Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
2.
Nature ; 550(7675): 255-259, 2017 10 12.
Article in English | MEDLINE | ID: mdl-28953886

ABSTRACT

Under homeostatic conditions, animals use well-defined hypothalamic neural circuits to help maintain stable body weight, by integrating metabolic and hormonal signals from the periphery to balance food consumption and energy expenditure. In stressed or disease conditions, however, animals use alternative neuronal pathways to adapt to the metabolic challenges of altered energy demand. Recent studies have identified brain areas outside the hypothalamus that are activated under these 'non-homeostatic' conditions, but the molecular nature of the peripheral signals and brain-localized receptors that activate these circuits remains elusive. Here we identify glial cell-derived neurotrophic factor (GDNF) receptor alpha-like (GFRAL) as a brainstem-restricted receptor for growth and differentiation factor 15 (GDF15). GDF15 regulates food intake, energy expenditure and body weight in response to metabolic and toxin-induced stresses; we show that Gfral knockout mice are hyperphagic under stressed conditions and are resistant to chemotherapy-induced anorexia and body weight loss. GDF15 activates GFRAL-expressing neurons localized exclusively in the area postrema and nucleus tractus solitarius of the mouse brainstem. It then triggers the activation of neurons localized within the parabrachial nucleus and central amygdala, which constitute part of the 'emergency circuit' that shapes feeding responses to stressful conditions. GDF15 levels increase in response to tissue stress and injury, and elevated levels are associated with body weight loss in numerous chronic human diseases. By isolating GFRAL as the receptor for GDF15-induced anorexia and weight loss, we identify a mechanistic basis for the non-homeostatic regulation of neural circuitry by a peripheral signal associated with tissue damage and stress. These findings provide opportunities to develop therapeutic agents for the treatment of disorders with altered energy demand.


Subject(s)
Body Weight/physiology , Brain Stem/metabolism , Glial Cell Line-Derived Neurotrophic Factor Receptors/metabolism , Growth Differentiation Factor 15/metabolism , Animals , Brain Stem/cytology , Brain Stem/drug effects , Central Amygdaloid Nucleus/cytology , Central Amygdaloid Nucleus/physiology , Eating/physiology , Energy Metabolism/physiology , Feeding Behavior , Female , Glial Cell Line-Derived Neurotrophic Factor Receptors/deficiency , Glial Cell Line-Derived Neurotrophic Factor Receptors/genetics , Growth Differentiation Factor 15/genetics , Growth Differentiation Factor 15/pharmacology , Homeostasis , Male , Mice , Mice, Knockout , Neurons/drug effects , Neurons/metabolism , Parabrachial Nucleus/cytology , Parabrachial Nucleus/physiology , Stress, Psychological
3.
Cell Rep ; 39(9): 110872, 2022 05 31.
Article in English | MEDLINE | ID: mdl-35649369

ABSTRACT

Type 1 diabetes mellitus (T1D) is a chronic disease with potentially severe complications, and ß-cell deficiency underlies this disease. Despite active research, no therapy to date has been able to induce ß-cell regeneration in humans. Here, we discover the ß-cell regenerative effects of glucagon receptor antibody (anti-GcgR). Treatment with anti-GcgR in mouse models of ß-cell deficiency leads to reversal of hyperglycemia, increase in plasma insulin levels, and restoration of ß-cell mass. We demonstrate that both ß-cell proliferation and α- to ß-cell transdifferentiation contribute to anti-GcgR-induced ß-cell regeneration. Interestingly, anti-GcgR-induced α-cell hyperplasia can be uncoupled from ß-cell regeneration after antibody clearance from the body. Importantly, we are able to show that anti-GcgR-induced ß-cell regeneration is also observed in non-human primates. Furthermore, anti-GcgR and anti-CD3 combination therapy reverses diabetes and increases ß-cell mass in a mouse model of autoimmune diabetes.


Subject(s)
Diabetes Mellitus, Type 1 , Glucagon-Secreting Cells , Hyperglycemia , Insulin-Secreting Cells , Animals , Disease Models, Animal , Glucagon , Hyperglycemia/drug therapy , Mice , Receptors, Glucagon
4.
Eur J Cell Biol ; 86(8): 417-31, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17628206

ABSTRACT

Rab11-FIP3 is a Rab11-binding protein that has been implicated in regulating cytokinesis in mammalian cells. FIP3 functions by simultaneously interacting with Rab11 as well as Arf GTPases. However, unlike the interaction between Rab11 and FIP3, the structural basis of FIP3 binding to Arf GTPases has not yet been determined. The specificity of interaction between FIP3 and Arf GTPases remains controversial. While it was reported that FIP3 preferentially binds to Arf6 some data suggest that FIP3 can also interact with Arf5 and even possibly Arf4. The Arf-interaction motif on FIP3 also remains to be determined. Finally, the importance of Arf binding to FIP3 in regulating cell division and other cellular functions remains unclear. Here we used a combination of various biochemical techniques to measure the affinity of FIP3 binding to various Arfs and to demonstrate that FIP3 predominantly interacts with Arf6 in vitro and in vivo. In addition, we identified the motifs mediating Arf6 and FIP3 interaction and demonstrated that FIP3 binds to the Arf6 C-terminus rather than switch motifs. Finally we show that FIP3 and Arf6 binding is required for the targeting of Arf6 to the cleavage furrow during cytokinesis. Thus, we propose that FIP3 is a scaffolding protein that, in addition to regulating endosome targeting to the cleavage furrow, also is required for Arf6 recruitment to the midbody during late telophase.


Subject(s)
ADP-Ribosylation Factors/metabolism , Carrier Proteins/metabolism , ADP-Ribosylation Factor 6 , Binding Sites , Carrier Proteins/chemistry , Cytokinesis , Endosomes/metabolism , HeLa Cells , Humans , Mutant Proteins/metabolism , Protein Binding , Protein Interaction Mapping , Protein Structure, Secondary , Transfection , Two-Hybrid System Techniques
5.
J Cell Biol ; 195(1): 71-86, 2011 Oct 03.
Article in English | MEDLINE | ID: mdl-21969467

ABSTRACT

During the morphogenesis of the epithelial lumen, apical proteins are thought to be transported via endocytic compartments to the site of the forming lumen, although the machinery mediating this transport remains to be elucidated. Rab11 GTPase and its binding protein, FIP5, are important regulators of polarized endocytic transport. In this study, we identify sorting nexin 18 as a novel FIP5-interacting protein and characterize the role of FIP5 and SNX18 in epithelial lumen morphogenesis. We show that FIP5 mediates the transport of apical proteins from apical endosomes to the apical plasma membrane and, along with SNX18, is required for the early stages of apical lumen formation. Furthermore, both proteins bind lipids, and FIP5 promotes the capacity of SNX18 to tubulate membranes, which implies a role for FIP5 and SNX18 in endocytic carrier formation and/or scission. In summary, the present findings support the hypothesis that this FIP5-SNX18 complex plays a pivotal role in the polarized transport of apical proteins during apical lumen initiation in epithelial cells.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Membrane/metabolism , Endocytosis/physiology , Epithelial Cells/metabolism , Multiprotein Complexes/metabolism , Sorting Nexins/metabolism , Adaptor Proteins, Signal Transducing/genetics , Biological Transport, Active/physiology , Cell Membrane/genetics , Epithelial Cells/cytology , HeLa Cells , Humans , Morphogenesis/physiology , Multiprotein Complexes/genetics , Sorting Nexins/genetics
6.
Mol Biol Cell ; 21(17): 3041-53, 2010 Sep 01.
Article in English | MEDLINE | ID: mdl-20610657

ABSTRACT

Many proteins are retrieved to the trans-Golgi Network (TGN) from the endosomal system through several retrograde transport pathways to maintain the composition and function of the TGN. However, the molecular mechanisms involved in these distinct retrograde pathways remain to be fully understood. Here we have used fluorescence and electron microscopy as well as various functional transport assays to show that Rab11a/b and its binding protein FIP1/RCP are both required for the retrograde delivery of TGN38 and Shiga toxin from early/recycling endosomes to the TGN, but not for the retrieval of mannose-6-phosphate receptor from late endosomes. Furthermore, by proteomic analysis we identified Golgin-97 as a FIP1/RCP-binding protein. The FIP1/RCP-binding domain maps to the C-terminus of Golgin-97, adjacent to its GRIP domain. Binding of FIP1/RCP to Golgin-97 does not affect Golgin-97 recruitment to the TGN, but appears to regulate the targeting of retrograde transport vesicles to the TGN. Thus, we propose that FIP1/RCP binding to Golgin-97 is required for tethering and fusion of recycling endosome-derived retrograde transport vesicles to the TGN.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Autoantigens/metabolism , Endocytosis , Endosomes/metabolism , Membrane Proteins/metabolism , trans-Golgi Network/metabolism , Adaptor Proteins, Signal Transducing/deficiency , Adaptor Proteins, Vesicular Transport/metabolism , Endosomes/ultrastructure , Gene Knockdown Techniques , Golgi Matrix Proteins , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Membrane Glycoproteins/metabolism , Membrane Proteins/deficiency , Models, Biological , Protein Binding , Protein Interaction Mapping , Protein Transport , Receptors, Transferrin/metabolism , Recombinant Fusion Proteins/metabolism , Shiga Toxin/metabolism , rab GTP-Binding Proteins/metabolism , trans-Golgi Network/ultrastructure
7.
EMBO J ; 24(12): 2064-74, 2005 Jun 15.
Article in English | MEDLINE | ID: mdl-15920473

ABSTRACT

The Sec6/8 complex, also known as the exocyst complex, is an octameric protein complex that has been implicated in tethering of secretory vesicles to specific regions on the plasma membrane. Two subunits of the Sec6/8 complex, Exo84 and Sec5, have recently been shown to be effector targets for active Ral GTPases. However, the mechanism by which Ral proteins regulate the Sec6/8 activities remains unclear. Here, we present the crystal structure of the Ral-binding domain of Exo84 in complex with active RalA. The structure reveals that the Exo84 Ral-binding domain adopts a pleckstrin homology domain fold, and that RalA interacts with Exo84 via an extended interface that includes both switch regions. Key residues of Exo84 and RalA were found that determine the specificity of the complex interactions; these interactions were confirmed by mutagenesis binding studies. Structural and biochemical data show that Exo84 and Sec5 competitively bind to active RalA. Taken together, these results further strengthen the proposed role of RalA-regulated assembly of the Sec6/8 complex.


Subject(s)
Carrier Proteins/metabolism , Membrane Proteins/metabolism , ral GTP-Binding Proteins/metabolism , Amino Acid Sequence , Animals , Guanosine Triphosphate/metabolism , Humans , Membrane Proteins/chemistry , Mice , Molecular Sequence Data , Protein Binding/physiology , Protein Structure, Secondary , Protein Structure, Tertiary , Rats , Vesicular Transport Proteins , ral GTP-Binding Proteins/chemistry
8.
EMBO J ; 22(13): 3267-78, 2003 Jul 01.
Article in English | MEDLINE | ID: mdl-12839989

ABSTRACT

The sec6/8 complex or exocyst is an octameric protein complex that functions during cell polarization by regulating the site of exocytic vesicle docking to the plasma membrane, in concert with small GTP-binding proteins. The Sec5 subunit of the mammalian sec6/8 complex binds Ral in a GTP-dependent manner. Here we report the crystal structure of the complex between the Ral-binding domain of Sec5 and RalA bound to a non-hydrolyzable GTP analog (GppNHp) at 2.1 A resolution, providing the first structural insights into the mechanism and specificity of sec6/8 regulation. The Sec5 Ral-binding domain folds into an immunoglobulin-like beta-sandwich structure, which represents a novel fold for an effector of a GTP-binding protein. The interface between the two proteins involves a continuous antiparallel beta-sheet, similar to that found in other effector/G-protein complexes, such as Ras and Rap1A. Specific interactions unique to the RalA.Sec5 complex include Sec5 Thr11 and Arg27, and RalA Glu38, which we show are required for complex formation by isothermal titration calorimetry. Comparison of the structures of GppNHp- and GDP-bound RalA suggests a nucleotide-dependent switch mechanism for Sec5 binding.


Subject(s)
Carrier Proteins/metabolism , GTP Phosphohydrolases/metabolism , Membrane Proteins/metabolism , ral GTP-Binding Proteins , Amino Acid Sequence , Animals , GTP Phosphohydrolases/chemistry , GTP Phosphohydrolases/genetics , Humans , Membrane Proteins/chemistry , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Vesicular Transport Proteins
SELECTION OF CITATIONS
SEARCH DETAIL