Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters

Publication year range
1.
Haematologica ; 109(2): 521-532, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-37534527

ABSTRACT

Diagnostic criteria for juvenile myelomonocytic leukemia (JMML) are currently well defined, however in some patients diagnosis still remains a challenge. Flow cytometry is a well established tool for diagnosis and follow-up of hematological malignancies, nevertheless it is not routinely used for JMML diagnosis. Herewith, we characterized the CD34+ hematopoietic precursor cells collected from 31 children with JMML using a combination of standardized EuroFlow antibody panels to assess the ability to discriminate JMML cells from normal/reactive bone marrow cell as controls (n=29) or from cells of children with other hematological diseases mimicking JMML (n=9). CD34+ precursors in JMML showed markedly reduced B-cell and erythroid-committed precursors compared to controls, whereas monocytic and CD7+ lymphoid precursors were significantly expanded. Moreover, aberrant immunophenotypes were consistently present in CD34+ precursors in JMML, while they were virtually absent in controls. Multivariate logistic regression analysis showed that combined assessment of the number of CD34+CD7+ lymphoid precursors and CD34+ aberrant precursors or erythroid precursors had a great potential in discriminating JMMLs versus controls. Importantly our scoring model allowed highly efficient discrimination of truly JMML versus patients with JMML-like diseases. In conclusion, we show for the first time that CD34+ precursors from JMML patients display a unique immunophenotypic profile which might contribute to a fast and accurate diagnosis of JMML worldwide by applying an easy to standardize single eight-color antibody combination.


Subject(s)
Leukemia, Myelomonocytic, Juvenile , Child , Humans , Leukemia, Myelomonocytic, Juvenile/diagnosis , Leukemia, Myelomonocytic, Juvenile/genetics , Flow Cytometry , Antigens, CD34/genetics , Monocytes/pathology
2.
Blood ; 135(26): 2375-2387, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32299093

ABSTRACT

Risk of developing myelodysplastic syndrome (MDS) is significantly increased in both multiple myeloma (MM) and monoclonal gammopathy of undetermined significance, suggesting that it is therapy independent. However, the incidence and sequelae of dysplastic hematopoiesis at diagnosis are unknown. Here, we used multidimensional flow cytometry (MFC) to prospectively screen for the presence of MDS-associated phenotypic alterations (MDS-PA) in the bone marrow of 285 patients with MM enrolled in the PETHEMA/GEM2012MENOS65 trial (#NCT01916252). We investigated the clinical significance of monocytic MDS-PA in a larger series of 1252 patients enrolled in 4 PETHEMA/GEM protocols. At diagnosis, 33 (11.6%) of 285 cases displayed MDS-PA. Bulk and single-cell-targeted sequencing of MDS recurrently mutated genes in CD34+ progenitors (and dysplastic lineages) from 67 patients revealed clonal hematopoiesis in 13 (50%) of 26 cases with MDS-PA vs 9 (22%) of 41 without MDS-PA; TET2 and NRAS were the most frequently mutated genes. Dynamics of MDS-PA at diagnosis and after autologous transplant were evaluated in 86 of 285 patients and showed that in most cases (69 of 86 [80%]), MDS-PA either persisted or remained absent in patients with or without MDS-PA at diagnosis, respectively. Noteworthy, MDS-associated mutations infrequently emerged after high-dose therapy. Based on MFC profiling, patients with MDS-PA have altered hematopoiesis and T regulatory cell distribution in the tumor microenvironment. Importantly, the presence of monocytic MDS-PA at diagnosis anticipated greater risk of hematologic toxicity and was independently associated with inferior progression-free survival (hazard ratio, 1.5; P = .02) and overall survival (hazard ratio, 1.7; P = .01). This study reveals the biological and clinical significance of dysplastic hematopoiesis in newly diagnosed MM, which can be screened with moderate sensitivity using cost-effective MFC.


Subject(s)
Clonal Hematopoiesis , Multiple Myeloma/pathology , Myelodysplastic Syndromes/etiology , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Clinical Trials, Phase III as Topic , Combined Modality Therapy , Female , Flow Cytometry/methods , Hematopoietic Stem Cell Transplantation , High-Throughput Nucleotide Sequencing , Humans , In Situ Hybridization, Fluorescence , Kaplan-Meier Estimate , Male , Middle Aged , Multiple Myeloma/drug therapy , Multiple Myeloma/mortality , Multiple Myeloma/therapy , Mutation , Prognosis , Progression-Free Survival , Prospective Studies , Randomized Controlled Trials as Topic , Transplantation, Autologous , Tumor Microenvironment
3.
Mod Pathol ; 31(8): 1318-1331, 2018 08.
Article in English | MEDLINE | ID: mdl-29572500

ABSTRACT

Severe hemorrhagic events occur in a significant fraction of acute promyelocytic leukemia patients, either at presentation and/or early after starting therapy, leading to treatment failure and early deaths. However, identification of independent predictors for high-risk of severe bleeding at diagnosis, remains a challenge. Here, we investigated the immunophenotype of bone marrow leukemic cells from 109 newly diagnosed acute promyelocytic leukemia patients, particularly focusing on the identification of basophil-related features, and their potential association with severe bleeding episodes and patient overall survival.From all phenotypes investigated on leukemic cells, expression of the CD203c and/or CD22 basophil-associated markers showed the strongest association with the occurrence and severity of bleeding (p ≤ 0.007); moreover, aberrant expression of CD7, coexpression of CD34+/CD7+ and lack of CD71 was also more frequently found among patients with (mild and severe) bleeding at baseline and/or after starting treatment (p ≤ 0.009). Multivariate analysis showed that CD203c expression (hazard ratio: 26.4; p = 0.003) and older age (hazard ratio: 5.4; p = 0.03) were the best independent predictors for cumulative incidence of severe bleeding after starting therapy. In addition, CD203c expression on leukemic cells (hazard ratio: 4.4; p = 0.01), low fibrinogen levels (hazard ratio: 8.8; p = 0.001), older age (hazard ratio: 9.0; p = 0.002), and high leukocyte count (hazard ratio: 5.6; p = 0.02) were the most informative independent predictors for overall survival.In summary, our results show that the presence of basophil-associated phenotypic characteristics on leukemic cells from acute promyelocytic leukemia patients at diagnosis is a powerful independent predictor for severe bleeding and overall survival, which might contribute in the future to (early) risk-adapted therapy decisions.


Subject(s)
Basophils/pathology , Hemorrhage/etiology , Leukemia, Promyelocytic, Acute/pathology , Adolescent , Adult , Aged , Aged, 80 and over , Cell Lineage , Child , Child, Preschool , Female , Humans , Leukemia, Promyelocytic, Acute/complications , Male , Middle Aged , Phenotype , Young Adult
4.
Haematologica ; 102(2): 308-319, 2017 02.
Article in English | MEDLINE | ID: mdl-27758818

ABSTRACT

Current recommendations for diagnosing myelodysplastic syndromes endorse flow cytometry as an informative tool. Most flow cytometry protocols focus on the analysis of progenitor cells and the evaluation of the maturing myelomonocytic lineage. However, one of the most frequently observed features of myelodysplastic syndromes is anemia, which may be associated with dyserythropoiesis. Therefore, analysis of changes in flow cytometry features of nucleated erythroid cells may complement current flow cytometry tools. The multicenter study within the IMDSFlow Working Group, reported herein, focused on defining flow cytometry parameters that enable discrimination of dyserythropoiesis associated with myelodysplastic syndromes from non-clonal cytopenias. Data from a learning cohort were compared between myelodysplasia and controls, and results were validated in a separate cohort. The learning cohort comprised 245 myelodysplasia cases, 290 pathological, and 142 normal controls; the validation cohort comprised 129 myelodysplasia cases, 153 pathological, and 49 normal controls. Multivariate logistic regression analysis performed in the learning cohort revealed that analysis of expression of CD36 and CD71 (expressed as coefficient of variation), in combination with CD71 fluorescence intensity and the percentage of CD117+ erythroid progenitors provided the best discrimination between myelodysplastic syndromes and non-clonal cytopenias (specificity 90%; 95% confidence interval: 84-94%). The high specificity of this marker set was confirmed in the validation cohort (92%; 95% confidence interval: 86-97%). This erythroid flow cytometry marker combination may improve the evaluation of cytopenic cases with suspected myelodysplasia, particularly when combined with flow cytometry assessment of the myelomonocytic lineage.


Subject(s)
Erythroid Cells/metabolism , Erythroid Cells/pathology , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Adult , Age Factors , Aged , Aged, 80 and over , Biomarkers , Bone Marrow Cells/metabolism , Case-Control Studies , Female , Flow Cytometry , Humans , Immunophenotyping , Male , Middle Aged , Young Adult
5.
Br J Haematol ; 168(2): 258-67, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25252186

ABSTRACT

An increasing body of evidence suggests the potential occurrence of antigen encounter by the cell of origin in chronic lymphocytic leukaemia (CLL) and CLL-like monoclonal B-cell lymphocytosis (MBL). However, the scenario in which this event might occur remains unknown. In order to gain insight into this scenario we investigated the molecular, cytogenetic and haematological features of 223 CLL-like (n = 84) and CLL (n = 139) clones with stereotyped (n = 32) versus non-stereotyped (n = 191) immunoglobulin heavy chain variable region (IGHV) amino acid sequences. Overall, stereotyped CLL-like MBL and CLL clones showed a unique IGHV profile, associated with higher IGHV1 and lower IGHV3 gene family usage (P = 0·03), longer IGHV complementary determining region 3 (HCDR3) sequences (P = 0·007) and unmutated IGHV (P < 0·001) versus non-stereotyped clones. Whilst the overall size of the stereotyped B-cell clones in peripheral blood did not appear to be associated with the CLL-related cytogenetic profile of B-cells (P > 0·05), it did show a significant association with the presence of myelodysplastic syndrome (MDS)-associated immunophenotypes on peripheral blood neutrophils and/or monocytes (P = 0·01). Altogether our results point to the potential involvement of different selection forces in the expansion of stereotyped vs. non-stereotyped CLL and CLL-like MBL clones, the former being potentially favoured by an underlying altered haematopoiesis.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Myelodysplastic Syndromes/immunology , Myeloid Cells/immunology , Receptors, Antigen, B-Cell/immunology , Adult , Aged , Aged, 80 and over , Amino Acid Sequence , B-Lymphocytes/immunology , B-Lymphocytes/pathology , Clone Cells , Female , Humans , Immunophenotyping , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Male , Middle Aged , Molecular Sequence Data , Myelodysplastic Syndromes/pathology , Myeloid Cells/pathology , Phenotype , Receptors, Antigen, B-Cell/metabolism
7.
Anal Biochem ; 450: 37-45, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24440232

ABSTRACT

Antibody arrays hold great promise for biomedical applications, but they are typically manufactured using chemically functionalized surfaces that still require optimization. Here, we describe novel hetero-functionally activated glass surfaces favoring oriented antibody binding for improved performance in protein microarray applications. Antibody arrays manufactured in our facility using the functionalization chemistries described here proved to be reproducible and stable and also showed good signal intensities. As a proof-of-principle of the glass surface functionalization protocols described in this article, we built antibody-based arrays functionalized with different chemistries that enabled the simultaneous detection of 71 human leukocyte membrane differentiation antigens commonly found in peripheral blood mononuclear cells. Such detection is specific and semi-quantitative and can be performed in a single assay under native conditions. In summary, the protocol described here, based on the use of antibody array technology, enabled the concurrent detection of a set of membrane proteins under native conditions in a specific, selective, and semi-quantitative manner and in a single assay.


Subject(s)
Antibodies, Immobilized/chemistry , Glass/chemistry , Protein Array Analysis/methods , Animals , Antibodies, Immobilized/immunology , HLA Antigens/immunology , Humans , Leukocytes, Mononuclear/immunology , Reproducibility of Results , Surface Properties
8.
Am J Hematol ; 89(3): 288-94, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24779036

ABSTRACT

For decades now, it is well established that chronic myeloid leukemia (CML) is a hematopoietic stem cell(HPC) disorder. However, it remains to be determined whether BCR-ABL1 gene rearrangement occurs in a HPC or at an earlier stem cell and whether the degree of involvement of hematopoiesis by the BCR-ABL1 fusion gene relates to the response to therapy. Here, we have investigated by interphase fluorescence in situ hybridization (iFISH) the distribution of BCR-ABL1 fusion gene in FACS-sorted bone marrow (BM) populations of mesenchymal precursor cells (MPC) and other hematopoietic cell populations from 18 newly diagnosed CML patients. Overall, our results showed systematic involvement at relatively high percentages of BM maturing neutrophils (97%615%), basophils (95%612%), eosinophils (90%68%), CD341 precursors cells (90%67%),monocytes (84%630%), nucleated red blood cells (87%624%), and mast cells (77%633%). By contrast, MPC(30%634%), B-cells (15%627%), T-lymphocytes (50%626%), and NK-cells (35%634%) were involved at lower percentages. In 8/18 CML patients, 2 tumor BCR-ABL11 subclones were detected by iFISH. Of note, all tumor cell subclones were systematically detected in CD341 cells, whereas MPC were only involved by the ancestral tumor cell subclone. In summary, here we confirm the presence at diagnosis of the BCR-ABL1 fusion gene inMPC, CD341 precursors, and other different BM hematopoietic myeloid cell lineages from CML patients,including also in a significant fraction of cases, a smaller percentage of T, B, and NK lymphocytes.Interestingly, involvement of MPC was restricted to the ancestral BCR-ABL11 subclone.


Subject(s)
Fusion Proteins, bcr-abl/genetics , Gene Rearrangement , Hematopoietic Stem Cells , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Adult , Aged , Aged, 80 and over , Bone Marrow Cells , Female , Humans , In Situ Hybridization, Fluorescence , Interphase , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Lymphocytes , Male , Middle Aged
9.
J Allergy Clin Immunol ; 131(4): 1213-24, 1224.e1-4, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23403045

ABSTRACT

BACKGROUND: Despite the fact that a great majority (>90%) of patients with systemic mastocytosis (SM) carry a common genetic lesion, the D816V KIT mutation, little is known regarding the molecular and biological pathways underlying the clinical heterogeneity of the disease. OBJECTIVE: We sought to analyze the gene expression profile (GEP) of bone marrow mast cells (BMMCs) in patients with SM and its association with distinct clinical variants of the disease. METHODS: GEP analyses were performed by using DNA-oligonucleotide microarrays in highly purified BMMCs from patients with SM carrying the D816V KIT mutation (n=26) classified according to the diagnostic subtype of SM versus normal/reactive BMMCs (n=7). Validation of GEP results was performed with flow cytometry in the same set of samples and in an independent cohort of 176 subjects. RESULTS: Overall, 758 transcripts were significantly deregulated in patients with SM, with a common GEP (n=398 genes) for all subvariants of SM analyzed. These were characterized by upregulation of genes involved in the innate and inflammatory immune response, including interferon-induced genes and genes involved in cellular responses to viral antigens, together with complement inhibitory molecules and genes involved in lipid metabolism and protein processing. Interestingly, aggressive SM additionally showed deregulation of apoptosis and cell cycle-related genes, whereas patients with indolent SM displayed increased expression of adhesion-related molecules. CONCLUSION: BMMCs from patients with different clinical subtypes of SM display distinct GEPs, which might reflect new targetable pathways involved in the pathogenesis of the disease.


Subject(s)
Bone Marrow/metabolism , Gene Expression , Mast Cells/metabolism , Mastocytosis, Systemic/genetics , RNA, Messenger/genetics , Aged , Bone Marrow/immunology , Bone Marrow/pathology , Cell Separation , Female , Flow Cytometry , Gene Expression Profiling , Genetic Heterogeneity , Humans , Immunity, Cellular/genetics , Immunity, Humoral/genetics , Immunity, Innate/genetics , Male , Mast Cells/immunology , Mast Cells/pathology , Mastocytosis, Systemic/immunology , Mastocytosis, Systemic/pathology , Middle Aged , Mutation , Oligonucleotide Array Sequence Analysis , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/immunology , RNA, Messenger/biosynthesis
10.
Cytometry B Clin Cytom ; 104(1): 66-76, 2023 01.
Article in English | MEDLINE | ID: mdl-34967500

ABSTRACT

BACKGROUND: It was proposed that peripheral blood (PB) monocyte profiles evaluated by flow cytometry, called "monocyte assay," could rapidly and efficiently distinguish chronic myelomonocytic leukemia (CMML) from other causes of monocytosis by highlighting an increase in the classical monocyte (cMo) fraction above 94%. However, the robustness of this assay requires a large multicenter validation and the assessment of its feasibility on bone marrow (BM) samples, as some centers may not have access to PB. METHODS: PB and/or BM samples from patients displaying monocytosis were assessed with the "monocyte assay" by 10 ELN iMDS Flow working group centers with harmonized protocols. The corresponding files were reanalyzed in a blind fashion and the cMo percentages obtained by both analyses were compared. Confirmed diagnoses were collected when available. RESULTS: The comparison between cMo percentages from 267 PB files showed a good global significant correlation (r = 0.88) with no bias. Confirmed diagnoses, available for 212 patients, achieved a 94% sensitivity and an 84% specificity. Hence, 95/101 CMML patients displayed cMo ≥94% while cMo <94% was observed in 83/99 patients with reactive monocytosis and in 10/12 patients with myeloproliferative neoplasms (MPN) with monocytosis. The established Receiver Operator Curve again provided a 94% cut-off value of cMo. The 117 BM files reanalysis led to an 87% sensitivity and an 80% specificity, with excellent correlation between the 43 paired samples to PB. CONCLUSIONS: This ELN multicenter study demonstrates the robustness of the monocyte assay with only limited variability of cMo percentages, validates the 94% cutoff value, confirms its high sensitivity and specificity in PB and finally, also confirms the possibility of its use in BM samples.


Subject(s)
Leukemia, Myelomonocytic, Chronic , Myeloproliferative Disorders , Humans , Monocytes , Leukemia, Myelomonocytic, Chronic/diagnosis , Flow Cytometry/methods , Immunophenotyping
11.
Cytometry B Clin Cytom ; 104(1): 51-65, 2023 01.
Article in English | MEDLINE | ID: mdl-36416672

ABSTRACT

BACKGROUND: Myelodysplastic syndromes (MDS) represent a diagnostic challenge. This prospective multicenter study was conducted to evaluate pre-defined flow cytometric markers in the diagnostic work-up of MDS and chronic myelomonocytic leukemia (CMML). METHODS: Thousand six hundred and eighty-two patients with suspected MDS/CMML were analyzed by both cytomorphology according to WHO 2016 criteria and flow cytometry according to ELN recommendations. Flow cytometric readout was categorized 'non-MDS' (i.e. no signs of MDS/CMML and limited signs of MDS/CMML) and 'in agreement with MDS' (i.e., in agreement with MDS/CMML). RESULTS: Flow cytometric readout categorized 60% of patients in agreement with MDS, 28% showed limited signs of MDS and 12% had no signs of MDS. In 81% of cases flow cytometric readouts and cytomorphologic diagnosis correlated. For high-risk MDS, the level of concordance was 92%. A total of 17 immunophenotypic aberrancies were found independently related to MDS/CMML in ≥1 of the subgroups of low-risk MDS, high-risk MDS, CMML. A cut-off of ≥3 of these aberrancies resulted in 80% agreement with cytomorphology (20% cases concordantly negative, 60% positive). Moreover, >3% myeloid progenitor cells were significantly associated with MDS (286/293 such cases, 98%). CONCLUSION: Data from this prospective multicenter study led to recognition of 17 immunophenotypic markers allowing to identify cases 'in agreement with MDS'. Moreover, data emphasizes the clinical utility of immunophenotyping in MDS diagnostics, given the high concordance between cytomorphology and the flow cytometric readout. Results from the current study challenge the application of the cytomorphologically defined cut-off of 5% blasts for flow cytometry and rather suggest a 3% cut-off for the latter.


Subject(s)
Leukemia, Myelomonocytic, Chronic , Myelodysplastic Syndromes , Humans , Flow Cytometry/methods , Myelodysplastic Syndromes/diagnosis , Leukemia, Myelomonocytic, Chronic/diagnosis , Leukocytes , Immunophenotyping
12.
Cytometry B Clin Cytom ; 104(1): 15-26, 2023 01.
Article in English | MEDLINE | ID: mdl-34894176

ABSTRACT

BACKGROUND: Flow cytometry (FCM) aids the diagnosis and prognostic stratification of patients with suspected or confirmed myelodysplastic syndrome (MDS). Over the past few years, significant progress has been made in the FCM field concerning technical issues (including software and hardware) and pre-analytical procedures. METHODS: Recommendations are made based on the data and expert discussions generated from 13 yearly meetings of the European LeukemiaNet international MDS Flow working group. RESULTS: We report here on the experiences and recommendations concerning (1) the optimal methods of sample processing and handling, (2) antibody panels and fluorochromes, and (3) current hardware technologies. CONCLUSIONS: These recommendations will support and facilitate the appropriate application of FCM assays in the diagnostic workup of MDS patients. Further standardization and harmonization will be required to integrate FCM in MDS diagnostic evaluations in daily practice.


Subject(s)
Myelodysplastic Syndromes , Humans , Flow Cytometry/methods , Myelodysplastic Syndromes/diagnosis , Reference Standards , Biological Assay , Fluorescent Dyes
13.
Cytometry B Clin Cytom ; 104(1): 77-86, 2023 01.
Article in English | MEDLINE | ID: mdl-34897979

ABSTRACT

This article discusses the rationale for inclusion of flow cytometry (FCM) in the diagnostic investigation and evaluation of cytopenias of uncertain origin and suspected myelodysplastic syndromes (MDS) by the European LeukemiaNet international MDS Flow Working Group (ELN iMDS Flow WG). The WHO 2016 classification recognizes that FCM contributes to the diagnosis of MDS and may be useful for prognostication, prediction, and evaluation of response to therapy and follow-up of MDS patients.


Subject(s)
Myelodysplastic Syndromes , Humans , Flow Cytometry , Myelodysplastic Syndromes/diagnosis
14.
Cytometry B Clin Cytom ; 104(1): 27-50, 2023 01.
Article in English | MEDLINE | ID: mdl-36537621

ABSTRACT

Multiparameter flow cytometry (MFC) is one of the essential ancillary methods in bone marrow (BM) investigation of patients with cytopenia and suspected myelodysplastic syndrome (MDS). MFC can also be applied in the follow-up of MDS patients undergoing treatment. This document summarizes recommendations from the International/European Leukemia Net Working Group for Flow Cytometry in Myelodysplastic Syndromes (ELN iMDS Flow) on the analytical issues in MFC for the diagnostic work-up of MDS. Recommendations for the analysis of several BM cell subsets such as myeloid precursors, maturing granulocytic and monocytic components and erythropoiesis are given. A core set of 17 markers identified as independently related to a cytomorphologic diagnosis of myelodysplasia is suggested as mandatory for MFC evaluation of BM in a patient with cytopenia. A myeloid precursor cell (CD34+ CD19- ) count >3% should be considered immunophenotypically indicative of myelodysplasia. However, MFC results should always be evaluated as part of an integrated hematopathology work-up. Looking forward, several machine-learning-based analytical tools of interest should be applied in parallel to conventional analytical methods to investigate their usefulness in integrated diagnostics, risk stratification, and potentially even in the evaluation of response to therapy, based on MFC data. In addition, compiling large uniform datasets is desirable, as most of the machine-learning-based methods tend to perform better with larger numbers of investigated samples, especially in such a heterogeneous disease as MDS.


Subject(s)
Myelodysplastic Syndromes , Humans , Flow Cytometry/methods , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/pathology , Antigens, CD34 , Granulocytes/pathology , Monocytes/pathology , Immunophenotyping
15.
J Proteome Res ; 11(12): 5972-82, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23140423

ABSTRACT

Protein interactions play a critical role in the regulation of many biological events and their study in a high-throughput format has become a key area of proteomic research. Nucleid Acid Programmable Protein Arrays (NAPPA) technology allows the construction of protein arrays from cDNA expression libraries in high-throughput cell-free systems to study protein interaction and functions. Tick saliva contains antihemostatic, anti-inflammatory, and immunosuppressive proteins that counteract the host hemostatic, immune, and inflammatory responses allowing the ingestion of host blood and facilitating its infection by the tick-borne pathogens. Identification of such proteins and their functions could help in the selection of antigenic targets for the development of antitick and transmission-blocking vaccines. With that aim, we have prepared a cDNA expression library from the salivary glands of Ornithodoros moubata and subsequently produced a self-assembled protein microarray using 480 randomly selected clones from that library. The reproducibility of the array, its representativeness of the tick salivary protein repertoire, and the functionality of the in situ expressed proteins have been checked, demonstrating that it is a suitable tool for the identification and functional characterization of soft tick salivary molecules that interact with host proteins. Several clones in the array were shown to bind to human recombinant P-selectin. One of them was a likely secreted tick phospholipase A2, which may represent a potential new ligand for P-selectin. As these salivary molecules are likely involved in blood meal acquisition through the modulation of the host immune and hemostatic responses, this new high-throughput tool could open new avenues for development of new therapeutic agents and control strategies against ticks and tick-borne pathogens.


Subject(s)
Arthropod Proteins/analysis , Ornithodoros/metabolism , Protein Array Analysis/methods , Salivary Glands/metabolism , Salivary Proteins and Peptides/analysis , Animals , Arthropod Proteins/metabolism , Cell-Free System , Female , Gene Library , High-Throughput Screening Assays , Humans , Male , Ornithodoros/genetics , P-Selectin/chemistry , Protein Binding , Protein Interaction Mapping , Proteomics/methods , Recombinant Proteins/metabolism , Reproducibility of Results , Salivary Glands/cytology , Salivary Proteins and Peptides/genetics , Salivary Proteins and Peptides/metabolism , Sequence Analysis, DNA
16.
Haematologica ; 97(6): 895-902, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22271903

ABSTRACT

BACKGROUND: Multiparameter flow cytometric analysis of bone marrow and peripheral blood cells has proven to be of help in the diagnostic workup of myelodysplastic syndromes. However, the usefulness of flow cytometry for the detection of megakaryocytic and platelet dysplasia has not yet been investigated. The aim of this pilot study was to evaluate by flow cytometry the diagnostic and prognostic value of platelet dysplasia in myelodysplastic syndromes. DESIGN AND METHODS: We investigated the pattern of expression of distinct surface glycoproteins on peripheral blood platelets from a series of 44 myelodysplastic syndrome patients, 20 healthy subjects and 19 patients with platelet alterations associated to disease conditions other than myelodysplastic syndromes. Quantitative expression of CD31, CD34, CD36, CD41a, CD41b, CD42a, CD42b and CD61 glycoproteins together with the PAC-1, CD62-P, fibrinogen and CD63 platelet activation-associated markers and platelet light scatter properties were systematically evaluated. RESULTS: Overall, flow cytometry identified multiple immunophenotypic abnormalities on platelets of myelodysplastic syndrome patients, including altered light scatter characteristics, over-and under expression of specific platelet glycoproteins and asynchronous expression of CD34; decreased expression of CD36 (n = 5), CD42a (n = 1) and CD61 (n = 2), together with reactivity for CD34 (n = 1) were only observed among myelodysplastic syndrome cases, while other alterations were also found in other platelet disorders. Based on the overall platelet alterations detected for each patient, an immunophenotypic score was built which identified a subgroup of myelodysplastic syndrome patients with a high rate of moderate to severe alterations (score>1.5; n = 16) who more frequently showed thrombocytopenia, megakaryocytic dysplasia and high-risk disease, together with a shorter overall survival. CONCLUSIONS: Our results show the presence of altered phenotypes by flow cytometry on platelets from around half of the myelodysplastic syndrome patients studied. If confirmed in larger series of patients, these findings may help refine the diagnostic and prognostic assessment of this group of disorders.


Subject(s)
Antigens, CD/genetics , Blood Platelets/pathology , Megakaryocytes/pathology , Myelodysplastic Syndromes/pathology , Thrombocytopenia/pathology , Aged , Aged, 80 and over , Antigens, CD/immunology , Biomarkers/analysis , Blood Platelets/immunology , Blood Platelets/metabolism , Dual Specificity Phosphatase 2/genetics , Dual Specificity Phosphatase 2/immunology , Female , Fibrinogen/genetics , Fibrinogen/immunology , Flow Cytometry , Gene Expression Regulation, Neoplastic/immunology , Humans , Immunophenotyping , Male , Megakaryocytes/immunology , Megakaryocytes/metabolism , Middle Aged , Myelodysplastic Syndromes/immunology , Myelodysplastic Syndromes/mortality , Pilot Projects , Platelet Activation/genetics , Platelet Activation/immunology , Prognosis , Risk , Severity of Illness Index , Survival Rate , Thrombocytopenia/immunology , Thrombocytopenia/mortality
17.
Haematologica ; 97(10): 1608-11, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22511492

ABSTRACT

Increased risk of acute myeloid leukemia/myelodysplastic syndromes following treatment has been reported in multiple myeloma, but whether dysplastic features are already present at diagnosis remains to be investigated. Using multiparameter flow cytometry, we analyzed the distribution and phenotype of bone marrow hematopoietic cells from 47 multiple myeloma patients (15 symptomatic and 32 high-risk smoldering). From the 32 smoldering myeloma patients, 18 were studied at baseline and 22 after nine cycles of lenalidomide/dexamethasone treatment following the QUIREDEX trial (including 8 from baseline). Phenotypic alterations of bone marrow cells of 7 (47%) symptomatic and 6 (33%) smoldering myeloma patients were detected at baseline; there was no difference in the frequency and extent of phenotypic alterations between symptomatic versus smoldering cases. Likewise, no difference was seen between smoldering myeloma patients studied at baseline versus after lenalidomide/dexamethasone treatment. Our results suggest that phenotypic alterations of bone marrow hematopoietic cells are often present in newly diagnosed symptomatic and smoldering multiple myeloma patients. QUIREDEX trial (NCT00480363).


Subject(s)
Bone Marrow Cells/metabolism , Multiple Myeloma/diagnosis , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Antigens, CD/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Female , Humans , Immunophenotyping , Lenalidomide , Male , Multiple Myeloma/drug therapy , Thalidomide/analogs & derivatives , Thalidomide/pharmacology , Thalidomide/therapeutic use
18.
Sensors (Basel) ; 12(2): 2284-308, 2012.
Article in English | MEDLINE | ID: mdl-22438764

ABSTRACT

During the last years, proteomics has facilitated biomarker discovery by coupling high-throughput techniques with novel nanosensors. In the present review, we focus on the study of label-based and label-free detection systems, as well as nanotechnology approaches, indicating their advantages and applications in biomarker discovery. In addition, several disease biomarkers are shown in order to display the clinical importance of the improvement of sensitivity and selectivity by using nanoproteomics approaches as novel sensors.


Subject(s)
Biomarkers/analysis , Biosensing Techniques , Nanotechnology/instrumentation , Protein Array Analysis/instrumentation , Proteomics/instrumentation , Transducers , Equipment Design , Equipment Failure Analysis
19.
Cancers (Basel) ; 14(8)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35454917

ABSTRACT

Flowcytometric analysis allows for detailed identification and characterization of large numbers of cells in blood, bone marrow, and other body fluids and tissue samples and therefore contributes to the diagnostics of hematological malignancies. Novel data analysis tools allow for multidimensional analysis and comparison of patient samples with reference databases of normal, reactive, and/or leukemia/lymphoma patient samples. Building such reference databases requires strict quality assessment (QA) procedures. Here, we compiled a dataset and developed a QA methodology of the EuroFlow Acute Myeloid Leukemia (AML) database, based on the eight-color EuroFlow AML panel consisting of six different antibody combinations, including four backbone markers. In total, 1142 AML cases and 42 normal bone marrow samples were included in this analysis. QA was performed on 803 AML cases using multidimensional analysis of backbone markers, as well as tube-specific markers, and data were compared using classical analysis employing median and peak expression values. Validation of the QA procedure was performed by re-analysis of >300 cases and by running an independent cohort of 339 AML cases. Initial evaluation of the final cohort confirmed specific immunophenotypic patterns in AML subgroups; the dataset therefore can reliably be used for more detailed exploration of the immunophenotypic variability of AML. Our data show the potential pitfalls and provide possible solutions for constructing large flowcytometric databases. In addition, the provided approach may facilitate the building of other databases and thereby support the development of novel tools for (semi)automated QA and subsequent data analysis.

20.
Cancers (Basel) ; 14(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35326734

ABSTRACT

Acute megakaryoblastic leukemia (AMKL) is a rare and heterogeneous subtype of acute myeloid leukemia (AML). We evaluated the immunophenotypic profile of 72 AMKL and 114 non-AMKL AML patients using the EuroFlow AML panel. Univariate and multivariate/multidimensional analyses were performed to identify most relevant markers contributing to the diagnosis of AMKL. AMKL patients were subdivided into transient abnormal myelopoiesis (TAM), myeloid leukemia associated with Down syndrome (ML-DS), AML-not otherwise specified with megakaryocytic differentiation (NOS-AMKL), and AMKL-other patients (AML patients with other WHO classification but with flowcytometric features of megakaryocytic differentiation). Flowcytometric analysis showed good discrimination between AMKL and non-AMKL patients based on differential expression of, in particular, CD42a.CD61, CD41, CD42b, HLADR, CD15 and CD13. Combining CD42a.CD61 (positive) and CD13 (negative) resulted in a sensitivity of 71% and a specificity of 99%. Within AMKL patients, TAM and ML-DS patients showed higher frequencies of immature CD34+/CD117+ leukemic cells as compared to NOS-AMKL and AMKL-Other patients. In addition, ML-DS patients showed a significantly higher expression of CD33, CD11b, CD38 and CD7 as compared to the other three subgroups, allowing for good distinction of these patients. Overall, our data show that the EuroFlow AML panel allows for straightforward diagnosis of AMKL and that ML-DS is associated with a unique immunophenotypic profile.

SELECTION OF CITATIONS
SEARCH DETAIL