8 female mice (75%). Intranasal administration of 34S-labeled GSSSG rapidly increased 34S-labeled sulfane sulfur species in the lumbar spinal cord. In mice treated with intranasal GSSSG, there were increased sulfane sulfur levels, and decreased neurodegeneration, microglia activation, and caspase-3 activation in the lumbar spinal cord. In vitro studies using murine primary cortical neurons showed that GSSSG increased intracellular levels of sulfane sulfur. GSSSG, but not GSH or GSSG, dose-dependently improved cell viability after oxygen and glucose deprivation/reoxygenation (OGD/R). Pantethine trisulfide (PTN-SSS) also increased intracellular sulfane sulfur and improved cell viability after OGD/R. Intranasal administration of PTN-SSS, but not pantethine, prevented paraplegia in 6 of 9 male mice (66%). CONCLUSIONS: Intranasal administration of polysulfides rescued mice from delayed paraplegia after transient spinal cord ischemia. The neuroprotective effects of GSSSG were associated with increased levels of polysulfides and sulfane sulfur in the lumbar spinal cord. Targeted delivery of sulfane sulfur by polysulfides may prove to be a novel approach to the treatment of neurodegenerative diseases.


Subject(s)
Spinal Cord Ischemia , Mice , Male , Female , Animals , Administration, Intranasal , Glutathione Disulfide , Mice, Inbred C57BL , Spinal Cord Ischemia/drug therapy , Spinal Cord Ischemia/complications , Sulfur , Paraplegia/drug therapy , Paraplegia/etiology , Paraplegia/prevention & control
17.
Antioxidants (Basel) ; 11(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36358494

ABSTRACT

Peripheral neuropathy is a dose-limiting side effect of chemotherapy with paclitaxel. Paclitaxel-induced peripheral neuropathy (PIPN) is typically characterized by a predominantly sensory neuropathy presenting with allodynia, hyperalgesia and spontaneous pain. Oxidative mitochondrial damage in peripheral sensory neurons is implicated in the pathogenesis of PIPN. Reactive sulfur species, including persulfides (RSSH) and polysulfides (RSnH), are strong nucleophilic and electrophilic compounds that exert antioxidant effects and protect mitochondria. Here, we examined the potential neuroprotective effects of glutathione trisulfide (GSSSG) in a mouse model of PIPN. Intraperitoneal administration of paclitaxel at 4 mg/kg/day for 4 days induced mechanical allodynia and thermal hyperalgesia in mice. Oral administration of GSSSG at 50 mg/kg/day for 28 days ameliorated mechanical allodynia, but not thermal hyperalgesia. Two hours after oral administration, 34S-labeled GSSSG was detected in lumber dorsal root ganglia (DRG) and in the lumber spinal cord. In mice treated with paclitaxel, GSSSG upregulated expression of genes encoding antioxidant proteins in lumber DRG, prevented loss of unmyelinated axons and inhibited degeneration of mitochondria in the sciatic nerve. In cultured primary neurons from cortex and DRG, GSSSG mitigated paclitaxel-induced superoxide production, loss of axonal mitochondria, and axonal degeneration. These results indicate that oral administration of GSSSG mitigates PIPN by preventing axonal degeneration and mitochondria damage in peripheral sensory nerves. The findings suggest that administration of GSSSG may be an approach to the treatment or prevention of PIPN and other peripheral neuropathies.

18.
Toxicol Sci ; 183(2): 393-403, 2021 09 28.
Article in English | MEDLINE | ID: mdl-34270781

ABSTRACT

Exposure to hydrogen sulfide (H2S) can cause neurotoxicity and cardiopulmonary arrest. Resuscitating victims of sulfide intoxication is extremely difficult, and survivors often exhibit persistent neurological deficits. However, no specific antidote is available for sulfide intoxication. The objective of this study was to examine whether administration of a sulfonyl azide-based sulfide-specific scavenger, SS20, would rescue mice in models of H2S intoxication: ongoing exposure and post-cardiopulmonary arrest. In the ongoing exposure model, SS20 (1250 µmol/kg) or vehicle was administered to awake CD-1 mice intraperitoneally at 10 min after breathing 790 ppm of H2S followed by another 30 min of H2S inhalation. Effects of SS20 on survival were assessed. In the post-cardiopulmonary arrest model, cardiopulmonary arrest was induced by an intraperitoneal administration of sodium sulfide nonahydrate (125 mg/kg) in anesthetized mice. After 1 min of cardiopulmonary arrest, mice were resuscitated with intravenous administration of SS20 (250 µmol/kg) or vehicle. Effects of SS20 on survival, neurological outcomes, and plasma H2S levels were evaluated. Administration of SS20 during ongoing H2S inhalation improved 24-h survival (6/6 [100%] in SS20 vs 1/6 [17%] in vehicle; p = .0043). Post-arrest administration of SS20 improved 7-day survival (4/10 [40%] in SS20 vs 0/10 [0%] in vehicle; p = .0038) and neurological outcomes after resuscitation. SS20 decreased plasma H2S levels to pre-arrest baseline immediately after reperfusion and shortened the time to return of spontaneous circulation and respiration. These results suggest that SS20 is an effective antidote against lethal H2S intoxication, even when administered after cardiopulmonary arrest.


Subject(s)
Heart Arrest , Hydrogen Sulfide , Animals , Antidotes/pharmacology , Azides , Heart Arrest/chemically induced , Heart Arrest/drug therapy , Mice , Sulfides/toxicity
19.
Nat Commun ; 12(1): 3108, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34035265

ABSTRACT

The mammalian brain is highly vulnerable to oxygen deprivation, yet the mechanism underlying the brain's sensitivity to hypoxia is incompletely understood. Hypoxia induces accumulation of hydrogen sulfide, a gas that inhibits mitochondrial respiration. Here, we show that, in mice, rats, and naturally hypoxia-tolerant ground squirrels, the sensitivity of the brain to hypoxia is inversely related to the levels of sulfide:quinone oxidoreductase (SQOR) and the capacity to catabolize sulfide. Silencing SQOR increased the sensitivity of the brain to hypoxia, whereas neuron-specific SQOR expression prevented hypoxia-induced sulfide accumulation, bioenergetic failure, and ischemic brain injury. Excluding SQOR from mitochondria increased sensitivity to hypoxia not only in the brain but also in heart and liver. Pharmacological scavenging of sulfide maintained mitochondrial respiration in hypoxic neurons and made mice resistant to hypoxia. These results illuminate the critical role of sulfide catabolism in energy homeostasis during hypoxia and identify a therapeutic target for ischemic brain injury.


Subject(s)
Brain Injuries/metabolism , Brain/metabolism , Hydrogen Sulfide/metabolism , Quinone Reductases/metabolism , Animals , Brain/pathology , Brain Injuries/genetics , Cells, Cultured , Female , Hypoxia , Male , Membrane Potential, Mitochondrial , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Mitochondria/metabolism , NAD/metabolism , Quinone Reductases/genetics , RNA Interference , Rats, Sprague-Dawley
20.
Intensive Care Med Exp ; 8(1): 5, 2020 Jan 31.
Article in English | MEDLINE | ID: mdl-32006269

ABSTRACT

Hydrogen sulfide (H2S) has long been known as a toxic environmental hazard. Discovery of physiological roles of H2S as a neurotransmitter by Kimura and colleagues triggered an intensive research in the biological roles of H2S in the past decades. Manipulation of H2S levels by inhibiting H2S synthesis or administration of H2S-releasing molecules revealed beneficial as well as harmful effects of H2S. As a result, it is now established that H2S levels are tightly controlled and too much or too little H2S levels cause harm. Nonetheless, translation of sulfide-based therapy to clinical practice has been stymied due to the very low therapeutic index of sulfide and the incomplete understanding of endogenous sulfide metabolism. One potential strategy to circumvent this problem is to use a safe and stable sulfide metabolite that may mediate effects of H2S. Alternatively, endogenous sulfide levels may be controlled using specific sulfide scavengers. In this review article, the role of endogenous H2S production and catabolism will be briefly reviewed followed by an introduction of thiosulfate and H2S scavengers as novel pharmacological tools to control H2S-dependent signaling.

SELECTION OF CITATIONS
SEARCH DETAIL