Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(33): e2304943120, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37549290

ABSTRACT

Conventional dendritic cells (cDCs) are required for peripheral T cell homeostasis in lymphoid organs, but the molecular mechanism underlying this requirement has remained unclear. We here show that T cell-specific CD47-deficient (Cd47 ΔT) mice have a markedly reduced number of T cells in peripheral tissues. Direct interaction of CD47-deficient T cells with cDCs resulted in activation of the latter cells, which in turn induced necroptosis of the former cells. The deficiency and cell death of T cells in Cd47 ΔT mice required expression of its receptor signal regulatory protein α on cDCs. The development of CD4+ T helper cell-dependent contact hypersensitivity and inhibition of tumor growth by cytotoxic CD8+ T cells were both markedly impaired in Cd47 ΔT mice. CD47 on T cells thus likely prevents their necroptotic cell death initiated by cDCs and thereby promotes T cell survival and function.


Subject(s)
CD47 Antigen , CD8-Positive T-Lymphocytes , Animals , Mice , CD47 Antigen/genetics , CD47 Antigen/metabolism , CD8-Positive T-Lymphocytes/metabolism , Cell Survival , Dendritic Cells/metabolism , Necroptosis , Receptors, Immunologic/metabolism
2.
Proc Natl Acad Sci U S A ; 119(1)2022 01 04.
Article in English | MEDLINE | ID: mdl-34949714

ABSTRACT

The interaction of signal regulatory protein α (SIRPα) on macrophages with CD47 on cancer cells is thought to prevent antibody (Ab)-dependent cellular phagocytosis (ADCP) of the latter cells by the former. Blockade of the CD47-SIRPα interaction by Abs to CD47 or to SIRPα, in combination with tumor-targeting Abs such as rituximab, thus inhibits tumor formation by promoting macrophage-mediated ADCP of cancer cells. Here we show that monotherapy with a monoclonal Ab (mAb) to SIRPα that also recognizes SIRPß1 inhibited tumor formation by bladder and mammary cancer cells in mice, with this inhibitory effect being largely dependent on macrophages. The mAb to SIRPα promoted polarization of tumor-infiltrating macrophages toward an antitumorigenic phenotype, resulting in the killing and phagocytosis of cancer cells by the macrophages. Ablation of SIRPα in mice did not prevent the inhibitory effect of the anti-SIRPα mAb on tumor formation or its promotion of the cancer cell-killing activity of macrophages, however. Moreover, knockdown of SIRPß1 in macrophages attenuated the stimulatory effect of the anti-SIRPα mAb on the killing of cancer cells, whereas an mAb specific for SIRPß1 mimicked the effect of the anti-SIRPα mAb. Our results thus suggest that monotherapy with Abs to SIRPα/SIRPß1 induces antitumorigenic macrophages and thereby inhibits tumor growth and that SIRPß1 is a potential target for cancer immunotherapy.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Antineoplastic Agents/pharmacology , Immunotherapy/methods , Macrophages/metabolism , Receptors, Cell Surface/metabolism , Receptors, Immunologic/metabolism , Animals , Antibodies, Monoclonal/pharmacology , CD47 Antigen/metabolism , Cell Line, Tumor , Mice , Receptors, Cell Surface/genetics , Receptors, Immunologic/genetics , Rituximab , Treatment Outcome , Urinary Bladder
3.
Cancer Sci ; 114(5): 1871-1881, 2023 May.
Article in English | MEDLINE | ID: mdl-36788737

ABSTRACT

Langerhans cell histiocytosis (LCH) is a rare neoplastic disorder characterized by inflammatory lesions arising from the anomalous accumulation of pathogenic CD1a+ CD207+ dendritic cells (DCs). SIRPα is a transmembrane protein highly expressed in myeloid cells such as DCs and macrophages. Here we show that SIRPα is a potential therapeutic target for LCH. We found that SIRPα is expressed in CD1a+ cells of human LCH lesions as well as in CD11c+ DCs in the spleen, liver, and lung of a mouse model of LCH (BRAFV600ECD11c mouse), in which an LCH-associated active form of human BRAF is expressed in a manner dependent on the mouse Cd11c promoter. BRAFV600ECD11c mice manifested markedly increased numbers of CD4+ T cells, regulatory T cells, and macrophages as well as of CD11c+ MHCII+ DCs in the spleen. Monotherapy with a mAb to SIRPα greatly reduced the percentage of CD11c+ MHCII+ DCs in peripheral blood, LCH-like lesion size in the liver, and the number of CD11c+ MHCII+ DCs in the spleen of the mutant mice. Moreover, this mAb promoted macrophage-mediated phagocytosis of CD11c+ DCs from BRAFV600ECD11c mice, whereas it had no effects on the viability or CCL19-dependent migration of such CD11c+ DCs or on their expression of the chemokine genes Ccl5, Ccl20, Cxcl11, and Cxcl12. Our results thus suggest that anti-SIRPα monotherapy is a promising approach to the treatment of LCH that is dependent in part on the promotion of the macrophage-mediated killing of LCH cells.


Subject(s)
Histiocytosis, Langerhans-Cell , Animals , Humans , Mice , Histiocytosis, Langerhans-Cell/drug therapy , Histiocytosis, Langerhans-Cell/genetics , Histiocytosis, Langerhans-Cell/metabolism , Spleen/metabolism
4.
PLoS Pathog ; 16(7): e1008609, 2020 07.
Article in English | MEDLINE | ID: mdl-32702057

ABSTRACT

Primary infection of human herpesvirus 6B (HHV-6B) occurs in infants after the decline of maternal immunity and causes exanthema subitum accompanied by a high fever, and it occasionally develops into encephalitis resulting in neurological sequelae. There is no effective prophylaxis for HHV-6B, and its development is urgently needed. The glycoprotein complex gH/gL/gQ1/gQ2 (called 'tetramer of HHV-6B') on the virion surface is a viral ligand for its cellular receptor human CD134, and their interaction is thus essential for virus entry into the cells. Herein we examined the potency of the tetramer as a vaccine candidate against HHV-6B. We designed a soluble form of the tetramer by replacing the transmembrane domain of gH with a cleavable tag, and the tetramer was expressed by a mammalian cell expression system. The expressed recombinant tetramer is capable of binding to hCD134. The tetramer was purified to homogeneity and then administered to mice with aluminum hydrogel adjuvant and/or CpG oligodeoxynucleotide adjuvant. After several immunizations, humoral and cellular immunity for HHV-6B was induced in the mice. These results suggest that the tetramer together with an adjuvant could be a promising candidate HHV-6B vaccine.


Subject(s)
Exanthema Subitum/immunology , Herpesvirus Vaccines/immunology , Viral Envelope Proteins/immunology , Adjuvants, Immunologic/pharmacology , Animals , Exanthema Subitum/virology , Herpesvirus 6, Human , Humans , Mice , Mice, Inbred BALB C
5.
Cancer Sci ; 112(1): 16-21, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33073467

ABSTRACT

The turnover of intestinal epithelial cells (IECs) is relatively rapid (3-5 days in mouse and human), and this short existence and other aspects of the homeostasis of IECs are tightly regulated by various signaling pathways including Wnt-ß-catenin signaling. Dysregulation of IEC homeostasis likely contributes to the development of intestinal inflammation and intestinal cancer. The roles of receptor protein tyrosine kinases and their downstream signaling molecules such as Src family kinases, Ras, and mTOR in homeostatic regulation of IEC turnover have recently been evaluated. These signaling pathways have been found to promote not only the proliferation of IECs but also the differentiation of progenitor cells into secretory cell types such as goblet cells. Of note, signaling by Src family kinases, Ras, and mTOR has been shown to oppose the Wnt-ß-catenin signaling pathway and thereby to limit the number of Lgr5+ intestinal stem cells or of Paneth cells. Such cross-talk of signaling pathways is important not only for proper regulation of IEC homeostasis but for the development of intestinal tumors and potentially for anticancer therapy.


Subject(s)
Carcinogenesis/metabolism , Epithelial Cells/metabolism , Homeostasis/physiology , Intestines/pathology , TOR Serine-Threonine Kinases/metabolism , ras Proteins/metabolism , src-Family Kinases/metabolism , Animals , Carcinogenesis/pathology , Epithelial Cells/pathology , Humans
6.
Eur J Immunol ; 50(10): 1560-1570, 2020 10.
Article in English | MEDLINE | ID: mdl-32438469

ABSTRACT

Signal regulatory protein α (SIRPα) is expressed predominantly on type 2 conventional dendritic cells (cDC2s) and macrophages. We previously showed that mice systemically lacking SIRPα were resistant to experimental autoimmune encephalomyelitis (EAE). Here, we showed that deletion of SIRPα in CD11c+ cells of mice (SirpaΔDC mice) also markedly ameliorated the development of EAE. The frequency of cDCs and migratory DCs (mDCs), as well as that of Th17 cells, were significantly reduced in draining lymph nodes of SirpaΔDC mice at the onset of EAE. In addition, we found the marked reduction in the number of Th17 cells and DCs in the CNS of SirpaΔDC mice at the peak of EAE. Whereas inducible systemic ablation of SIRPα before the induction of EAE prevented disease development, that after EAE onset did not ameliorate the clinical signs of disease. We also found that EAE development was partially attenuated in mice with CD11c+ cell-specific ablation of CD47, a ligand of SIRPα. Collectively, our results suggest that SIRPα expressed on CD11c+ cells, such as cDC2s and mDCs, is indispensable for the development of EAE, being required for the priming of self-reactive Th17 cells in the periphery as well as for the inflammation in the CNS.


Subject(s)
Central Nervous System/immunology , Dendritic Cells/immunology , Encephalomyelitis, Autoimmune, Experimental/immunology , Inflammation/immunology , Multiple Sclerosis/immunology , Receptors, Immunologic/metabolism , Th17 Cells/immunology , Animals , CD11c Antigen/metabolism , Cell Differentiation , Cells, Cultured , Disease Models, Animal , Humans , Lymphocyte Activation , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Immunologic/genetics
7.
Biochem Biophys Res Commun ; 569: 72-78, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34237430

ABSTRACT

The membrane protein SIRPα is a cold stress-responsive signaling molecule in neurons. Cold stress directly induces tyrosine phosphorylation of SIRPα in its cytoplasmic region, and phosphorylated SIRPα is involved in regulating experience-dependent behavioral changes in mice. Here, we examined the mechanism of cold stress-induced SIRPα phosphorylation in vitro and in vivo. The levels of activated Src family protein tyrosine kinases (SFKs), which phosphorylate SIRPα, were not increased by lowering the temperature in cultured neurons. Although the SFK inhibitor dasatinib markedly reduced SIRPα phosphorylation, low temperature induced an increase in SIRPα phosphorylation even in the presence of dasatinib, suggesting that SFK activation is not required for low temperature-induced SIRPα phosphorylation. However, in the presence of pervanadate, a potent inhibitor of protein tyrosine phosphatases (PTPases), SIRPα phosphorylation was significantly reduced by lowering the temperature, suggesting that either the inactivation of PTPase(s) that dephosphorylate SIRPα or increased protection of phosphorylated SIRPα from the PTPase activity is important for low temperature-induced SIRPα phosphorylation. Inactivation of PTPase Shp2 by the allosteric Shp2 inhibitor SHP099, but not by the competitive inhibitor NSC-87877, reduced SIRPα phosphorylation in cultured neurons. Shp2 knockout also reduced SIRPα phosphorylation in the mouse brain. Our data suggest that Shp2, but not SFKs, positively regulates cold stress-induced SIRPα phosphorylation in a PTPase activity-independent manner.


Subject(s)
Cold Temperature , Neurons/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Receptors, Immunologic/metabolism , Tyrosine/metabolism , Animals , Cells, Cultured , Cold-Shock Response , Dasatinib/pharmacology , Immunoblotting , Mice, Knockout , Mice, Transgenic , Neurons/cytology , Neurons/drug effects , Phosphorylation/drug effects , Piperidines/pharmacology , Protein Kinase Inhibitors/pharmacology , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Pyrimidines/pharmacology
8.
J Virol ; 94(6)2020 02 28.
Article in English | MEDLINE | ID: mdl-31852793

ABSTRACT

Human herpesvirus 6B (HHV-6B), a T-lymphotropic virus, infects almost exclusively humans. An animal model of HHV-6B has not been available. Here, we report the first animal model to mimic HHV-6B pathogenesis; the model is based on humanized mice in which human immune cells were engrafted and maintained. For HHV-6B replication, adequate human T-cell activation (which becomes susceptible to HHV-6B) is necessary in this murine model. Here, we found that an additional transfer of human mononuclear cells to humanized mice resulted in an explosive proliferation of human activated T cells, which could be representative of graft-versus-host disease (GVHD) because the primary transfer of human cells was not sufficient to increase the number and ratio of human T cells. Mice infected with HHV-6B became weak and/or died approximately 7 to 14 days later. Quantitative PCR analysis revealed that the spleen and lungs were the major sites of HHV-6B replication in this model, and this was corroborated by the detection of viral proteins in these organs. Histological analysis also revealed the presence of megakaryocytes, indicating HHV-6B infection. Multiplex analysis of cytokines/chemokines in sera from the infected mice showed secretions of human cytokines/chemokines as reported for both in vitro infection and clinical samples, indicating that the secreted cytokines could affect pathogenesis. This is the first animal model showing HHV-6B pathogenesis, and it will be useful for elucidating the pathogenicity of HHV-6B, which is related to GVHD and idiopathic pneumonia syndrome.IMPORTANCE Human herpesvirus 6B (HHV-6B) is a ubiquitous virus that establishes lifelong latent infection only in humans, and the infection can reactivate, with severe complications that cause major problems. A small-animal model of HHV-6B infection has thus been desired for research regarding the pathogenicity of HHV-6B and the development of antiviral agents. We generated humanized mice by transplantation with human hematopoietic stem cells, and here, we modified the model by providing an additional transfer of human mononuclear cells, providing the proper conditions for efficient HHV-6B infection. This is the first humanized mouse model to mimic HHV-6B pathogenesis, and it has great potential for research into the in vivo pathogenesis of HHV-6B.


Subject(s)
Graft vs Host Disease/immunology , Herpesvirus 6, Human/immunology , Pneumonia, Viral/immunology , Roseolovirus Infections/immunology , Animals , Cell Line , Disease Models, Animal , Graft vs Host Disease/pathology , Graft vs Host Disease/virology , Humans , Megakaryocytes/immunology , Megakaryocytes/pathology , Megakaryocytes/virology , Mice , Mice, Knockout , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Roseolovirus Infections/pathology , Syndrome , T-Lymphocytes/immunology , T-Lymphocytes/pathology , T-Lymphocytes/virology
9.
Eur J Immunol ; 49(9): 1364-1371, 2019 09.
Article in English | MEDLINE | ID: mdl-31099900

ABSTRACT

Nonhematopoietic stromal cells contribute to the organization and homeostasis of secondary lymphoid organs by producing cytokines and chemokines. The development and maintenance of these stromal cells are thought to be regulated by innate immune cells. Indeed, we recently showed that signal regulatory protein α (SIRPα)-positive dendritic cells (DCs) are essential for the proliferation and survival of podoplanin (Pdpn)-positive fibroblastic reticular cells (FRCs) in mouse spleen. We have now established an in vitro culture system for lymph node stromal cells (LNSCs) isolated from mouse peripheral LNs. Activated DCs and TNF-α each promoted the proliferation of cultured LNSCs, most of which were found to be Pdpn+ FRCs. Furthermore, ablation of SIRPα in CD11c+ cells attenuated this effect of DCs on LNSC proliferation. Transplantation of activated DCs together with cultured LNSCs into the renal subcapsular space markedly increased the number of ER-TR7+ stromal cells as well as induced the accumulation of T cells and increased the expression of Ccl19 in the transplants. Ablation of SIRPα in CD11c+ cells greatly impaired the development of LN-like structure in the transplants. Our findings thus suggest that SIRPα+ DCs are important for the proliferation and differentiation of Pdpn+ FRCs in peripheral LNs.


Subject(s)
Dendritic Cells/immunology , Fibroblasts/immunology , Lymph Nodes/immunology , Receptors, Immunologic/immunology , Animals , CD11c Antigen/immunology , Cell Differentiation/immunology , Cell Proliferation/physiology , Cells, Cultured , Homeostasis/immunology , Immunity, Innate/immunology , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Signal Transduction/immunology , Stromal Cells/immunology , T-Lymphocytes/immunology
10.
Proc Natl Acad Sci U S A ; 114(47): E10151-E10160, 2017 11 21.
Article in English | MEDLINE | ID: mdl-29109283

ABSTRACT

In secondary lymphoid organs, development and homeostasis of stromal cells such as podoplanin (Pdpn)-positive fibroblastic reticular cells (FRCs) are regulated by hematopoietic cells, but the cellular and molecular mechanisms of such regulation have remained unclear. Here we show that ablation of either signal regulatory protein α (SIRPα), an Ig superfamily protein, or its ligand CD47 in conventional dendritic cells (cDCs) markedly reduced the number of CD4+ cDCs as well as that of Pdpn+ FRCs and T cells in the adult mouse spleen. Such ablation also impaired the survival of FRCs as well as the production by CD4+ cDCs of tumor necrosis factor receptor (TNFR) ligands, including TNF-α, which was shown to promote the proliferation and survival of Pdpn+ FRCs. CD4+ cDCs thus regulate the steady-state homeostasis of FRCs in the adult spleen via the production of TNFR ligands, with the CD47-SIRPα interaction in cDCs likely being indispensable for such regulation.


Subject(s)
Dendritic Cells/immunology , Fibroblasts/immunology , Homeostasis/immunology , Receptors, Immunologic/immunology , Receptors, Tumor Necrosis Factor, Type I/immunology , Spleen/immunology , Animals , CD4 Antigens/genetics , CD4 Antigens/immunology , CD47 Antigen/genetics , CD47 Antigen/immunology , Cell Survival , Dendritic Cells/cytology , Fibroblasts/cytology , Gene Expression Regulation , Homeostasis/genetics , Lymph Nodes/cytology , Lymph Nodes/immunology , Membrane Glycoproteins/genetics , Membrane Glycoproteins/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Immunologic/genetics , Receptors, Tumor Necrosis Factor, Type I/genetics , Signal Transduction , Spleen/cytology , T-Lymphocytes/cytology , T-Lymphocytes/immunology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/immunology
11.
J Neuroinflammation ; 16(1): 277, 2019 Dec 28.
Article in English | MEDLINE | ID: mdl-31883525

ABSTRACT

BACKGROUND: Recovery of function from traumatic nerve injury depends on the ability of severed axons to grow/regenerate back to their target tissues. This is achieved by successfully crossing the lesion site where physical impact severed axons, determined by the type of trauma, followed by successfully growing throughout the Wallerian degenerating nerve segment located distal to and beyond the lesion site, determined by the nature of Wallerian degeneration. The protracted removal of myelin debris in Wallerian degeneration, which leads residual myelin debris to slow down axon growth, impedes recovery of function. We focused in this study on mechanism(s) that delay the removal of myelin debris in Wallerian degeneration and so impede recovery. Previously, we showed that myelin debris inhibited its own phagocytosis in primary cultured macrophages and microglia as CD47 on myelin ligated SIRPα (signal regulatory protein-α) on phagocytes, and sequentially, SIRPα generated "don't eat me" signaling. We also demonstrated that serum inhibited phagocytosis in a SIRPα-dependent manner. Herein, we aimed to determine whether SIRPα-dependent inhibition of phagocytosis in macrophages impedes the in vivo removal of myelin debris in Wallerian degeneration, further leading to impaired healing. METHODS: Using SIRPα null (SIRPα-/-) and littermate wild-type (SIRPα+/+) mice, we studied the recovery of sensory and motor functions from nerve injury and, further, axon regeneration, SIRPα expression, myelin debris removal, and the phagocytic capacity and presence of macrophages in Wallerian degeneration. RESULTS: Myelin debris removal, axon regeneration, and the recovery of functions were all faster in SIRPα-/- mice than in wild-type mice. Between the two cell types that mostly scavenge myelin debris, macrophages but not Schwann cells expressed SIRPα in wild-type mice, and furthermore, SIRPα-/- macrophages phagocytosed significantly more than wild-type macrophages. CONCLUSIONS: Our findings suggest an intrinsic normally occurring SIRPα-dependent mechanism that impedes the in vivo removal of myelin debris in Wallerian degeneration by inhibiting the phagocytosis of myelin debris in macrophages, hence preventing fast growing axons from fully implementing their regenerative potential. Thus, accelerating the removal of myelin debris by eliminating SIRPα-dependent inhibition of phagocytosis will most likely advance recovery of functions from nerve injury.


Subject(s)
Nerve Regeneration/physiology , Peripheral Nerve Injuries/pathology , Phagocytosis/physiology , Receptors, Immunologic/metabolism , Wallerian Degeneration/metabolism , Animals , Axons/metabolism , Axons/pathology , Macrophages/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin Sheath/pathology , Peripheral Nerve Injuries/metabolism , Recovery of Function/physiology , Wallerian Degeneration/pathology
12.
Cancer Sci ; 109(8): 2349-2357, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29873856

ABSTRACT

Tumor cells evade immune surveillance through direct or indirect interactions with various types of immune cell, with much recent attention being focused on modifying immune cell responses as the basis for the development of new cancer treatments. Signal regulatory protein α (SIRPα) and CD47 are both transmembrane proteins that interact with each other and constitute a cell-cell communication system. SIRPα is particularly abundant in myeloid cells such as macrophages and dendritic cells, whereas CD47 is expressed ubiquitously and its expression level is elevated in cancer cells. Recent studies have shown that blockade of CD47-SIRPα interaction enhances the phagocytic activity of phagocytes such as macrophages toward tumor cells in vitro as well as resulting in the efficient eradication of tumor cells in a variety of xenograft or syngeneic mouse models of cancer. Moreover, CD47 blockade has been shown to promote the stimulation of tumor-specific cytotoxic T cells by macrophages or dendritic cells. Biological agents, such as Abs and recombinant proteins, that target human CD47 or SIRPα have been developed and are being tested in preclinical models of human cancer or in clinical trials with cancer patients. Preclinical studies have also suggested that CD47 or SIRPα blockade may have a synergistic antitumor effect in combination with immune checkpoint inhibitors that target the adaptive immune system. Targeting of the CD47-SIRPα signaling system is thus a promising strategy for cancer treatment based on modulation of both innate and acquired immune responses to tumor cells.


Subject(s)
CD47 Antigen/immunology , Neoplasms/immunology , Neoplasms/therapy , Receptors, Immunologic/immunology , Adaptive Immunity/immunology , Animals , Humans , Immunotherapy/methods
13.
Cancer Sci ; 109(5): 1300-1308, 2018 May.
Article in English | MEDLINE | ID: mdl-29473266

ABSTRACT

Interaction of signal regulatory protein α (SIRPα) expressed on the surface of macrophages with its ligand CD47 expressed on target cells negatively regulates phagocytosis of the latter cells by the former. We recently showed that blocking Abs to mouse SIRPα enhanced both the Ab-dependent cellular phagocytosis (ADCP) activity of mouse macrophages for Burkitt's lymphoma Raji cells opsonized with an Ab to CD20 (rituximab) in vitro as well as the inhibitory effect of rituximab on the growth of tumors formed by Raji cells in nonobese diabetic (NOD)/SCID mice. However, the effects of blocking Abs to human SIRPα in preclinical cancer models have remained unclear given that such Abs have failed to interact with endogenous SIRPα expressed on macrophages of immunodeficient mice. With the use of Rag2-/- γc-/- mice harboring a transgene for human SIRPα under the control of human regulatory elements (hSIRPα-DKO mice), we here show that a blocking Ab to human SIRPα significantly enhanced the ADCP activity of macrophages derived from these mice for human cancer cells. The anti-human SIRPα Ab also markedly enhanced the inhibitory effect of rituximab on the growth of tumors formed by Raji cells in hSIRPα-DKO mice. Our results thus suggest that the combination of Abs to human SIRPα with therapeutic Abs specific for tumor antigens warrants further investigation for potential application to cancer immunotherapy. In addition, humanized mice, such as hSIRPα-DKO mice, should prove useful for validation of the antitumor effects of checkpoint inhibitors before testing in clinical trials.


Subject(s)
Antigens, Differentiation/immunology , Antineoplastic Agents, Immunological/administration & dosage , Burkitt Lymphoma/drug therapy , Receptors, Immunologic/immunology , Rituximab/administration & dosage , Animals , Antigens, Differentiation/genetics , Antineoplastic Agents, Immunological/pharmacology , Burkitt Lymphoma/genetics , Burkitt Lymphoma/immunology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Humans , Immunotherapy , Macrophages/cytology , Macrophages/immunology , Mice , Phagocytosis , Receptors, Immunologic/genetics , Rituximab/pharmacology , Treatment Outcome , Xenograft Model Antitumor Assays
14.
Biochem Biophys Res Commun ; 504(1): 109-114, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30173891

ABSTRACT

Intestinal epithelial cells (IECs) play a pivotal role in the maintenance of the integrity and barrier function of the intestinal epithelium. Dysfunctions of IECs are thought to participate in the disruption of the intestinal epithelial barrier, resulting in gastrointestinal diseases, such as colitis and colorectal cancer. Here we show that IEC-specific COOH-terminal Src kinase (Csk)-deficient mice (Csk CKO mice) manifested the increased susceptibility to dextran sodium sulfate (DSS)-induced colitis, a model of inflammatory bowel disease. DSS-treated Csk CKO mice also exhibited the significantly elevated intestinal permeability. Following DSS treatment, Csk CKO mice exhibited the higher proliferative activity of colonic epithelial cells and the increased number of apoptotic cells in the colon compared with that apparent for control mice. Moreover, the abundance of the tight junction protein occludin, which regulates cell-cell adhesion as well as epithelial permeability, was markedly reduced in the colon of DSS-treated Csk CKO mice. These results thus suggest that Csk in IECs plays important roles in the regulation of the intestinal epithelial barrier function and protection against colitis.


Subject(s)
Colitis/metabolism , Intestinal Mucosa/metabolism , src-Family Kinases/physiology , Adherens Junctions/metabolism , Animals , Apoptosis , CSK Tyrosine-Protein Kinase , Cell Proliferation , Colitis/chemically induced , Colitis/pathology , Colon/metabolism , Dextran Sulfate , Intestinal Mucosa/cytology , Male , Mice , Mice, Knockout , Permeability , Tight Junction Proteins/metabolism , src-Family Kinases/genetics
15.
Biochem Biophys Res Commun ; 498(4): 824-829, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29530528

ABSTRACT

In the mouse olfactory bulb (OB), interneurons such as granule cells and periglomerular cells are continuously replaced by adult-born neurons, which are generated in the subventricular zone (SVZ) of the brain. We have now investigated the role of commensal bacteria in regulation of such neuronal cell turnover in the adult mouse brain. Administration of mixture of antibiotics to specific pathogen-free (SPF) mice markedly attenuated the incorporation of bromodeoxyuridine (BrdU) into the SVZ cells. The treatment with antibiotics also reduced newly generated BrdU-positive neurons in the mouse OB. In addition, the incorporation of BrdU into the SVZ cells of germ-free (GF) mice was markedly reduced compared to that apparent for SPF mice. In contrast, the reduced incorporation of BrdU into the SVZ cells of GF mice was recovered by their co-housing with SPF mice, suggesting that commensal bacteria promote the incorporation of BrdU into the SVZ cells. Finally, we found that administration of ampicillin markedly attenuated the incorporation of BrdU into the SVZ cells of SPF mice. Our results thus suggest that ampicillin-sensitive commensal bacteria regulate the neurogenesis in the SVZ of adult mouse brain.


Subject(s)
Bacterial Physiological Phenomena , Lateral Ventricles/growth & development , Lateral Ventricles/microbiology , Neurogenesis , Olfactory Bulb/growth & development , Olfactory Bulb/microbiology , Symbiosis , Ampicillin/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Bacteria/metabolism , Bacterial Physiological Phenomena/drug effects , Interneurons/cytology , Interneurons/microbiology , Male , Mice , Mice, Inbred C57BL , Neurons/cytology , Neurons/microbiology
16.
Proc Natl Acad Sci U S A ; 112(31): E4264-71, 2015 Aug 04.
Article in English | MEDLINE | ID: mdl-26195794

ABSTRACT

Intestinal epithelial cells contribute to regulation of intestinal immunity in mammals, but the detailed molecular mechanisms of such regulation have remained largely unknown. Stomach-cancer-associated protein tyrosine phosphatase 1 (SAP-1, also known as PTPRH) is a receptor-type protein tyrosine phosphatase that is localized specifically at microvilli of the brush border in gastrointestinal epithelial cells. Here we show that SAP-1 ablation in interleukin (IL)-10-deficient mice, a model of inflammatory bowel disease, resulted in a marked increase in the severity of colitis in association with up-regulation of mRNAs for various cytokines and chemokines in the colon. Tyrosine phosphorylation of carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 20, an intestinal microvillus-specific transmembrane protein of the Ig superfamily, was greatly increased in the intestinal epithelium of the SAP-1-deficient animals, suggesting that this protein is a substrate for SAP-1. Tyrosine phosphorylation of CEACAM20 by the protein tyrosine kinase c-Src and the consequent association of CEACAM20 with spleen tyrosine kinase (Syk) promoted the production of IL-8 in cultured cells through the activation of nuclear factor-κB (NF-κB). In addition, SAP-1 and CEACAM20 were found to form a complex through interaction of their ectodomains. SAP-1 and CEACAM20 thus constitute a regulatory system through which the intestinal epithelium contributes to intestinal immunity.


Subject(s)
Cell Adhesion Molecules/metabolism , Colitis/enzymology , Colitis/prevention & control , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Receptor-Like Protein Tyrosine Phosphatases, Class 3/metabolism , Animals , Cell Count , Chemokines/genetics , Chemokines/metabolism , Colitis/pathology , Colon/pathology , Female , Goblet Cells/metabolism , Goblet Cells/pathology , HEK293 Cells , Humans , Interleukin-10/deficiency , Interleukin-10/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , NF-kappa B/metabolism , Phosphorylation , Phosphotyrosine/metabolism , Protein Binding , Protein Transport , Protein-Tyrosine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor-Like Protein Tyrosine Phosphatases, Class 3/deficiency , Syk Kinase , src Homology Domains , src-Family Kinases/metabolism
17.
J Biol Chem ; 290(7): 3894-909, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25538234

ABSTRACT

Macrophages are vital to innate immunity and express pattern recognition receptors and integrins for the rapid detection of invading pathogens. Stimulation of Dectin-1 and complement receptor 3 (CR3) activates Erk- and Akt-dependent production of reactive oxygen species (ROS). Shp2, a protein-tyrosine phosphatase encoded by Ptpn11, promotes activation of Ras-Erk and PI3K-Akt and is crucial for hematopoietic cell function; however, no studies have examined Shp2 function in particulate-stimulated ROS production. Maximal Dectin-1-stimulated ROS production corresponded kinetically to maximal Shp2 and Erk phosphorylation. Bone marrow-derived macrophages (BMMs) from mice with a conditionally deleted allele of Ptpn11 (Shp2(flox/flox);Mx1Cre+) produced significantly lower ROS levels compared with control BMMs. Although YFP-tagged phosphatase dead Shp2-C463A was strongly recruited to the early phagosome, its expression inhibited Dectin-1- and CR3-stimulated phospho-Erk and ROS levels, placing Shp2 phosphatase function and Erk activation upstream of ROS production. Further, BMMs expressing gain of function Shp2-D61Y or Shp2-E76K and peritoneal exudate macrophages from Shp2D61Y/+;Mx1Cre+ mice produced significantly elevated levels of Dectin-1- and CR3-stimulated ROS, which was reduced by pharmacologic inhibition of Erk. SIRPα (signal regulatory protein α) is a myeloid inhibitory immunoreceptor that requires tyrosine phosphorylation to exert its inhibitory effect. YFP-Shp2C463A-expressing cells have elevated phospho-SIRPα levels and an increased Shp2-SIRPα interaction compared with YFP-WT Shp2-expressing cells. Collectively, these findings indicate that Shp2 phosphatase function positively regulates Dectin-1- and CR3-stimulated ROS production in macrophages by dephosphorylating and thus mitigating the inhibitory function of SIRPα and by promoting Erk activation.


Subject(s)
Macrophages/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/physiology , Reactive Oxygen Species/metabolism , Respiratory Burst/physiology , Animals , Blotting, Western , Cells, Cultured , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Fluorescent Antibody Technique , Immunoprecipitation , Integrases/metabolism , Lectins, C-Type/metabolism , Macrophages/cytology , Male , Mice , Mice, Knockout , Phagocytosis , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tyrosine/metabolism
18.
Biochem Biophys Res Commun ; 478(1): 268-273, 2016 09 09.
Article in English | MEDLINE | ID: mdl-27422603

ABSTRACT

Normal differentiation of bone forming osteoblasts is a prerequisite for maintenance of skeletal health and is dependent on intricate cellular signaling pathways, including the essential transcription factor Runx2. The cell surface glycoprotein CD47 and its receptor signal regulatory protein alpha (SIRPα) have both been suggested to regulate bone cell differentiation. Here we investigated osteoblastic differentiation of bone marrow stromal cells from SIRPα mutant mice lacking the cytoplasmic signaling domain of SIRPα. An impaired osteoblastogenesis in SIRPα-mutant cell cultures was demonstrated by lower alkaline phosphatase activity and less mineral formation compared to wild-type cultures. This reduced osteoblastic differentiation potential in SIRPα-mutant stromal cells was associated with a significantly reduced expression of Runx2, osterix, osteocalcin, and alkaline phosphatase mRNA, as well as a reduced phosphorylation of SHP-2 and Akt2, as compared with that in wild-type stromal cells. Addition of a PI3K-inhibitor to wild-type stromal cells could mimic the impaired osteoblastogenesis seen in SIRPα-mutant cells. In conclusion, our data suggest that SIRPα signaling through SHP-2-PI3K-Akt2 strongly influences osteoblast differentiation from bone marrow stromal cells.


Subject(s)
Mesenchymal Stem Cells/metabolism , Osteoblasts/cytology , Osteoblasts/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Immunologic/metabolism , Animals , Cell Differentiation/physiology , Cells, Cultured , Down-Regulation/physiology , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Osteogenesis/physiology , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Signal Transduction/physiology
19.
Genes Cells ; 20(7): 578-89, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25908210

ABSTRACT

Carcinoembryonic antigen-related cell adhesion molecule (CEACAM) 1 and CEACAM20, immunoglobulin superfamily members, are predominantly expressed in intestinal epithelial cells (IECs) and co-localized at the apical surface of these cells. We here showed that the expression of mouse CEACAM1 and CEACAM20 at both mRNA and protein levels was markedly reduced in IECs of the small intestine by the treatment of mice with antibiotics against Gram-positive bacteria. The expression of both proteins was also decreased in IECs of the small intestine from germ-free mice, compared with that from control specific-pathogen-free mice. Exposure of intestinal organoids to IFN-γ markedly increased the expression of either CEACAM1 or CEACAM20, whereas the exposure to TNF-α increased the expression of the former protein, but not that of the latter. In contrast, the expression of CEACAM20, but not of CEACAM1, in intestinal organoids was markedly increased by exposure to butyrate, a short-chain fatty acid produced by bacterial fermentation in the intestine. Collectively, our results suggest that Gram-positive bacteria promote the mRNA expression of CEACAM1 or CEACAM20 in the small intestine. Inflammatory cytokines or butyrate likely participates in such effects of commensal bacteria.


Subject(s)
Carcinoembryonic Antigen/metabolism , Cell Adhesion Molecules/metabolism , Gene Expression Regulation , Gram-Positive Bacteria/metabolism , Intestine, Small/metabolism , RNA, Messenger/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Butyrates/metabolism , Carcinoembryonic Antigen/genetics , Cell Adhesion Molecules/genetics , Epithelial Cells/metabolism , Fatty Acids, Volatile/metabolism , Gram-Positive Bacteria/drug effects , Interferon-gamma/metabolism , Intestinal Mucosa/metabolism , Intestine, Small/cytology , Intestine, Small/microbiology , Intestines/cytology , Intestines/microbiology , Mice, Inbred C57BL , Tumor Necrosis Factor-alpha/metabolism
20.
Genes Cells ; 20(6): 451-63, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25818708

ABSTRACT

Signal regulatory protein α (SIRPα), an immunoglobulin superfamily protein that is expressed predominantly in myeloid lineage cells such as dendritic cells (DCs) or macrophages, mediates cell-cell signaling. In the immune system, SIRPα is thought to be important for homeostasis of DCs, but it remains unclear whether SIRPα intrinsic to DCs is indeed indispensable for such functional role. Thus, we here generated the mice, in which SIRPα was specifically ablated in CD11c(+) DCs (Sirpa(Δ) (DC) ). Sirpa(Δ) (DC) mice manifested a marked reduction of CD4(+) CD8α(-) conventional DCs (cDCs) in the secondary lymphoid organs, as well as of Langerhans cells in the epidermis. Such reduction of cDCs in Sirpa(Δ) (DC) mice was comparable to that apparent with the mice, in which SIRPα was systemically ablated. Expression of SIRPα in DCs was well correlated with that of either endothelial cell-selective adhesion molecule (ESAM) or Epstein-Barr virus-induced molecule 2 (EBI2), both of which were also implicated in the regulation of DC homeostasis. Indeed, ESAM(+) or EBI2(+) cDCs were markedly reduced in the spleen of Sirpa(Δ) (DC) mice. Thus, our results suggest that SIRPα intrinsic to CD11c(+) DCs is essential for homeostasis of cDCs in the secondary lymphoid organs and skin.


Subject(s)
Dendritic Cells/metabolism , Homeostasis , Lymphoid Tissue/metabolism , Receptors, Immunologic/genetics , Receptors, Immunologic/metabolism , Animals , CD4-Positive T-Lymphocytes/cytology , CD8 Antigens/metabolism , Cell Adhesion Molecules/metabolism , Epidermal Cells , Lymph Nodes/cytology , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/metabolism , Spleen/cytology
SELECTION OF CITATIONS
SEARCH DETAIL