Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
Add more filters

Publication year range
1.
Cell ; 185(3): 467-484.e15, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35081335

ABSTRACT

On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses.

2.
Cell ; 184(16): 4220-4236.e13, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34242578

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone progressive change, with variants conferring advantage rapidly becoming dominant lineages, e.g., B.1.617. With apparent increased transmissibility, variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the United Kingdom. Here we study the ability of monoclonal antibodies and convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2, complement this with structural analyses of Fab/receptor binding domain (RBD) complexes, and map the antigenic space of current variants. Neutralization of both viruses is reduced compared with ancestral Wuhan-related strains, but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2, suggesting that individuals infected previously by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insights for immunization policy with future variant vaccines in non-immune populations.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antigen-Antibody Complex/chemistry , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Chlorocebus aethiops , Crystallography, X-Ray , Humans , Immunization, Passive , Neutralization Tests , Protein Domains/immunology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , COVID-19 Serotherapy
3.
Mol Ther ; 2024 Sep 17.
Article in English | MEDLINE | ID: mdl-39295144

ABSTRACT

Pompe disease, a rare genetic neuromuscular disorder, is caused by a deficiency of acid alpha-glucosidase (GAA), leading to an accumulation of glycogen in lysosomes, and resulting in the progressive development of muscle weakness. The current standard treatment, enzyme replacement therapy (ERT), is not curative and has limitations such as poor penetration into skeletal muscle and both the central and peripheral nervous systems, a risk of immune responses against the recombinant enzyme, and the requirement for high doses and frequent infusions. To overcome these limitations, lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy has been proposed as a next-generation approach for treating Pompe disease. This study demonstrates the potential of lentiviral HSPC gene therapy to reverse the pathological effects of Pompe disease in a preclinical mouse model. It includes a comprehensive safety assessment via integration site analysis, along with single-cell RNA sequencing analysis of central nervous tissue samples to gain insights into the underlying mechanisms of phenotype correction.

4.
Clin Exp Immunol ; 212(3): 249-261, 2023 06 05.
Article in English | MEDLINE | ID: mdl-36807499

ABSTRACT

T cells are important in preventing severe disease from SARS-CoV-2, but scalable and field-adaptable alternatives to expert T-cell assays are needed. The interferon-gamma release assay QuantiFERON platform was developed to detect T-cell responses to SARS-CoV-2 from whole blood with relatively basic equipment and flexibility of processing timelines. Forty-eight participants with different infection and vaccination backgrounds were recruited. Whole blood samples were analysed using the QuantiFERON SARS-CoV-2 assay in parallel with the well-established 'Protective Immunity from T Cells in Healthcare workers' (PITCH) ELISpot, which can evaluate spike-specific T-cell responses. The primary aims of this cross-sectional observational cohort study were to establish if the QuantiFERON SARS-Co-V-2 assay could discern differences between specified groups and to assess the sensitivity of the assay compared with the PITCH ELISpot. The QuantiFERON SARS-CoV-2 distinguished acutely infected individuals (12-21 days post positive PCR) from naĆÆve individuals (PĆ¢Ā€Ā…<Ć¢Ā€Ā…0.0001) with 100% sensitivity and specificity for SARS-CoV-2 T cells, whilst the PITCH ELISpot had reduced sensitivity (62.5%) for the acute infection group. Sensitivity with QuantiFERON for previous infection was 12.5% (172-444 days post positive test) and was inferior to the PITCH ELISpot (75%). Although the QuantiFERON assay could discern differences between unvaccinated and vaccinated individuals (55-166 days since second vaccination), the latter also had reduced sensitivity (44.4%) compared to the PITCH ELISpot (66.6%). The QuantiFERON SARS-CoV-2 assay showed potential as a T- cell evaluation tool soon after SARS-CoV-2 infection but has lower sensitivity for use in reliable evaluation of vaccination or more distant infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Cross-Sectional Studies , Interferon-gamma Release Tests , Vaccination , Antibodies, Viral
5.
Mol Ther ; 30(10): 3209-3225, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35614857

ABSTRACT

Hematopoietic stem/progenitor cell gene therapy (HSPC-GT) has shown clear neurological benefit in rare diseases, which is achieved through the engraftment of genetically modified microglia-like cells (MLCs) in the brain. Still, the engraftment dynamics and the nature of engineered MLCs, as well as their potential use in common neurogenerative diseases, have remained largely unexplored. Here, we comprehensively characterized how different routes of administration affect the biodistribution of genetically engineered MLCs and other HSPC derivatives in mice. We generated a high-resolution single-cell transcriptional map of MLCs and discovered that they could clearly be distinguished from macrophages as well as from resident microglia by the expression of a specific gene signature that is reflective of their HSPC ontogeny and irrespective of their long-term engraftment history. Lastly, using murine models of Parkinson's disease and frontotemporal dementia, we demonstrated that MLCs can deliver therapeutically relevant levels of transgenic protein to the brain, thereby opening avenues for the clinical translation of HSPC-GT to the treatment of major neurological diseases.


Subject(s)
Hematopoietic Stem Cell Transplantation , Animals , Genetic Engineering , Genetic Therapy , Hematopoietic Stem Cells/metabolism , Mice , Tissue Distribution
6.
Health Promot Int ; 30 Suppl 2: ii116-25, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26420807

ABSTRACT

The role of social innovations in transforming the lives of individuals and communities has been a source of popular attention in recent years. This article systematically reviews the available evidence of the relationship between social innovation and its promotion of health equity. Guided by Fair Foundations: The VicHealth framework for health equity and examining four types of social innovation--social movements, service-related social innovations, social enterprise and digital social innovations--we find a growing literature on social innovation activities, but inconsistent evaluative evidence of their impacts on health equities, particularly at the socio-economic, political and cultural level of the framework. Distinctive characteristics of social innovations related to the promotion of health equity include the mobilization of latent or unrealised value through new combinations of (social, cultural and material) resources; growing bridging social capital and purposeful approaches to linking individual knowledge and experience to institutional change. These have implications for health promotion practice and for research about social innovation and health equity.


Subject(s)
Health Equity , Health Promotion , Social Justice , Health Policy , Humans
8.
ACS Synth Biol ; 13(2): 466-473, 2024 02 16.
Article in English | MEDLINE | ID: mdl-38266181

ABSTRACT

We engineered HEK293T cells with a transgene encoding tetracycline-inducible expression of a Staphylococcus aureus nuclease incorporating a translocation signal. We adapted the unmodified and nuclease-engineered cell lines to grow in suspension in serum-free media, generating the HEK293TS and NuPro-2S cell lines, respectively. Transient transfection yielded 1.19 Ɨ 106 lentiviral transducing units per milliliter (TU/mL) from NuPro-2S cells and 1.45 Ɨ 106 TU/mL from HEK293TS cells. DNA ladder disappearance revealed medium-resident nuclease activity arising from NuPro-2S cells in a tetracycline-inducible manner. DNA impurity levels in lentiviral material arising from NuPro-2S and HEK293TS cells were undetectable by SYBR Safe agarose gel staining. Direct measurement by PicoGreen reagent revealed DNA to be present at 636 ng/mL in lentiviral material from HEK293TS cells, an impurity level reduced by 89% to 70 ng/mL in lentiviral material from NuPro-2S cells. This reduction was comparable to the 23 ng/mL achieved by treating HEK293TS-derived lentiviral material with 50 units/mL Benzonase.


Subject(s)
Acidulated Phosphate Fluoride , Genetic Vectors , Lentivirus , Animals , Humans , Lentivirus/genetics , Genetic Vectors/genetics , HEK293 Cells , Transfection , DNA/genetics , Tetracycline , Mammals/genetics
9.
Respirol Case Rep ; 12(7): e01434, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39015482

ABSTRACT

Trimethoprim-sulfamethoxazole (TMP-SMX) acute respiratory distress syndrome (ARDS) is a rare, but severe complication of a commonly prescribed antibiotic. TMP-SMX typically affects young, otherwise well patients with a specific human leukocyte antigen type (HLA-B*07:02 and HLA-C*07:02). The condition is poorly understood with a unique pathological appearance and mechanism that remains unclear. Mortality rate is greater than one third. We describe the case of a previously well 18-year-old woman treated with a prolonged course of TMP-SMX for a complex urinary tract infection who developed rapidly progressive respiratory failure requiring prolonged intensive care admission, extra-corporeal membranous oxygenation, and eventual lung transplantation. No targeted treatment exists, further research is required to better understand disease pathogenetic mechanisms and potential therapeutic interventions.

10.
Mol Ther Methods Clin Dev ; 32(3): 101317, 2024 Sep 12.
Article in English | MEDLINE | ID: mdl-39257529

ABSTRACT

We sought to engineer mammalian cells to secrete nuclease activity as a step toward removing the need to purchase commercial nucleases as process additions in bioprocessing of AAV5 and AAV9 as gene therapy vectors. Engineering HeLa cells with a serratial nuclease transgene did not bring about nuclease activity in surrounding media whereas engineering serum-free, suspension-adapted HEK293F cells with a staphylococcal nuclease transgene did result in detectable nuclease activity in surrounding media of the resultant stable transfectant cell line, "NuPro-1S." When cultivated in serum-free media, NuPro-1S cells yielded 3.06Ā Ć—Ā 1010 AAV5 viral genomes (vg)/mL via transient transfection, compared with 3.85Ā Ć—Ā 109 vg/mL from the parental HEK293F cell line. AAV9 production, followed by purification by ultracentrifugation, yielded 1.8Ā Ć—Ā 1013 vg/mL from NuPro-1S cells compared with 7.35Ā Ć—Ā 1012 vg/mL from HEK293F cells. AAV9 from both HEK293F and NuPro-1S showed almost identical ability to transduce cells embedded in a scaffold tissue mimic or cells of mouse neonate brain tissue inĀ vivo. Comparison of agarose gel data indicated that the DNA content of AAV5 and AAV9 process streams from NuPro-1S cells was reduced by approximately 60% compared with HEK293F cells. A similar reduction in HEK293F cells was only achievable with a 50Ā U/mL Benzonase treatment.

11.
BMC Evol Biol ; 13: 174, 2013 Aug 21.
Article in English | MEDLINE | ID: mdl-23962342

ABSTRACT

BACKGROUND: Sex in higher diploids carries a two-fold cost of males that should reduce its fitness relative to cloning, and result in its extinction. Instead, sex is widespread and clonal species face early obsolescence. One possible reason is that sex is an adaptation that allows organisms to respond more effectively to endless changes in their environment. The purpose of this study was to model mutation and selection in a diploid organism in an evolving environment and ascertain their support for sex. RESULTS: We used a computational approach to model finite populations where a haploid environment subjects a diploid host to endlessly evolving change. Evolution in both populations is primarily through adoption of novel advantageous mutations within a large allele space. Sex outcompetes cloning by two complementary mechanisms. First, sexual diploids adopt advantageous homozygous mutations more rapidly than clonal ones under conditions of lag load (the gap between the actual adaptation of the diploid population and its theoretical optimum). This rate advantage can offset the higher fecundity of cloning. Second, a relative advantage to sex emerges where populations are significantly polymorphic, because clonal polymorphism runs the risk of clonal interference caused by selection on numerous lines of similar adaptation. This interference extends allele lifetime and reduces the rate of adaptation. Sex abolishes the interference, making selection faster and elevating population fitness. Differences in adaptation between sexual and clonal populations increase markedly with the number of loci under selection, the rate of mutation in the host, and a rapidly evolving environment. Clonal interference in these circumstances leads to conditions where the greater fecundity of clones is unable to offset their poor adaptation. Sexual and clonal populations then either co-exist, or sex emerges as the more stable evolutionary strategy. CONCLUSIONS: Sex can out-compete clones in a rapidly evolving environment, such as that characterized by pathogens, where clonal interference reduces the adaptation of clonal populations and clones adopt advantageous mutations more slowly. Since all organisms carry parasitic loads, the model is of potentially general applicability.


Subject(s)
Biological Evolution , Models, Biological , Reproduction , Sex , Animals , Computer Simulation , Diploidy , Female , Humans , Male , Mutation , Mutation Rate
13.
Biochem Eng J ; 77(100): 246-257, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23956681

ABSTRACT

The use of embryonic stem cells (ESCs) and their progeny in high throughput drug discovery and regenerative medicine will require production at scale of well characterized cells at an appropriate level of purity. The adoption of automated bioprocessing techniques offers the possibility to overcome the lack of consistency and high failure rates seen with current manual protocols. To build the case for increased use of automation this work addresses the key question: "can an automated system match the quality of a highly skilled and experienced person working manually?" To answer this we first describe an integrated automation platform designed for the 'hands-free' culture and differentiation of ESCs in microwell formats. Next we outline a framework for the systematic investigation and optimization of key bioprocess variables for the rapid establishment of validatable Standard Operating Procedures (SOPs). Finally the experimental comparison between manual and automated bioprocessing is exemplified by expansion of the murine Oct-4-GiP ESC line over eight sequential passages with their subsequent directed differentiation into neural precursors. Our results show that ESCs can be effectively maintained and differentiated in a highly reproducible manner by the automated system described. Statistical analysis of the results for cell growth over single and multiple passages shows up to a 3-fold improvement in the consistency of cell growth kinetics with automated passaging. The quality of the cells produced was evaluated using a panel of biological markers including cell growth rate and viability, nutrient and metabolite profiles, changes in gene expression and immunocytochemistry. Automated processing of the ESCs had no measurable negative effect on either their pluripotency or their ability to differentiate into the three embryonic germ layers. Equally important is that over a 6-month period of culture without antibiotics in the medium, we have not had any cases of culture contamination. This study thus confirms the benefits of adopting automated bioprocess routes to produce cells for therapy and for use in basic discovery research.

14.
Heliyon ; 9(6): e17067, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37484388

ABSTRACT

At present lentiviral vector production for cell and gene therapy commonly involves transient plasmid transfection of mammalian cells cultivated in serum-containing media and addition of exogenous nuclease to reduce host cell and plasmid DNA impurities. Switching from serum-containing media to chemically-defined, serum free media, and minimising the number of process additions, are both increasingly regarded as necessary steps for simplifying and potentially automating lentiviral vector bioprocessing in future. Here we adapted human embryonic kidney 293T (HEK293T) cells to grow in serum-free media and also modified these cells with transgenes designed to encode a secreted nuclease activity. Stable transfection of HEK293T cells with transgenes encoding the Staphylococcus aureus nuclease B (NucB) open reading frame with either its native secretion signal peptide, the murine Igκ chain leader sequence or a novel viral transport fusion protein, all resulted in qualitatively detectable nuclease activity in serum-free media. Serum-free transient transfection of human embryonic kidney HEK293T cells stably harbouring the transgene for NucB with its native secretion signal produced active lentivirus in the presence of medium-resident nuclease activity. This lentivirus material was able to transduce the AGF-T immortal T cell line with a green fluorescent protein reporter payload at a level of 2.05Ā Ć—Ā 105 TU/mL (Ā±3.34Ā Ć—Ā 104 TU/mL). Sufficient nuclease activity was present in 10Ā ĀµL of this unconcentrated lentivirus material to degrade 1.5Ā Āµg DNA within 2Ā h at 37Ā Ā°C, without agitation - conditions compatible with lentivirus production. These observations demonstrate that lentiviral vector production, by transient transfection, is compatible with host cells harbouring a nuclease transgene and evidencing nuclease activity in their surrounding growth media. This work provides a solid basis for future investigations, beyond the scope of this present study, in which commercial and academic groups can apply this approach to therapeutic payloads and potentially omit exogenous nuclease bioprocess additions.

15.
Biotechnol Lett ; 34(12): 2307-15, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22983716

ABSTRACT

The commercialisation of human embryonic stem cell derived cell therapies for large patient populations is reliant on both minimising expensive and variable manual-handling methods whilst realising economies of scale. The Quantum Cell Expansion System, a hollow fibre bioreactor (Terumo BCT), was used in a pilot study to expand 60 million human embryonic stem cells to 708 million cells. Further improvements can be expected with optimisation of media flow rates throughout the run to better control the cellular microenvironment. High levels of pluripotency marker expression were maintained on the bioreactor, with 97.7 % of cells expressing SSEA-4 when harvested.


Subject(s)
Bioreactors , Cell Culture Techniques/methods , Embryonic Stem Cells/physiology , Gene Expression , Humans , Stage-Specific Embryonic Antigens/biosynthesis
16.
Biomedicines ; 10(2)2022 Jan 28.
Article in English | MEDLINE | ID: mdl-35203513

ABSTRACT

Pompe disease is an inherited neuromuscular disorder caused by deficiency of the lysosomal enzyme acid alpha-glucosidase (GAA). The most severe form is infantile-onset Pompe disease, presenting shortly after birth with symptoms of cardiomyopathy, respiratory failure and skeletal muscle weakness. Late-onset Pompe disease is characterized by a slower disease progression, primarily affecting skeletal muscles. Despite recent advancements in enzyme replacement therapy management several limitations remain using this therapeutic approach, including risks of immunogenicity complications, inability to penetrate CNS tissue, and the need for life-long therapy. The next wave of promising single therapy interventions involves gene therapies, which are entering into a clinical translational stage. Both adeno-associated virus (AAV) vectors and lentiviral vector (LV)-mediated hematopoietic stem and progenitor (HSPC) gene therapy have the potential to provide effective therapy for this multisystemic disorder. Optimization of viral vector designs, providing tissue-specific expression and GAA protein modifications to enhance secretion and uptake has resulted in improved preclinical efficacy and safety data. In this review, we highlight gene therapy developments, in particular, AAV and LV HSPC-mediated gene therapy technologies, to potentially address all components of the neuromuscular associated Pompe disease pathology.

17.
Mol Ther Methods Clin Dev ; 27: 464-487, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36419467

ABSTRACT

Pompe disease is a rare genetic neuromuscular disorder caused by acid α-glucosidase (GAA) deficiency resulting in lysosomal glycogen accumulation and progressive myopathy. Enzyme replacement therapy, the current standard of care, penetrates poorly into the skeletal muscles and the peripheral and central nervous system (CNS), risks recombinant enzyme immunogenicity, and requires high doses and frequent infusions. Lentiviral vector-mediated hematopoietic stem and progenitor cell (HSPC) gene therapy was investigated in a Pompe mouse model using a clinically relevant promoter driving nine engineered GAA coding sequences incorporating distinct peptide tags and codon optimizations. Vectors solely including glycosylation-independent lysosomal targeting tags enhanced secretion and improved reduction of glycogen, myofiber, and CNS vacuolation in key tissues, although GAA enzyme activity and protein was consistently lower compared with native GAA. Genetically modified microglial cells in brains were detected at low levels but provided robust phenotypic correction. Furthermore, an amino acid substitution introduced in the tag reduced insulin receptor-mediated signaling with no evidence of an effect on blood glucose levels in Pompe mice. This study demonstrated the therapeutic potential of lentiviral HSPC gene therapy exploiting optimized GAA tagged coding sequences to reverse Pompe disease pathology in a preclinical mouse model, providing promising vector candidates for further investigation.

18.
Cell Host Microbe ; 30(1): 53-68.e12, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34921776

ABSTRACT

Alpha-B.1.1.7, Beta-B.1.351, Gamma-P.1, and Delta-B.1.617.2 variants of SARS-CoV-2 express multiple mutations in the spike protein (S). These may alter the antigenic structure of S, causing escape from natural or vaccine-induced immunity. Beta is particularly difficult to neutralize using serum induced by early pandemic SARS-CoV-2 strains and is most antigenically separated from Delta. To understand this, we generated 674 mAbs from Beta-infected individuals and performed a detailed structure-function analysis of the 27 most potent mAbs: one binding the spike N-terminal domain (NTD), the rest the receptor-binding domain (RBD). Two of these RBD-binding mAbs recognize a neutralizing epitope conserved between SARS-CoV-1 and -2, while 18 target mutated residues in Beta: K417N, E484K, and N501Y. There is a major response to N501Y, including a public IgVH4-39 sequence, with E484K and K417N also targeted. Recognition of these key residues underscores why serum from Beta cases poorly neutralizes early pandemic and Delta viruses.


Subject(s)
Antibodies, Viral/immunology , Antibody Formation/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Cells, Cultured , Chlorocebus aethiops , Female , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Neutralization Tests/methods , Protein Binding/immunology , Spike Glycoprotein, Coronavirus/immunology , Vero Cells
20.
Int J Surg Pathol ; 29(6): 648-652, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33345669

ABSTRACT

Phyllodes tumors (PTs) represent a spectrum of rare, fibroepithelial neoplasms of the breast, which can be subcategorized as benign, borderline, or malignant based on their histological appearance. Accessory breast tissue may present anywhere along the embryological mammary ridge, and at distant locations as aberrant breast tissue. We present the case of a 56-year-old lady with an umbilical mass, thought to represent a strangulated hernia. Sections showed a fibroepithelial tumor with leaf-like ducts, conspicuous mitotic activity (up to 8 per 10 high-power fields), and focal infiltration into fat. Immunohistochemical studies showed diffuse positivity of epithelial cells for estrogen receptor, mammaglobin, GCDFP-15, and CK7. These findings were consistent with a borderline PT. This is the first case report of PT presenting as an umbilical mass, and the first extramammary borderline PT described.


Subject(s)
Breast Neoplasms/diagnosis , Choristoma/diagnosis , Phyllodes Tumor/diagnosis , Umbilicus/pathology , Breast Neoplasms/pathology , Breast Neoplasms/surgery , Choristoma/pathology , Choristoma/surgery , Female , Humans , Middle Aged , Phyllodes Tumor/pathology , Phyllodes Tumor/surgery , Umbilicus/surgery
SELECTION OF CITATIONS
SEARCH DETAIL