Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 312
Filter
Add more filters

Publication year range
1.
Brain Behav Immun ; 114: 299-310, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37689275

ABSTRACT

Patients characterized by stress-related disorders such as depression display elevated circulating concentrations of pro-inflammatory cytokines and a hyperactive HPA axis. Psychedelics are demonstrating promising results in treatment of such disorders, however the mechanisms of their therapeutic effects are still unknown. To date the evidence of acute and persisting effects of psychedelics on immune functioning, HPA axis activity in response to stress, and associated psychological outcomes is preliminary. To address this, we conducted a placebo-controlled, parallel group design comprising of 60 healthy participants who received either placebo (n = 30) or 0.17 mg/kg psilocybin (n = 30). Blood samples were taken to assess acute and persisting (7 day) changes in immune status. Seven days' post-administration, participants in each treatment group were further subdivided: 15 underwent a stress induction protocol, and 15 underwent a control protocol. Ultra-high field (7-Tesla) magnetic resonance spectroscopy was used to assess whether acute changes in glutamate or glial activity were associated with changes in immune functioning. Finally, questionnaires assessed persisting self-report changes in mood and social behavior. Psilocybin immediately reduced concentrations of the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α), while other inflammatory markers (interleukin (IL)- 1ß, IL-6, and C-reactive protein (CRP)) remained unchanged. Seven days later, TNF-α concentrations returned to baseline, while IL-6 and CRP concentrations were persistently reduced in the psilocybin group. Changes in the immune profile were related to acute neurometabolic activity as acute reductions in TNF-α were linked to lower concentrations of glutamate in the hippocampus. Additionally, the more of a reduction in IL-6 and CRP seven days after psilocybin, the more persisting positive mood and social effects participants reported. Regarding the stress response, after a psychosocial stressor, psilocybin did not significantly alter the stress response. Results are discussed in regards to the psychological and therapeutic effects of psilocybin demonstrated in ongoing patient trials.

2.
J Anat ; 241(3): 565-580, 2022 09.
Article in English | MEDLINE | ID: mdl-35638264

ABSTRACT

Biological armors derive their mechanical integrity in part from their geometric architectures, often involving tessellations: individual structural elements tiled together to form surface shells. The carapace of boxfish, for example, is composed of mineralized polygonal plates, called scutes, arranged in a complex geometric pattern and nearly completely encasing the body. In contrast to artificial armors, the boxfish exoskeleton grows with the fish; the relationship between the tessellation and the gross structure of the armor is therefore critical to sustained protection throughout growth. To clarify whether or how the boxfish tessellation is maintained or altered with age, we quantify architectural aspects of the tessellated carapace of the longhorn cowfish Lactoria cornuta through ontogeny (across nearly an order of magnitude in standard length) and in a high-throughput fashion, using high-resolution microCT data and segmentation algorithms to characterize the hundreds of scutes that cover each individual. We show that carapace growth is canalized with little variability across individuals: rather than continually adding scutes to enlarge the carapace surface, the number of scutes is surprisingly constant, with scutes increasing in volume, thickness, and especially width with age. As cowfish and their scutes grow, scutes become comparatively thinner, with the scutes at the edges (weak points in a boxy architecture) being some of the thickest and most reinforced in younger animals and thinning most slowly across ontogeny. In contrast, smaller scutes with more variable curvature were found in the limited areas of more complex topology (e.g., around fin insertions, mouth, and anus). Measurements of Gaussian and mean curvature illustrate that cowfish are essentially tessellated boxes throughout life: predominantly zero curvature surfaces comprised of mostly flat scutes, and with scutes with sharp bends used sparingly to form box edges. Since growth of a curved, tiled surface with a fixed number of tiles would require tile restructuring to accommodate the surface's changing radius of curvature, our results therefore illustrate a previously unappreciated advantage of the odd boxfish morphology: by having predominantly flat surfaces, it is the box-like body form that in fact permits a relatively straightforward growth system of this tessellated architecture (i.e., where material is added to scute edges). Our characterization of the ontogeny and maintenance of the carapace tessellation provides insights into the potentially conflicting mechanical, geometric, and developmental constraints of this species but also perspectives into natural strategies for constructing mutable tiled architectures.


Subject(s)
Animal Shells , Tetraodontiformes , Animals , Skin , X-Ray Microtomography
3.
PLoS Biol ; 17(2): e3000140, 2019 02.
Article in English | MEDLINE | ID: mdl-30707688

ABSTRACT

Osteocytes, cells forming an elaborate network within the bones of most vertebrate taxa, are thought to be the master regulators of bone modeling, a process of coordinated, local bone-tissue deposition and removal that keeps bone strains at safe levels throughout life. Neoteleost fish, however, lack osteocytes and yet are known to be capable of bone modeling, although no osteocyte-independent modeling regulatory mechanism has so far been described. Here, we characterize a novel, to our knowledge, bone-modeling regulatory mechanism in a fish species (medaka), showing that although lacking osteocytes (i.e., internal mechanosensors), when loaded, medaka bones model in mechanically directed ways, successfully reducing high tissue strains. We establish that as in mammals, modeling in medaka is regulated by the SOST gene, demonstrating a mechanistic link between skeletal loading, SOST down-regulation, and intense bone deposition. However, whereas mammalian SOST is expressed almost exclusively by osteocytes, in both medaka and zebrafish (a species with osteocytic bones), SOST is expressed by a variety of nonosteocytic cells, none of which reside within the bone bulk. These findings argue that in fishes (and perhaps other vertebrates), nonosteocytic skeletal cells are both sensors and responders, shouldering duties believed exclusive to osteocytes. This previously unrecognized, SOST-dependent, osteocyte-independent mechanism challenges current paradigms of osteocyte exclusivity in bone-modeling regulation, suggesting the existence of multivariate feedback networks in bone modeling-perhaps also in mammalian bones-and thus arguing for the possibility of untapped potential for cell targets in bone therapeutics.


Subject(s)
Feedback, Physiological , Fish Proteins/genetics , Glycoproteins/genetics , Mechanotransduction, Cellular/genetics , Oryzias/genetics , Osteogenesis/genetics , Zebrafish Proteins/genetics , Animals , Biomechanical Phenomena , Bone Remodeling/genetics , Bone and Bones/cytology , Bone and Bones/metabolism , Chondrocytes/cytology , Chondrocytes/metabolism , Collagen Type I/genetics , Collagen Type I/metabolism , Fish Proteins/metabolism , Gene Expression Regulation , Glycoproteins/metabolism , Humans , Oryzias/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Osteocytes , Protein Isoforms/genetics , Protein Isoforms/metabolism , Species Specificity , Swimming/physiology , Zebrafish/genetics , Zebrafish/metabolism , Zebrafish Proteins/metabolism
4.
J Exp Biol ; 225(16)2022 08 15.
Article in English | MEDLINE | ID: mdl-35994028

ABSTRACT

Elasmobranch fishes (sharks, skates and rays) consume prey of a variety of sizes and properties, and the feeding mechanism typically reflects diet. Spotted ratfish, Hydrolagus colliei (Holocephali, sister group of elasmobranchs), consume both hard and soft prey; however, the morphology of the jaws does not reflect the characteristics typical of durophagous elasmobranchs. This study investigated the mechanical properties and morphological characteristics of the jaws of spotted ratfish over ontogeny, including strain, stiffness and second moment of area, to evaluate the biomechanical function of the feeding structures. Compressive stiffness of the jaws (E=13.51-21.48 MPa) is similar to that of silicone rubber, a very flexible material. In Holocephali, the upper jaw is fused to the cranium; we show that this fusion reduces deformation experienced by the upper jaw during feeding. The lower jaw resists bending primarily in the posterior half of the jaw, which occludes with the region of the upper jaw that is wider and flatter, thus potentially providing an ideal location for the lower jaw to crush or crack prey. The mechanical properties and morphology of the feeding apparatus of spotted ratfish suggest that while the low compressive stiffness is a material limit of the jaw cartilage, spotted ratfish, and perhaps all holocephalans, evolved structural solutions (i.e. fused upper jaw, shape variation along lower jaw) to meet the demands of a durophagous diet.


Subject(s)
Sharks , Skates, Fish , Animals , Biomechanical Phenomena , Feeding Behavior , Fishes , Jaw/anatomy & histology , Sharks/anatomy & histology , Skates, Fish/anatomy & histology
5.
J Fish Biol ; 98(4): 942-955, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32584448

ABSTRACT

When describing the architecture and ultrastructure of animal skeletons, introductory biology, anatomy and histology textbooks typically focus on the few bone and cartilage types prevalent in humans. In reality, cartilage and bone are far more diverse in the animal kingdom, particularly within fishes (Chondrichthyes and Actinopterygii), where cartilage and bone types are characterized by features that are anomalous or even pathological in human skeletons. This review discusses the curious and complex architectures of shark and ray tessellated cartilage, highlighting similarities and differences with their mammalian skeletal tissue counterparts. By synthesizing older anatomical literature with recent high-resolution structural and materials characterization work, this review frames emerging pictures of form-function relationships in this tissue and of the evolution and true diversity of cartilage and bone.


Subject(s)
Cartilage/ultrastructure , Sharks/anatomy & histology , Animals , Mammals/anatomy & histology , Structure-Activity Relationship
6.
Synapse ; 73(1): e22070, 2019 01.
Article in English | MEDLINE | ID: mdl-30240027

ABSTRACT

Phosphodiesterase-10a (PDE10a) is located exclusively in medium spiny neurons (MSN). Rodent studies show an increase in striatal MSN spine density following exposure to cocaine. These increases in MSN spine density are suggested to underlie neurobiological changes which contribute to cocaine self-administration. No postmortem or imaging studies have confirmed this finding in humans. Here, we hypothesized an increase in the MSN marker PDE10a in subjects with cocaine use disorder ("cocaine users") compared to controls. PDE10a availability was measured with [11 C]IMA107 and positron emission tomography in 15 cocaine users and 15 controls matched for age, gender, and nicotine status. Cocaine users with no comorbid psychiatric, medical, or drug abuse disorders were scanned following two weeks of outpatient-monitored abstinence. [11 C]IMA107 binding potential relative to nondisplaceable uptake (BPND ) in the regions of interest was derived with the simplified reference tissue method. No significant effect of diagnosis on BPND was demonstrated using linear mixed modeling with [11 C]IMA107 BPND as the dependent variable and regions of interest as a repeated measure. There were no significant relationships between BPND and clinical rating scales. To the extent that PDE10a is a valid proxy for MSN spine density, these results do not support its increase in recently abstinent cocaine users.


Subject(s)
Brain/diagnostic imaging , Cocaine-Related Disorders/metabolism , Heterocyclic Compounds, 2-Ring/pharmacokinetics , Phosphoric Diester Hydrolases/metabolism , Quinoxalines/pharmacokinetics , Radiopharmaceuticals/pharmacokinetics , Adolescent , Adult , Brain/metabolism , Cocaine-Related Disorders/diagnostic imaging , Female , Humans , Male , Middle Aged , Positron-Emission Tomography
7.
Synapse ; 72(9): e22037, 2018 09.
Article in English | MEDLINE | ID: mdl-29876970

ABSTRACT

Studies in nonhuman primates and humans have demonstrated that amphetamine-induced dopamine release in the cortex can be measured with [11 C]FLB 457 and PET imaging. This technique has been successfully used in recent clinical studies to show decreased dopamine transmission in the prefrontal cortex in schizophrenia and alcohol dependence. Here, we present data from a cohort of twelve healthy controls in whom an oral amphetamine challenge (0.5 mg kg-1 ) did not lead to a significant reduction in [11 C]FLB 457 BPND (i.e., binding potential relative to non-displaceable uptake). Two factors that likely contributed to the inability to displace [11 C]FLB 457 BPND in this cohort relative to successful cohorts are: (a) the acquisition of the baseline and post-amphetamine scans on different days as opposed to the same day and (b) the initiation of the post-amphetamine [11 C]FLB 457 scan at ∼5 hours as opposed to ∼3 hours following oral amphetamine. Furthermore, we show [11 C]FLB 457 reproducibility data from a legacy dataset to support greater variability in cortical BPND when the test and retest scans are acquired on different days as compared to the same day. These results highlight the methodological challenges that continue to plague the field with respect to imaging dopamine release in the cortex.


Subject(s)
Amphetamine/pharmacology , Brain , Dopamine Antagonists/pharmacokinetics , Dopamine Uptake Inhibitors/pharmacology , Positron-Emission Tomography , Pyrrolidines/pharmacokinetics , Salicylamides/pharmacokinetics , Adult , Brain/diagnostic imaging , Brain/drug effects , Brain/metabolism , Brain Mapping , Carbon Radioisotopes/blood , Carbon Radioisotopes/pharmacokinetics , Dopamine Antagonists/blood , Female , Humans , Male , Pyrrolidines/blood , Salicylamides/blood , Young Adult
8.
Synapse ; 72(3)2018 03.
Article in English | MEDLINE | ID: mdl-29216407

ABSTRACT

SEP-227162 [R(-)-O-desmethylvenlafaxine] is an enantiomer of the venlafaxine metabolite O-desmethylvenlafaxine (ODV, Pristiq™, Wyeth). This study compared the serotonin transporter (SERT) occupancy achieved by SEP-227162 and ODV, at daily doses of 25, 50, 100, and 150 mg using [11 C]DASB positron emission tomography (PET). Sixteen healthy male subjects participated in one of four dose groups (N = 4 per group) during which they were administered two doses of the study drug (SEP-227162 or ODV). For each study drug, total daily doses of 25, 50, 100, and150 mg were studied. Subjects underwent three PET scans with [11 C]DASB. A baseline, off-medication, scan was performed prior to dosing and a [11 C]DASB PET scan was performed after 72 hr at each dose level. [11 C]DASB binding potential (BPND ) was calculated using the simplified reference tissue method. SERT occupancy was calculated as the change in BPND (ΔBPND ) from baseline scan to the on-medication scan relative to the baseline BPND value. SEP-227162 and ODV significantly reduced regional distribution volumes and region BPND values in a dose-dependent manner. Across all doses ODV produced significantly greater SERT occupancy than SEP-227162 (ANOVA F = 21.8, df = 1,23, p < .001). The total daily dose required to provide 50% SERT occupancy was 24.8 mg for SEP-227162 and 14.4 mg for ODV. In vitro data suggests a ratio of 3.3:1 for binding at human SERT for SEP-227162 relative to ODV. Our study suggests a ratio of 1.7:1, highlighting the value of in vivo imaging in the drug development process.


Subject(s)
Brain/drug effects , Brain/metabolism , Desvenlafaxine Succinate/analogs & derivatives , Desvenlafaxine Succinate/pharmacology , Serotonin Plasma Membrane Transport Proteins/metabolism , Serotonin and Noradrenaline Reuptake Inhibitors/pharmacology , Adult , Aniline Compounds , Brain/diagnostic imaging , Desvenlafaxine Succinate/blood , Dose-Response Relationship, Drug , Humans , Male , Middle Aged , Positron-Emission Tomography , Radiopharmaceuticals , Serotonin and Noradrenaline Reuptake Inhibitors/blood , Sulfides , Young Adult
9.
Semin Cell Dev Biol ; 46: 51-67, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26546857

ABSTRACT

Sharks, rays and other elasmobranch fishes are characterized by a skeletal type that is unique among living vertebrates, comprised predominantly of an unmineralized cartilage, covered by a thin outer layer of sub-millimeter, mineralized tiles called tesserae. The mineralized portion of the skeleton appears to grow only by apposition, adding material at the edges of each tessera; maintenance of non-mineralized joints between tesserae is therefore vital, with precise control of mineral deposition and inhibition at the many thousands of growth fronts in the skeleton. Yet, we have only scattered evidence as to how the elasmobranchs mineralize and grow their skeletons. In this review, we take an "environment to skeleton" approach, drawing together research from a vast range of perspectives to track calcium and phosphate from the typical elasmobranch habitats into and through the body, to their deposition at tesseral growth fronts. In the process, we discuss the available evidence for skeletal resorption capability, mineral homeostasis hormones, and nucleation inhibition mechanisms. We also outline relevant theories in crystal nucleation and typical errors in measurements of serum calcium and phosphate in the study of vertebrate biology. We assemble research that suggests consensus in some concepts in elasmobranch skeletal development, but also highlight the very large gaps in our knowledge, particularly in regards to endocrine functional networks and biomineralization mechanisms. In this way, we lay out frameworks for future directions in the study of elasmobranch skeletal biology with stronger and more comparative links to research in other disciplines and into other taxa.


Subject(s)
Cartilage/metabolism , Elasmobranchii/metabolism , Homeostasis , Minerals/metabolism , Sharks/metabolism , Skates, Fish/metabolism , Animals , Bicarbonates/metabolism , Calcium/metabolism , Elasmobranchii/classification , Phosphates/metabolism
10.
J Struct Biol ; 200(1): 54-71, 2017 10.
Article in English | MEDLINE | ID: mdl-28923317

ABSTRACT

The primary skeletal tissue in elasmobranchs -sharks, rays and relatives- is cartilage, forming both embryonic and adult endoskeletons. Only the skeletal surface calcifies, exhibiting mineralized tiles (tesserae) sandwiched between a cartilage core and overlying fibrous perichondrium. These two tissues are based on different collagens (Coll II and I, respectively), fueling a long-standing debate as to whether tesserae are more like calcified cartilage or bone (Coll 1-based) in their matrix composition. We demonstrate that stingray (Urobatis halleri) tesserae are bipartite, having an upper Coll I-based 'cap' that merges into a lower Coll II-based 'body' zone, although tesserae are surrounded by cartilage. We identify a 'supratesseral' unmineralized cartilage layer, between tesserae and perichondrium, distinguished from the cartilage core in containing Coll I and X (a common marker for mammalian mineralization), in addition to Coll II. Chondrocytes within tesserae appear intact and sit in lacunae filled with Coll II-based matrix, suggesting tesserae originate in cartilage, despite comprising a diversity of collagens. Intertesseral joints are also complex in their collagenous composition, being similar to supratesseral cartilage closer to the perichondrium, but containing unidentified fibrils nearer the cartilage core. Our results indicate a unique potential for tessellated cartilage in skeletal biology research, since it lacks features believed diagnostic for vertebrate cartilage mineralization (e.g. hypertrophic and apoptotic chondrocytes), while offering morphologies amenable for investigating the regulation of complex mineralized ultrastructure and tissues patterned on multiple collagens.


Subject(s)
Cartilage/ultrastructure , Skates, Fish/anatomy & histology , Animals , Calcification, Physiologic , Cartilage/metabolism , Collagen/metabolism , Collagen/ultrastructure , Fish Proteins/metabolism , Fish Proteins/ultrastructure , Male , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Sharks/anatomy & histology
11.
J Struct Biol ; 198(1): 5-18, 2017 04.
Article in English | MEDLINE | ID: mdl-28286227

ABSTRACT

The cartilaginous endoskeletons of elasmobranchs (sharks and rays) are reinforced superficially by minute, mineralized tiles, called tesserae. Unlike the bony skeletons of other vertebrates, elasmobranch skeletons have limited healing capability and their tissues' mechanisms for avoiding damage or managing it when it does occur are largely unknown. Here we describe an aberrant type of mineralized elasmobranch skeletal tissue called endophytic masses (EPMs), which grow into the uncalcified cartilage of the skeleton, but exhibit a strikingly different morphology compared to tesserae and other elasmobranch calcified tissues. We use materials and biological tissue characterization techniques, including computed tomography, electron and light microscopy, X-ray and Raman spectroscopy and histology to characterize the morphology, ultrastructure and chemical composition of tesserae-associated EPMs in different elasmobranch species. EPMs appear to develop between and in intimate association with tesserae, but lack the lines of periodic growth and varying mineral density characteristic of tesserae. EPMs are mineral-dominated (high mineral and low organic content), comprised of birefringent bundles of large calcium phosphate crystals (likely brushite) aligned end to end in long strings. Both tesserae and EPMs appear to develop in a type-2 collagen-based matrix, but in contrast to tesserae, all chondrocytes embedded or in contact with EPMs are dead and mineralized. The differences outlined between EPMs and tesserae demonstrate them to be distinct tissues. We discuss several possible reasons for EPM development, including tissue reinforcement, repair, and disruptions of mineralization processes, within the context of elasmobranch skeletal biology as well as damage responses of other vertebrate mineralized tissues.


Subject(s)
Calcification, Physiologic , Cartilage/ultrastructure , Animals , Crystallography , Minerals/analysis , Sharks , Skeleton/ultrastructure , Spectrum Analysis , Wound Healing
12.
Mol Imaging ; 16: 1536012116685941, 2017 01 01.
Article in English | MEDLINE | ID: mdl-28654376

ABSTRACT

PURPOSE: We investigated 2-(5-fluoro-pentyl)-2-methyl-malonic acid (18F-ML-10) positron emission tomography (PET) imaging of apoptosis posttherapy to determine optimal timing for predicting chemotherapy response in a mouse head/neck xenograft cancer model. PROCEDURES: BALB/c nude mice (4-8 weeks old) were implanted with UM-SCC-22B tumors. The treatment group received 2 doses of doxorubicin (10 mg/kg, days 0, 2). Small animal 18F-ML-10 PET/computed tomography was performed before and on days 1, 3, and 7 postchemotherapy. Using regions of interest around tumors, 18F-ML-10 uptake change was measured as %ID/g and uptake relative to liver. Terminal Uridine Nick-End Labeling (TUNEL) immunohistochemistry assay was performed using tumor samples of baseline and on days 1, 3, and 7 posttreatment. RESULTS: Treated mice demonstrated increased 18F-ML-10 uptake compared to baseline and controls, and 10 of 13 mice showed tumor volume decreases. All control mice showed tumor volume increases. Tumor-to-liver (T/L) ratios from the control group mice did not show significant change from baseline ( P > .05); however, T/L ratios of the treatment group showed significant 18F-ML-10 uptake differences from baseline compared to days 3 and 7 posttreatment ( P < .05), but no significant difference at 1 day posttreatment. CONCLUSION: 2-(5-Fluoro-pentyl)-2-methyl-malonic acid PET imaging has the potential for early assessment of treatment-induced apoptosis. Timing and image analysis strategies may require optimization, depending on the type of tumor and cancer treatment.


Subject(s)
Apoptosis/physiology , Fluorodeoxyglucose F18/analysis , Methylmalonic Acid/analogs & derivatives , Positron-Emission Tomography/methods , Animals , Apoptosis/drug effects , Cell Line, Tumor , Doxorubicin/pharmacology , Female , Humans , Immunohistochemistry , Methylmalonic Acid/analysis , Mice , Mice, Inbred BALB C , Mice, Nude , Tomography, X-Ray Computed , Xenograft Model Antitumor Assays
13.
J Chem Phys ; 147(5): 054304, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28789530

ABSTRACT

We report the molecular dynamics of dissociative electron attachment to sulfur dioxide (SO2) by measuring the momentum distribution of fragment anions using the velocity slice imaging technique in the electron energy range of 2-10 eV. The S- channel results from symmetric dissociation which exhibits competition between the stretch mode and bending mode of vibration in the excited parent anion. The asymmetric dissociation of parent anions leads to the production of O- and SO- channels where the corresponding neutral fragments are formed in their ground as well as excited electronic states. We also identify that internal excitation of SO- is responsible for its low yield at higher electron energies.

14.
Proc Natl Acad Sci U S A ; 111(45): 16047-52, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25331870

ABSTRACT

A remarkable property of tetrapod bone is its ability to detect and remodel areas where damage has accumulated through prolonged use. This process, believed vital to the long-term health of bone, is considered to be initiated and orchestrated by osteocytes, cells within the bone matrix. It is therefore surprising that most extant fishes (neoteleosts) lack osteocytes, suggesting their bones are not constantly repaired, although many species exhibit long lives and high activity levels, factors that should induce considerable fatigue damage with time. Here, we show evidence for active and intense remodeling occurring in the anosteocytic, elongated rostral bones of billfishes (e.g., swordfish, marlins). Despite lacking osteocytes, this tissue exhibits a striking resemblance to the mature bone of large mammals, bearing structural features (overlapping secondary osteons) indicating intensive tissue repair, particularly in areas where high loads are expected. Billfish osteons are an order of magnitude smaller in diameter than mammalian osteons, however, implying that the nature of damage in this bone may be different. Whereas billfish bone material is as stiff as mammalian bone (unlike the bone of other fishes), it is able to withstand much greater strains (relative deformations) before failing. Our data show that fish bone can exhibit far more complex structure and physiology than previously known, and is apparently capable of localized repair even without the osteocytes believed essential for this process. These findings challenge the unique and primary role of osteocytes in bone remodeling, a basic tenet of bone biology, raising the possibility of an alternative mechanism driving this process.


Subject(s)
Bone Remodeling/physiology , Fishes/physiology , Animals , Osteocytes/cytology , Osteocytes/metabolism
15.
Chem Soc Rev ; 45(2): 252-67, 2016 Jan 21.
Article in English | MEDLINE | ID: mdl-26377507

ABSTRACT

Faced with a comparatively limited palette of minerals and organic polymers as building materials, evolution has arrived repeatedly on structural solutions that rely on clever geometric arrangements to avoid mechanical trade-offs in stiffness, strength and flexibility. In this tutorial review, we highlight the concept of tessellation, a structural motif that involves periodic soft and hard elements arranged in series and that appears in a vast array of invertebrate and vertebrate animal biomaterials. We start from basic mechanics principles on the effects of material heterogeneities in hypothetical structures, to derive common concepts from a diversity of natural examples of one-, two- and three-dimensional tilings/layerings. We show that the tessellation of a hard, continuous surface - its atomization into discrete elements connected by a softer phase - can theoretically result in maximization of material toughness, with little expense to stiffness or strength. Moreover, the arrangement of soft/flexible and hard/stiff elements into particular geometries can permit surprising functions, such as signal filtering or 'stretch and catch' responses, where the constrained flexibility of systems allows a built-in safety mechanism for ensuring that both compressive and tensile loads are managed well. Our analysis unites examples ranging from exoskeletal materials (fish scales, arthropod cuticle, turtle shell) to endoskeletal materials (bone, shark cartilage, sponge spicules) to attachment devices (mussel byssal threads), from both invertebrate and vertebrate animals, while spotlighting success and potential for bio-inspired manmade applications.


Subject(s)
Biomimetic Materials/chemistry , Mechanical Phenomena , Animals , Tensile Strength
16.
J Anat ; 229(5): 681-702, 2016 11.
Article in English | MEDLINE | ID: mdl-27557870

ABSTRACT

The endoskeleton of elasmobranchs (sharks and rays) is comprised largely of unmineralized cartilage, differing fundamentally from the bony skeletons of other vertebrates. Elasmobranch skeletons are further distinguished by a tessellated surface mineralization, a layer of minute, polygonal, mineralized tiles called tesserae. This 'tessellation' has defined the elasmobranch group for more than 400 million years, yet the limited data on development and ultrastructure of elasmobranch skeletons (e.g. how tesserae change in shape and mineral density with age) have restricted our abilities to develop hypotheses for tessellated cartilage growth. Using high-resolution, two-dimensional and three-dimensional materials and structural characterization techniques, we investigate an ontogenetic series of tessellated cartilage from round stingray Urobatis halleri, allowing us to define a series of distinct phases for skeletal mineralization and previously unrecognized features of tesseral anatomy. We show that the distinct tiled morphology of elasmobranch calcified cartilage is established early in U. halleri development, with tesserae forming first in histotroph embryos as isolated, globular islets of mineralized tissue. By the sub-adult stage, tesserae have increased in size and grown into contact with one another. The intertesseral contact results in the formation of more geometric (straight-edged) tesseral shapes and the development of two important features of tesseral anatomy, which we describe here for the first time. The first, the intertesseral joint, where neighboring tesserae abut without appreciable overlapping or interlocking, is far more complex than previously realized, comprised of a convoluted bearing surface surrounded by areas of fibrous attachment. The second, tesseral spokes, are lamellated, high-mineral density features radiating outward, like spokes on a wheel, from the center of each tessera to its joints with its neighbors, likely acting as structural reinforcements of the articulations between tesserae. As tesserae increase in size during ontogeny, spokes are lengthened via the addition of new lamellae, resulting in a visually striking mineralization pattern in the larger tesserae of older adult skeletons when viewed with scanning electron microscopy (SEM) in backscatter mode. Backscatter SEM also revealed that the cell lacunae in the center of larger tesserae are often filled with high mineral density material, suggesting that when intratesseral cells die, cell-regulated inhibition of mineralization is interrupted. Many of the defining ultrastructural details we describe relate to local variation in tissue mineral density and support previously proposed accretive growth mechanisms for tesserae. High-resolution micro-computed tomography data indicate that some tesseral anatomical features we describe for U. halleri are common among species of all major elasmobranch groups despite large variation in tesseral shape and size. We discuss hypotheses about how these features develop, and compare them with other vertebrate skeletal tissue types and their growth mechanisms.


Subject(s)
Cartilage/ultrastructure , Sharks/anatomy & histology , Skates, Fish/anatomy & histology , Animals , Calcification, Physiologic/physiology , Imaging, Three-Dimensional , Microscopy, Electron , X-Ray Microtomography
17.
Orig Life Evol Biosph ; 46(4): 499-506, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27068154

ABSTRACT

This work extends our previous experimental studies of the chemistry of Titan's atmosphere by atmospheric glow discharge. The Titan's atmosphere seems to be similarly to early Earth atmospheric composition. The exploration of Titan atmosphere was initiated by the exciting results of the Cassini-Huygens mission and obtained results increased the interest about prebiotic atmospheres. Present work is devoted to the role of CO2 in the prebiotic atmosphere chemistry. Most of the laboratory studies of such atmosphere were focused on the chemistry of N2 + CH4 mixtures. The present work is devoted to the study of the oxygenated volatile species in prebiotic atmosphere, specifically CO2 reactivity. CO2 was introduced to the standard N2 + CH4 mixture at different mixing ratio up to 5 % CH4 and 3 % CO2. The reaction products were characterized by FTIR spectroscopy. This work shows that CO2 modifies the composition of the gas phase with the detection of oxygenated compounds: CO and others oxides. There is a strong influence of CO2 on increasing concentration other products as cyanide (HCN) and ammonia (NH3).


Subject(s)
Atmosphere/chemistry , Carbon Dioxide/chemistry , Extraterrestrial Environment , Methane/chemistry , Nitrogen/chemistry , Evolution, Planetary , Origin of Life , Spectroscopy, Fourier Transform Infrared
18.
Mol Psychiatry ; 19(3): 302-10, 2014 Mar.
Article in English | MEDLINE | ID: mdl-23439486

ABSTRACT

In a recent human positron emission tomography (PET) study we demonstrated the ability to detect amphetamine-induced dopamine (DA) release in the prefrontal cortex as a reduction in the binding of the DA D(2/3) radioligand [(11)C]FLB 457. A key requirement for validating this paradigm for use in clinical studies is demonstrating that the changes in [(11)C]FLB 457 binding observed with PET following amphetamine are related to changes in dialysate DA concentration as measured with microdialysis. Microdialysis and PET experiments were performed to compare, in five rhesus monkeys, amphetamine-induced DA release and [(11)C]FLB 457 displacement in the frontal cortex after three doses of amphetamine (0.3 mg kg(-1), 0.5 mg kg(-1) and 1.0 mg kg(-1)). Amphetamine led to a significant dose-dependent increase in dialysate (0.3 mg kg(-1): 999±287%; 0.5 mg kg(-1): 1320±432%; 1.0 mg kg(-1): 2355±1026%) as measured with microdialysis and decrease in [(11)C]FLB 457 binding potential (BP(ND), 0.3 mg kg(-1): -6±6%; 0.5 mg kg(-1): -16±4%; 1.0 mg kg(-1): -24±2%) as measured with PET. The relationship between amphetamine-induced peak ΔDA and Δ[(11)C]FLB 457 BP(ND) in the frontal cortex was linear. The results of this study clearly demonstrate that the magnitude of dialysate DA release is correlated with the magnitude of the reduction in [(11)C]FLB 457 BP(ND) in the frontal cortex. The use of the [(11)C]FLB 457-amphetamine imaging paradigm in humans should allow for characterization of prefrontal cortical DA release in neuropsychiatric disorders such as schizophrenia and addiction.


Subject(s)
Dopamine/metabolism , Frontal Lobe/metabolism , Functional Neuroimaging , Microdialysis , Positron-Emission Tomography , Synaptic Transmission , Amphetamine/pharmacology , Animals , Corpus Striatum/diagnostic imaging , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine Agents/pharmacology , Dopamine Antagonists , Frontal Lobe/diagnostic imaging , Frontal Lobe/drug effects , Macaca mulatta , Male , Pyrrolidines , Raclopride , Radioligand Assay , Salicylamides , Synaptic Transmission/drug effects
19.
J Exp Biol ; 218(Pt 24): 3941-9, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26567348

ABSTRACT

All stingrays in the family Myliobatidae are durophagous, consuming bivalves and gastropods, as well as decapod crustaceans. Durophagous rays have rigid jaws, flat teeth that interlock to form pavement-like tooth plates, and large muscles that generate bite forces capable of fracturing stiff biological composites (e.g. mollusk shell). The relative proportion of different prey types in the diet of durophagous rays varies between genera, with some stingray species specializing on particular mollusk taxa, while others are generalists. The tooth plate module provides a curved occlusal surface on which prey is crushed, and this curvature differs significantly among myliobatids. We measured the effect of jaw curvature on prey-crushing success in durophagous stingrays. We milled aluminum replica jaws rendered from computed tomography scans, and crushed live mollusks, three-dimensionally printed gastropod shells, and ceramic tubes with these fabricated jaws. Our analysis of prey items indicate that gastropods were consistently more difficult to crush than bivalves (i.e. were stiffer), but that mussels require the greatest work-to-fracture. We found that replica shells can provide an important proxy for investigations of failure mechanics. We also found little difference in crushing performance between jaw shapes, suggesting that disparate jaws are equally suited for processing different types of shelled prey. Thus, durophagous stingrays exhibit a many-to-one mapping of jaw morphology to mollusk crushing performance.


Subject(s)
Bite Force , Jaw/anatomy & histology , Jaw/physiology , Skates, Fish/anatomy & histology , Skates, Fish/physiology , Animal Shells , Animals , Biomechanical Phenomena , Bivalvia , Diet , Feeding Behavior , Gastropoda , Models, Biological
20.
J Exp Biol ; 218(Pt 6): 824-36, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25617457

ABSTRACT

Perhaps the most striking feature of billfishes is the extreme elongation of the premaxillary bones forming their rostra. Surprisingly, the exact role of this structure in feeding is still controversial. The goal of this study is to investigate the use of the rostrum from a functional, biomechanical and morphological standpoint to ultimately infer its possible role during feeding. Using beam theory, experimental and theoretical loading tests were performed on the rostra from two morphologically different billfish, the blue marlin (Makaira nigricans) and the swordfish (Xiphias gladius). Two loading regimes were applied (dorsoventral and lateral) to simulate possible striking behaviors. Histological samples and material properties of the rostra were obtained along their lengths to further characterize structure and mechanical performance. Intraspecific results show similar stress distributions for most regions of the rostra, suggesting that this structure may be designed to withstand continuous loadings with no particular region of stress concentration. Although material stiffness increased distally, flexural stiffness increased proximally owing to higher second moment of area. The blue marlin rostrum was stiffer and resisted considerably higher loads for both loading planes compared with that of the swordfish. However, when a continuous load along the rostrum was considered, simulating the rostrum swinging through the water, swordfish exhibited lower stress and drag during lateral loading. Our combined results suggest that the swordfish rostrum is suited for lateral swiping to incapacitate their prey, whereas the blue marlin rostrum is better suited to strike prey from a wider variety of directions.


Subject(s)
Perciformes/anatomy & histology , Perciformes/physiology , Predatory Behavior , Skull/anatomy & histology , Animals , Biomechanical Phenomena , Materials Testing , Models, Biological , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL