Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
J Cell Sci ; 135(4)2022 02 15.
Article in English | MEDLINE | ID: mdl-35099008

ABSTRACT

Muscle stem (satellite) cells express Pax7, a key transcription factor essential for satellite cell maintenance and adult muscle regeneration. We identify the corepressor transducin-like enhancer of split-4 (TLE4) as a Pax7 interaction partner expressed in quiescent satellite cells under homeostasis. A subset of satellite cells transiently downregulate TLE4 during early time points following muscle injury. We identify these to be activated satellite cells, and that TLE4 downregulation is required for Myf5 activation and myogenic commitment. Our results indicate that TLE4 represses Pax7-mediated Myf5 transcriptional activation by occupying the -111 kb Myf5 enhancer to maintain quiescence. Loss of TLE4 function causes Myf5 upregulation, an increase in satellite cell numbers and altered differentiation dynamics during regeneration. Thus, we have uncovered a novel mechanism to maintain satellite cell quiescence and regulate muscle differentiation mediated by the corepressor TLE4.


Subject(s)
Cell Differentiation , Muscle Development , Muscle, Skeletal , Nuclear Proteins , Repressor Proteins , Cell Differentiation/genetics , Humans , Muscle Development/genetics , Muscle, Skeletal/cytology , Muscle, Skeletal/injuries , Muscular Diseases/physiopathology , Myogenic Regulatory Factor 5/genetics , Myogenic Regulatory Factor 5/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , PAX7 Transcription Factor/genetics , Repressor Proteins/genetics , Repressor Proteins/metabolism , Satellite Cells, Skeletal Muscle/cytology
2.
FASEB J ; 37(8): e23074, 2023 08.
Article in English | MEDLINE | ID: mdl-37392376

ABSTRACT

Myosin heavy chain-embryonic encoded by the Myh3 gene is a skeletal muscle-specific contractile protein expressed during mammalian development and regeneration, essential for proper myogenic differentiation and function. It is likely that multiple trans-factors are involved in this precise temporal regulation of Myh3 expression. We identify a 4230 bp promoter-enhancer region that drives Myh3 transcription in vitro during C2C12 myogenic differentiation and in vivo during muscle regeneration, including sequences both upstream and downstream of the Myh3 TATA-box that are necessary for complete Myh3 promoter activity. Using C2C12 mouse myogenic cells, we find that Zinc-finger E-box binding homeobox 1 (Zeb1) and Transducin-like Enhancer of Split 3 (Tle3) proteins are crucial trans-factors that interact and differentially regulate Myh3 expression. Loss of Zeb1 function results in earlier expression of myogenic differentiation genes and accelerated differentiation, whereas Tle3 depletion leads to reduced expression of myogenic differentiation genes and impaired differentiation. Tle3 knockdown resulted in downregulation of Zeb1, which could be mediated by increased expression of miR-200c, a microRNA that binds to Zeb1 transcript and degrades it. Tle3 functions upstream of Zeb1 in regulating myogenic differentiation since double knockdown of Zeb1 and Tle3 resulted in effects seen upon Tle3 depletion. We identify a novel E-box in the Myh3 distal promoter-enhancer region, where Zeb1 binds to repress Myh3 expression. In addition to regulation of myogenic differentiation at the transcriptional level, we uncover post-transcriptional regulation by Tle3 to regulate MyoG expression, mediated by the mRNA stabilizing Human antigen R (HuR) protein. Thus, Tle3 and Zeb1 are essential trans-factors that differentially regulate Myh3 expression and C2C12 cell myogenic differentiation in vitro.


Subject(s)
Co-Repressor Proteins , Muscle, Skeletal , Myosin Heavy Chains , Transcription Factors , Zinc Finger E-box-Binding Homeobox 1 , Animals , Humans , Mice , Cell Differentiation/genetics , Co-Repressor Proteins/genetics , Contractile Proteins , ELAV-Like Protein 1 , Muscle, Skeletal/embryology , Myosin Heavy Chains/genetics , Transcription Factors/genetics , Zinc Finger E-box-Binding Homeobox 1/genetics
3.
Development ; 147(7)2020 04 06.
Article in English | MEDLINE | ID: mdl-32094117

ABSTRACT

Myosin heavy chain-embryonic (MyHC-emb) is a skeletal muscle-specific contractile protein expressed during muscle development. Mutations in MYH3, the gene encoding MyHC-emb, lead to Freeman-Sheldon and Sheldon-Hall congenital contracture syndromes. Here, we characterize the role of MyHC-emb during mammalian development using targeted mouse alleles. Germline loss of MyHC-emb leads to neonatal and postnatal alterations in muscle fiber size, fiber number, fiber type and misregulation of genes involved in muscle differentiation. Deletion of Myh3 during embryonic myogenesis leads to the depletion of the myogenic progenitor cell pool and an increase in the myoblast pool, whereas fetal myogenesis-specific deletion of Myh3 causes the depletion of both myogenic progenitor and myoblast pools. We reveal that the non-cell-autonomous effect of MyHC-emb on myogenic progenitors and myoblasts is mediated by the fibroblast growth factor (FGF) signaling pathway, and exogenous FGF rescues the myogenic differentiation defects upon loss of MyHC-emb function in vitro Adult Myh3 null mice exhibit scoliosis, a characteristic phenotype exhibited by individuals with Freeman-Sheldon and Sheldon-Hall congenital contracture syndrome. Thus, we have identified MyHC-emb as a crucial myogenic regulator during development, performing dual cell-autonomous and non-cell-autonomous functions.This article has an associated 'The people behind the papers' interview.


Subject(s)
Cell Differentiation/genetics , Muscle Development/genetics , Muscle, Skeletal/embryology , Myosin Heavy Chains/physiology , Animals , Animals, Newborn , Cells, Cultured , Embryo, Mammalian , Gene Expression Regulation, Developmental , Mammals/embryology , Mammals/genetics , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/metabolism , Myosin Heavy Chains/genetics
4.
Dev Biol ; 449(2): 90-98, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30826400

ABSTRACT

Missense mutations in the MYH3 gene encoding myosin heavy chain-embryonic (MyHC-embryonic) have been reported to cause two skeletal muscle contracture syndromes, Freeman Sheldon Syndrome (FSS) and Sheldon Hall Syndrome (SHS). Two residues in MyHC-embryonic that are most frequently mutated, leading to FSS, R672 and T178, are evolutionarily conserved across myosin heavy chains in vertebrates and Drosophila. We generated transgenic Drosophila expressing myosin heavy chain (Mhc) transgenes with the FSS mutations and characterized the effect of their expression on Drosophila muscle structure and function. Our results indicate that expressing these mutant Mhc transgenes lead to structural abnormalities in the muscle, which increase in severity with age and muscle use. We find that flies expressing the FSS mutant Mhc transgenes in the muscle exhibit shortening of the inter-Z disc distance of sarcomeres, reduction in the Z-disc width, aberrant deposition of Z-disc proteins, and muscle fiber splitting. The ATPase activity of the three FSS mutant MHC proteins are reduced compared to wild type MHC, with the most severe reduction observed in the T178I mutation. Structurally, the FSS mutations occur close to the ATP binding pocket, disrupting the ATPase activity of the protein. Functionally, expression of the FSS mutant Mhc transgenes in muscle lead to significantly reduced climbing capability in adult flies. Thus, our findings indicate that the FSS contracture syndrome mutations lead to muscle structural defects and functional deficits in Drosophila, possibly mediated by the reduced ATPase activity of the mutant MHC proteins.


Subject(s)
Craniofacial Dysostosis/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Muscle, Skeletal/metabolism , Mutation , Myosin Heavy Chains/genetics , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Amino Acid Sequence , Animals , Animals, Genetically Modified , Craniofacial Dysostosis/parasitology , Disease Models, Animal , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Humans , Muscle Contraction/genetics , Muscle, Skeletal/pathology , Muscle, Skeletal/physiopathology , Myosin Heavy Chains/metabolism , Sarcomeres/metabolism , Sequence Homology, Amino Acid
5.
IUBMB Life ; 67(7): 472-81, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26172616

ABSTRACT

Corepressors are proteins that cannot bind DNA directly but repress transcription by interacting with partner proteins. The Groucho/Transducin-Like Enhancer of Split (TLE) are a conserved family of corepressor proteins present in animals ranging from invertebrates such as Drosophila to vertebrates such as mice and humans. Groucho/TLE proteins perform important functions throughout the life span of animals, interacting with several pathways and regulating fundamental processes such as metabolism. However, these proteins have especially crucial functions in animal development, where they are required in multiple tissues in a temporally regulated manner. In this review, we summarize the functions of the Groucho/TLE proteins during animal development, emphasizing on specific tissues where they play essential roles.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , Gene Expression Regulation, Developmental , Repressor Proteins/metabolism , Adipogenesis , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Heart/growth & development , Hematopoiesis , Humans , Kidney/growth & development , Multigene Family , Neurogenesis , Osteogenesis , Pancreas/growth & development , Repressor Proteins/genetics
6.
Development ; 138(17): 3625-37, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21828091

ABSTRACT

Muscle regeneration requires the coordinated interaction of multiple cell types. Satellite cells have been implicated as the primary stem cell responsible for regenerating muscle, yet the necessity of these cells for regeneration has not been tested. Connective tissue fibroblasts also are likely to play a role in regeneration, as connective tissue fibrosis is a hallmark of regenerating muscle. However, the lack of molecular markers for these fibroblasts has precluded an investigation of their role. Using Tcf4, a newly identified fibroblast marker, and Pax7, a satellite cell marker, we found that after injury satellite cells and fibroblasts rapidly proliferate in close proximity to one another. To test the role of satellite cells and fibroblasts in muscle regeneration in vivo, we created Pax7(CreERT2) and Tcf4(CreERT2) mice and crossed these to R26R(DTA) mice to genetically ablate satellite cells and fibroblasts. Ablation of satellite cells resulted in a complete loss of regenerated muscle, as well as misregulation of fibroblasts and a dramatic increase in connective tissue. Ablation of fibroblasts altered the dynamics of satellite cells, leading to premature satellite cell differentiation, depletion of the early pool of satellite cells, and smaller regenerated myofibers. Thus, we provide direct, genetic evidence that satellite cells are required for muscle regeneration and also identify resident fibroblasts as a novel and vital component of the niche regulating satellite cell expansion during regeneration. Furthermore, we demonstrate that reciprocal interactions between fibroblasts and satellite cells contribute significantly to efficient, effective muscle regeneration.


Subject(s)
Connective Tissue/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , Satellite Cells, Skeletal Muscle/cytology , Satellite Cells, Skeletal Muscle/metabolism , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Differentiation/genetics , Cell Differentiation/physiology , Cells, Cultured , Flow Cytometry , Fluorescent Antibody Technique , Mice , Mice, Transgenic , Muscle Development/genetics , Muscle Development/physiology , PAX7 Transcription Factor/genetics , PAX7 Transcription Factor/metabolism , Polymerase Chain Reaction , Transcription Factor 4
7.
Development ; 138(2): 371-84, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21177349

ABSTRACT

Muscle and its connective tissue are intimately linked in the embryo and in the adult, suggesting that interactions between these tissues are crucial for their development. However, the study of muscle connective tissue has been hindered by the lack of molecular markers and genetic reagents to label connective tissue fibroblasts. Here, we show that the transcription factor Tcf4 (transcription factor 7-like 2; Tcf7l2) is strongly expressed in connective tissue fibroblasts and that Tcf4(GFPCre) mice allow genetic manipulation of these fibroblasts. Using this new reagent, we find that connective tissue fibroblasts critically regulate two aspects of myogenesis: muscle fiber type development and maturation. Fibroblasts promote (via Tcf4-dependent signals) slow myogenesis by stimulating the expression of slow myosin heavy chain. Also, fibroblasts promote the switch from fetal to adult muscle by repressing (via Tcf4-dependent signals) the expression of developmental embryonic myosin and promoting (via a Tcf4-independent mechanism) the formation of large multinucleate myofibers. In addition, our analysis of Tcf4 function unexpectedly reveals a novel mechanism of intrinsic regulation of muscle fiber type development. Unlike other intrinsic regulators of fiber type, low levels of Tcf4 in myogenic cells promote both slow and fast myogenesis, thereby promoting overall maturation of muscle fiber type. Thus, we have identified novel extrinsic and intrinsic mechanisms regulating myogenesis. Most significantly, our data demonstrate for the first time that connective tissue is important not only for adult muscle structure and function, but is a vital component of the niche within which muscle progenitors reside and is a critical regulator of myogenesis.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Connective Tissue/physiology , Muscle Development/physiology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/deficiency , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Female , Fibroblasts/physiology , Gene Expression Regulation, Developmental , Green Fluorescent Proteins/metabolism , Male , Mice , Mice, Knockout , Mice, Transgenic , Muscle Development/genetics , Muscle Fibers, Fast-Twitch/metabolism , Muscle Fibers, Slow-Twitch/metabolism , Muscle, Skeletal/embryology , Muscle, Skeletal/growth & development , Muscle, Skeletal/metabolism , Pregnancy , Signal Transduction , Transcription Factor 4 , beta Catenin/metabolism
8.
FEBS J ; 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38358038

ABSTRACT

Myosin heavy chain-perinatal (MyHC-perinatal) is one of two development-specific myosin heavy chains expressed exclusively during skeletal muscle development and regeneration. The specific functions of MyHC-perinatal are unclear, although mutations are known to lead to contracture syndromes such as Trismus-pseudocamptodactyly syndrome. Here, we characterize the functions of MyHC-perinatal during skeletal muscle differentiation and regeneration. Loss of MyHC-perinatal function leads to enhanced differentiation characterized by increased expression of myogenic regulatory factors and differentiation index as well as reduced reserve cell numbers in vitro. Proteomic analysis revealed that loss of MyHC-perinatal function results in a switch from oxidative to glycolytic metabolism in myofibers, suggesting a shift from slow type I to fast type IIb fiber type, also supported by reduced mitochondrial numbers. Paracrine signals mediate the effect of loss of MyHC-perinatal function on myogenic differentiation, possibly mediated by non-apoptotic caspase-3 signaling along with enhanced levels of the pro-survival apoptosis regulator Bcl2 and nuclear factor kappa-B (NF-κB). Knockdown of MyHC-perinatal during muscle regeneration in vivo results in increased expression of the differentiation marker myogenin (MyoG) and impaired differentiation, evidenced by smaller myofibers, elevated fibrosis and reduction in the number of satellite cells. Thus, we find that MyHC-perinatal is a crucial regulator of myogenic differentiation, myofiber oxidative phenotype and regeneration.

9.
Oncogene ; 43(7): 524-538, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177411

ABSTRACT

Rhabdomyosarcoma tumor cells resemble differentiating skeletal muscle cells, which unlike normal muscle cells, fail to undergo terminal differentiation, underlying their proliferative and metastatic properties. We identify the corepressor TLE3 as a key regulator of rhabdomyosarcoma tumorigenesis by inhibiting the Wnt-pathway. Loss of TLE3 function leads to Wnt-pathway activation, reduced proliferation, decreased migration, and enhanced differentiation in rhabdomyosarcoma cells. Muscle-specific TLE3-knockout results in enhanced expression of terminal myogenic differentiation markers during normal mouse development. TLE3-knockout rhabdomyosarcoma cell xenografts result in significantly smaller tumors characterized by reduced proliferation, increased apoptosis and enhanced differentiation. We demonstrate that TLE3 interacts with and recruits the histone methyltransferase KMT1A, leading to repression of target gene activation and inhibition of differentiation in rhabdomyosarcoma. A combination drug therapy regime to promote Wnt-pathway activation by the small molecule BIO and inhibit KMT1A by the drug chaetocin led to significantly reduced tumor volume, decreased proliferation, increased expression of differentiation markers and increased survival in rhabdomyosarcoma tumor-bearing mice. Thus, TLE3, the Wnt-pathway and KMT1A are excellent drug targets which can be exploited for treating rhabdomyosarcoma tumors.


Subject(s)
Rhabdomyosarcoma , Humans , Mice , Animals , Co-Repressor Proteins/genetics , Histone Methyltransferases , Cell Differentiation/genetics , Rhabdomyosarcoma/pathology , Antigens, Differentiation , Cell Proliferation/genetics , Cell Line, Tumor
10.
EMBO Mol Med ; 15(9): e17187, 2023 09 11.
Article in English | MEDLINE | ID: mdl-37492882

ABSTRACT

Mutations in MYH3, the gene encoding the developmental myosin heavy chain-embryonic (MyHC-embryonic) skeletal muscle-specific contractile protein, cause several congenital contracture syndromes. Among these, recessive loss-of-function MYH3 mutations lead to spondylocarpotarsal synostosis (SCTS), characterized by vertebral fusions and scoliosis. We find that Myh3 germline knockout adult mice display SCTS phenotypes such as scoliosis and vertebral fusion, in addition to reduced body weight, muscle weight, myofiber size, and grip strength. Myh3 knockout mice also exhibit changes in muscle fiber type, altered satellite cell numbers and increased muscle fibrosis. A mass spectrometric analysis of embryonic skeletal muscle from Myh3 knockouts identified integrin signaling and cytoskeletal regulation as the most affected pathways. These pathways are closely connected to the mechanosensing Yes-associated protein (YAP) transcriptional regulator, which we found to be significantly activated in the skeletal muscle of Myh3 knockout mice. To test whether increased YAP signaling might underlie the musculoskeletal defects in Myh3 knockout mice, we treated these mice with CA3, a small molecule inhibitor of YAP signaling. This led to increased muscle fiber size, rescue of most muscle fiber type alterations, normalization of the satellite cell marker Pax7 levels, increased grip strength, reduced fibrosis, and decline in scoliosis in Myh3 knockout mice. Thus, increased YAP activation underlies the musculoskeletal defects seen in Myh3 knockout mice, indicating its significance as a key pathway to target in SCTS and other MYH3-related congenital syndromes.


Subject(s)
Myosin Heavy Chains , Scoliosis , Animals , Mice , Mice, Knockout , Muscle, Skeletal/metabolism , Myosin Heavy Chains/genetics , Myosin Heavy Chains/metabolism , Scoliosis/genetics , Scoliosis/congenital , Scoliosis/metabolism , Signal Transduction , Syndrome
11.
FEBS Lett ; 595(15): 2015-2033, 2021 08.
Article in English | MEDLINE | ID: mdl-34109626

ABSTRACT

Decoding of OAZ1 (Ornithine decarboxylase AntiZyme 1) mRNA, which harbours two open reading frames (ORF1 and ORF2) interrupted by a naturally occurring Premature Termination Codon (PTC), produces an 8 kDa truncated polypeptide termed Orf1p, unless the PTC is bypassed by +1 ribosomal frameshifting. In this study, we identified Orf1p as an endogenous ubiquitin-dependent substrate of the 26S proteasome both in yeast and mammalian cells. Surprisingly, we found that the ribosome-associated quality control factor Rqc1 and the ubiquitin ligase Ltn1 are critical for Orf1p degradation. In addition, the cytosolic protein quality control chaperone system Hsp70/Hsp90 and their corresponding co-chaperones Sse1, Fes1, Sti1 and Cpr7 are also required for Orf1p proteolysis. Our study finds that Orf1p, which is naturally synthesized as a result of a premature translation termination event, requires the coordinated role of both ribosome-associated and cytosolic protein quality control factors for its degradation.


Subject(s)
Peptide Chain Termination, Translational , Proteins/genetics , Ribosomes/metabolism , Animals , Codon, Terminator , Mice , Open Reading Frames , Quality Control , Saccharomyces cerevisiae/genetics
12.
Cell Death Dis ; 9(2): 237, 2018 02 14.
Article in English | MEDLINE | ID: mdl-29445192

ABSTRACT

Rhabdomyosarcoma (RMS) is a predominantly pediatric soft-tissue cancer where the tumor cells exhibit characteristics of the developing skeletal muscle, and the two most common sub-types are embryonal and alveolar RMS. Elevated activation of the receptor tyrosine kinase (RTK) MET is frequent in RMS and is thought to cause increased tumor metastasis and lack of differentiation. However, the reasons underlying dysregulated MET expression and activation in RMS are not well understood. Therefore, we explored the role of Sprouty 2 (SPRY2), a modulator of RTK signaling, in regulating MET. We identify SPRY2 as a novel MET interactor that colocalizes with and binds MET in both embryonal and alveolar RMS. We find that depletion of SPRY2 leads to MET degradation, resulting in reduced migratory and clonogenic potential, and induction of differentiation in both embryonal and alveolar RMS, outcomes that are identical to depletion of MET. Activation of the ERK/MAPK pathway, known to be crucial for regulating cell migration and whose inhibition is required for myogenic differentiation, was downregulated upon depletion of MET or SPRY2. This provides a direct connection to the decreased migration and induction of differentiation upon depletion of MET or SPRY2. Thus, these data indicate that SPRY2 interacts with MET and stabilizes it in order to maintain signaling downstream of MET, which keeps the ERK/MAPK pathway active, resulting in metastatic potential and inhibition of differentiation in RMS. Our results identify a novel mechanism by which MET signaling is stabilized in RMS, and is a potential target for therapeutic intervention in RMS.


Subject(s)
Gene Expression Regulation, Neoplastic , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Proto-Oncogene Proteins c-met/genetics , Cell Differentiation , Cell Line, Tumor , Cell Movement , Cell Proliferation , Child , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Lymphatic Metastasis , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Muscle Development/genetics , Organ Specificity , Protein Binding , Protein Stability , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rhabdomyosarcoma, Alveolar/genetics , Rhabdomyosarcoma, Alveolar/metabolism , Rhabdomyosarcoma, Alveolar/pathology , Rhabdomyosarcoma, Embryonal/genetics , Rhabdomyosarcoma, Embryonal/metabolism , Rhabdomyosarcoma, Embryonal/pathology , Signal Transduction
13.
Nat Commun ; 6: 7087, 2015 May 14.
Article in English | MEDLINE | ID: mdl-25971691

ABSTRACT

Skeletal muscle is essential for mobility, stability and whole body metabolism, and muscle loss, for instance, during sarcopenia, has profound consequences. Satellite cells (muscle stem cells) have been hypothesized, but not yet demonstrated, to contribute to muscle homeostasis and a decline in their contribution to myofibre homeostasis to play a part in sarcopenia. To test their role in muscle maintenance, we genetically labelled and ablated satellite cells in adult sedentary mice. We demonstrate via genetic lineage experiments that, even in the absence of injury, satellite cells contribute to myofibres in all adult muscles, although the extent and timing differs. However, genetic ablation experiments showed that satellite cells are not globally required to maintain myofibre cross-sectional area of uninjured adult muscle.


Subject(s)
Muscle Fibers, Skeletal/pathology , Alleles , Animals , Crosses, Genetic , Green Fluorescent Proteins/metabolism , Homeostasis , Male , Mice , Mice, Inbred C57BL , PAX7 Transcription Factor/metabolism , Regeneration , Sarcopenia/genetics , Satellite Cells, Skeletal Muscle/cytology , Time Factors
14.
Mol Cell Biol ; 31(24): 4978-93, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21986496

ABSTRACT

Apical constriction of epithelial cells is a widely used morphogenetic mechanism. In the Drosophila embryo, the apical constrictions that internalize the mesoderm are controlled by the transcription factor Twist and require intact adherens junctions and a contractile acto-myosin network. We find that adherens junctions in constricting mesodermal cells undergo extensive remodeling. A Twist target gene encoding a member of the tumor necrosis factor (TNF) receptor-associated factor (TRAF) family, Traf4, is involved in this process. While TRAFs are best known for their functions in inflammatory responses, Traf4 appears to have a different role, and its mechanism of action is poorly understood. We show that Traf4 is required for efficient apical constriction during ventral furrow formation and for proper localization of Armadillo to the apical position in constricting cells. Traf4 and Armadillo interact with each other physically and functionally. Traf4 acts in a TNF receptor- and Jun N-terminal protein kinase (JNK)-independent manner to fine-tune the assembly of adherens junctions in the invaginating mesodermal cells.


Subject(s)
Adherens Junctions/metabolism , Cell Shape , Mesoderm/cytology , TNF Receptor-Associated Factor 4/genetics , TNF Receptor-Associated Factor 4/metabolism , Animals , Animals, Genetically Modified , Armadillo Domain Proteins/metabolism , Drosophila , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Fluorescent Antibody Technique , Gastrulation , Gene Expression Regulation, Developmental , Immunoprecipitation , Mesoderm/chemistry , Morphogenesis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Sequence Analysis, Protein , Signal Transduction , Transcription Factors/metabolism , Twist-Related Protein 1/genetics , Twist-Related Protein 1/metabolism
15.
PLoS One ; 4(10): e7437, 2009 Oct 13.
Article in English | MEDLINE | ID: mdl-19823683

ABSTRACT

Genetic screens in Drosophila designed to search for loci involved in gastrulation have identified four regions of the genome that are required zygotically for the formation of the ventral furrow. For three of these, the genes responsible for the mutant phenotypes have been found. We now describe a genetic characterization of the fourth region, which encompasses the cytogenetic interval 24C3-25B, and the mapping of genes involved in gastrulation in this region. We have determined the precise breakpoints of several existing deficiencies and have generated new deficiencies. Our results show that the region contains at least three different loci associated with gastrulation effects. One maternal effect gene involved in ventral furrow formation maps at 24F but could not be identified. For a second maternal effect gene which is required for germ band extension, we identify a candidate gene, CG31660, which encodes a G protein coupled receptor. Finally, one gene acts zygotically in ventral furrow formation and we identify it as Traf4.


Subject(s)
Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Gastrulation , Alleles , Animals , Cytogenetics , Drosophila Proteins/genetics , Female , Gene Deletion , Genes, Insect , Genetic Techniques , Genomics , Heterozygote , Male , Models, Genetic , Phenotype
16.
J Cell Sci ; 122(Pt 12): 1939-46, 2009 Jun 15.
Article in English | MEDLINE | ID: mdl-19494121

ABSTRACT

Tumour necrosis factor alpha (TNFalpha) is a pro-inflammatory mediator with the capacity to induce apoptosis. An integral part of its apoptotic and inflammatory programmes is the control of cell shape through modulation of the cytoskeleton, but it is now becoming apparent that this morphogenetic function of TNF signalling is also employed outside inflammatory responses and is shared by the signalling pathways of other members of the TNF-receptor superfamily. Some proteins that are homologous to the components of the TNF signalling pathway, such as the adaptor TNF-receptor-associated factor 4 and the ectodysplasin A receptor (and its ligand and adaptors), have dedicated morphogenetic roles. The mechanism by which TNF signalling affects cell shape is not yet fully understood, but Rho-family GTPases have a central role. The fact that the components of the TNF signalling pathway are evolutionarily old suggests that an ancestral cassette from unicellular organisms has diversified its functions into partly overlapping morphogenetic, inflammatory and apoptotic roles in multicellular higher organisms.


Subject(s)
Apoptosis/physiology , Cell Shape/physiology , Tumor Necrosis Factor-alpha/physiology , Actin Cytoskeleton/physiology , Animals , Cell Shape/genetics , Cytoskeleton/physiology , Humans , Models, Biological , Receptors, Tumor Necrosis Factor/physiology , Signal Transduction/physiology , Tumor Necrosis Factor Receptor-Associated Peptides and Proteins/physiology
SELECTION OF CITATIONS
SEARCH DETAIL