Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Clin Biochem Nutr ; 74(3): 199-206, 2024 May.
Article in English | MEDLINE | ID: mdl-38799139

ABSTRACT

Photoreceptor degeneration decreases light sensitivity and leads to vision loss and various retinal diseases. Neurotrophin-3, originating from Müller glial cells in the retina, plays a key role in protecting photoreceptors from damage induced by light or hypoxia. This neuroprotective approach is important because there are no established methods to regenerate lost photoreceptors. Dietary supplements are one of the useful methods for improving eye health. Eurycoma longifolia (E. longifolia) Jack, which is native to the tropical forest of Malaysia and other Southeast Asian countries, exhibits several medicinal properties. In the present study, we demonstrated that the water extract of E. longifolia roots enhanced neurotrophin-3 gene expression in primary rat Müller cells. Using a stepwise bioassay-guided fractionation and purification of E. longifolia root extracts, we isolated the active compound underlying neurotrophin-3 gene-enhancing activities. Mass spectrometry and nuclear magnetic resonance spectral data identified the compound as eurycomanone. This study provides evidence for the efficacy of E. longifolia and eurycomanone in enhancing neurotrophin-3 expression in Müller cells in vitro. Although the biological significance of this effect and its underlying mechanism remain to be elucidated, this study suggests that E. longifolia may be promising for improving eye health and must be further investigated.

2.
Mol Psychiatry ; 26(12): 7550-7559, 2021 12.
Article in English | MEDLINE | ID: mdl-34262135

ABSTRACT

Recent evidence has documented the potential roles of histone-modifying enzymes in autism-spectrum disorder (ASD). Aberrant histone H3 lysine 9 (H3K9) dimethylation resulting from genetic variants in histone methyltransferases is known for neurodevelopmental and behavioral anomalies. However, a systematic examination of H3K9 methylation dynamics in ASD is lacking. Here we resequenced nine genes for histone methyltransferases and demethylases involved in H3K9 methylation in individuals with ASD and healthy controls using targeted next-generation sequencing. We identified a novel rare variant (A211S) in the SUV39H2, which was predicted to be deleterious. The variant showed strongly reduced histone methyltransferase activity in vitro. In silico analysis showed that the variant destabilizes the hydrophobic core and allosterically affects the enzyme activity. The Suv39h2-KO mice displayed hyperactivity and reduced behavioral flexibility in learning the tasks that required complex behavioral adaptation, which is relevant for ASD. The Suv39h2 deficit evoked an elevated expression of a subset of protocadherin ß (Pcdhb) cluster genes in the embryonic brain, which is attributable to the loss of H3K9 trimethylation (me3) at the gene promoters. Reduced H3K9me3 persisted in the cerebellum of Suv39h2-deficient mice to an adult stage. Congruently, reduced expression of SUV39H1 and SUV39H2 in the postmortem brain samples of ASD individuals was observed, underscoring the role of H3K9me3 deficiency in ASD etiology. The present study provides direct evidence for the role of SUV39H2 in ASD and suggests a molecular cascade of SUV39H2 dysfunction leading to H3K9me3 deficiency followed by an untimely, elevated expression of Pcdhb cluster genes during early neurodevelopment.


Subject(s)
Autistic Disorder , Histone-Lysine N-Methyltransferase/genetics , Animals , Brain/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Histones/genetics , Histones/metabolism , Mice , Protocadherins
3.
Cereb Cortex ; 31(10): 4554-4575, 2021 08 26.
Article in English | MEDLINE | ID: mdl-34013343

ABSTRACT

Temporal specification of the neural progenitors (NPs) producing excitatory glutamatergic neurons is essential for histogenesis of the cerebral cortex. Neuroepithelial cells, the primary NPs, transit to radial glia (RG). To coincide with the transition, NPs start to differentiate into neurons, undergoing a switch from symmetric to asymmetric cell division. After the onset of neurogenesis, NPs produce layer-specific neurons in a defined order with precise timing. Here, we show that GABAA receptors (GABAARs) and taurine are involved in this regulatory mechanism. Foetal exposure to GABAAR-antagonists suppressed the transition to RG, switch to asymmetric division, and differentiation into upper-layer neurons. Foetal exposure to GABAAR-agonists caused the opposite effects. Mammalian foetuses are dependent on taurine derived from the mothers. GABA and taurine function as endogenous ligands for GABAARs. Ca2+ imaging showed that NPs principally responded to taurine but not GABA before E13. The histological phenotypes of the taurine transporter knockout mice resembled those of the mice foetally exposed to GABAAR-antagonists. Foetal exposure to GABAAR-modulators resulted in considerable alterations in offspring behavior like core symptoms of autism. These results show that taurine regulates the temporal specification of NPs and that disrupting the taurine-receptor interaction possibly leads to neurodevelopmental disorders.


Subject(s)
Cerebral Cortex/diagnostic imaging , Cerebral Cortex/physiology , Glutamates/physiology , Neural Stem Cells/physiology , Receptors, GABA-A/physiology , Taurine/physiology , Animals , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/physiopathology , Cerebral Cortex/cytology , Female , Fetus , GABA Antagonists/pharmacology , GABA Modulators/pharmacology , Membrane Glycoproteins/genetics , Membrane Transport Proteins/genetics , Mice , Mice, Inbred ICR , Mice, Knockout , Patch-Clamp Techniques , Placenta/metabolism , Pregnancy
4.
J Clin Biochem Nutr ; 70(2): 160-174, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35400825

ABSTRACT

We investigated the effects of fermented rice bran (FRB) administration in two groups of C57BL/6J mice. The first group was fed with a high-fat diet, and the second group was fed with a high-fat diet supplemented with the FRB for 8 weeks. FRB supplementation suppressed the high-fat-induced weight gain and considerable alterations in the intestinal microbiota profile in the second group. Among 27 bacterial genera detected in the FRB, only Enterococcus, Lactobacillus, Bacteroides, Prevotella, and the unclassified family Peptostreptococcaceae were detected in mice feces. Their abundances were not particularly increased by FRB supplementation. The abundances of Enterococcus and the unclassified family Peptostreptococcaceae were even suppressed in the second group, suggesting that FRB supplementation didn't cause an addition of beneficial microbiome but inhibit the proliferation of specific bacteria. Fecal succinic acid concentration was significantly decreased in the second group and highly correlated with the relative abundances of Turicibacter, Enterococcus, and the unclassified family Peptostreptococcaceae. A significant increase in fumaric acid and a decrease in xylitol, sorbitol, uracil, glutamic acid, and malic acid levels were observed in the peripheral blood of the second group. FRB supplementation counteracted the high-fat-induced obesity in mice by modulating the gut microbiota and the host metabolism.

5.
J Bone Miner Metab ; 39(5): 737-747, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33830351

ABSTRACT

BACKGROUND: Bisphosphonate and denosumab are widely used for the treatment of osteoporosis and bone metastasis of cancer to prevent excessive bone resorption. Osteonecrosis of the jaw is a serious adverse effect of bisphosphonate or denosumab referred to as bisphosphonate-related osteonecrosis of the jaw (BRONJ) or denosumab-related osteonecrosis of the jaw (DRONJ), respectively. Since bisphosphonate and denosumab inhibit bone resorption by different mechanism, we evaluated whether these drug types result in different histopathological characteristics related to bone resorption. MATERIALS AND METHODS: We histopathologically investigated 10 cases of BRONJ, DRONJ, and suppurative osteomyelitis. Paraffin sections prepared from decalcified dissected jaw bones were used for histopathological observation, second harmonic generation imaging, and bone histomorphometry. The samples were also observed by a scanning electron microscope. RESULTS: Numerous bone resorption lacunae were observed on the necrotic bone surface in almost all cases of BRONJ; however, such resorption lacunae were limited in DRONJ and suppurative osteomyelitis. Prominent bone resorption lacunae were also confirmed by second harmonic generation imaging and scanning electron microscopy in BRONJ, but not in DRONJ or suppurative osteomyelitis. As determined by bone histomorphometry, the number of bone resorption lacunae and the length of the erosion surface of resorption lacunae were significantly higher in BRONJ group than in the DRONJ and suppurative osteomyelitis groups. These parameters were correlated between the necrotic bones and the vital bones in BRONJ. CONCLUSIONS: Persistent bone resorption lacunae on the necrotic bone surface are unique to BRONJ, providing a basis for distinguishing BRONJ from DRONJ and OM in histopathological diagnosis.


Subject(s)
Bisphosphonate-Associated Osteonecrosis of the Jaw , Bone Density Conservation Agents , Bone Neoplasms , Bone Resorption , Osteonecrosis , Bisphosphonate-Associated Osteonecrosis of the Jaw/diagnostic imaging , Bone Density Conservation Agents/adverse effects , Denosumab/adverse effects , Diphosphonates , Humans , Osteonecrosis/chemically induced , Osteonecrosis/diagnostic imaging
6.
J Neurosci ; 37(10): 2709-2722, 2017 03 08.
Article in English | MEDLINE | ID: mdl-28167675

ABSTRACT

ARPP-16 (cAMP-regulated phospho-protein of molecular weight 16 kDa) is one of several small acid-soluble proteins highly expressed in medium spiny neurons of striatum that are phosphorylated in response to dopamine acting via D1 receptor/protein kinase A (PKA) signaling. We show here that ARPP-16 is also phosphorylated in vitro and in vivo by microtubule-associated serine/threonine kinase 3 (MAST3 kinase), an enzyme of previously unknown function that is enriched in striatum. We find that ARPP-16 interacts directly with the scaffolding A subunit of the serine/threonine protein phosphatase, PP2A, and that phosphorylation of ARPP-16 at Ser46 by MAST3 kinase converts the protein into a selective inhibitor of B55α- and B56δ-containing heterotrimeric forms of PP2A. Ser46 of ARPP-16 is phosphorylated to a high basal stoichiometry in striatum, suggestive of basal inhibition of PP2A in striatal neurons. In support of this hypothesis, conditional knock-out of ARPP-16 in CaMKIIα::cre/floxed ARPP-16/19 mice results in dephosphorylation of a subset of PP2A substrates including phospho-Thr75-DARPP-32, phospho-T308-Akt, and phospho-T202/Y204-ERK. Conditional knock-out of ARPP-16/19 is associated with increased motivation measured on a progressive ratio schedule of food reinforcement, yet an attenuated locomotor response to acute cocaine. Our previous studies have shown that ARPP-16 is phosphorylated at Ser88 by PKA. Activation of PKA in striatal slices leads to phosphorylation of Ser88, and this is accompanied by marked dephosphorylation of Ser46. Together, these studies suggest that phospho-Ser46-ARPP-16 acts to basally control PP2A in striatal medium spiny neurons but that dopamine acting via PKA inactivates ARPP-16 leading to selective potentiation of PP2A signaling.SIGNIFICANCE STATEMENT We describe a novel mechanism of signal transduction enriched in medium spiny neurons of striatum that likely mediates effects of the neurotransmitter dopamine acting on these cells. We find that the protein ARPP-16, which is highly expressed in striatal medium spiny neurons, acts as a selective inhibitor of certain forms of the serine/threonine protein phosphatase, PP2A, when phosphorylated by the kinase, MAST3. Under basal conditions, ARPP-16 is phosphorylated by MAST3 to a very high stoichiometry. However, the actions of MAST3 are antagonized by dopamine and cAMP-regulated signaling leading to disinhibition of ARPP-16 and increased PP2A action.


Subject(s)
Corpus Striatum/metabolism , Gene Expression Regulation, Enzymologic/physiology , Microtubule-Associated Proteins/metabolism , Neurons/metabolism , Phosphoproteins/metabolism , Protein Phosphatase 2/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Cells, Cultured , Male , Mice , Mice, Inbred C57BL , Phosphorylation
7.
Brain Behav Immun ; 61: 375-385, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28089559

ABSTRACT

Several studies have revealed that neuregulins (NRGs) are involved in brain function and psychiatric disorders. While NRGs have been regarded as neuron- or astrocyte-derived molecules, our research has revealed that microglia also express NRGs, levels of which are markedly increased in activated microglia. Previous studies have indicated that microglia are activated in the brains of individuals with autism spectrum disorder (ASD). Therefore, we investigated microglial NRG mRNA expression in multiple lines of mice considered models of ASD. Intriguingly, microglial NRG expression significantly increased in BTBR and socially-isolated mice, while maternal immune activation (MIA) mice exhibited identical NRG expression to controls. Furthermore, we observed a positive correlation between NRG expression in microglia and peripheral blood mononuclear cells (PBMCs) in mice, suggesting that NRG expression in human PBMCs may mirror microglia-derived NRG expression in the human brain. To translate these findings for application in clinical psychiatry, we measured levels of NRG1 splice-variant expression in clinically available PBMCs of patients with ASD. Levels of NRG1 type III expression in PBMCs were positively correlated with impairments in social interaction in children with ASD (as assessed using the Autistic Diagnostic Interview-Revised test: ADI-R). These findings suggest that immune cell-derived NRGs may be implicated in the pathobiology of psychiatric disorders such as ASD.


Subject(s)
Autism Spectrum Disorder/metabolism , Interpersonal Relations , Microglia/metabolism , Neuregulin-1/metabolism , Adolescent , Animals , Autism Spectrum Disorder/genetics , Brain/metabolism , Child , Disease Models, Animal , Humans , Leukocytes, Mononuclear/metabolism , Male , Mice , Neuregulin-1/genetics , Neurons/metabolism , Social Isolation
8.
Acta Neuropsychiatr ; 28(6): 352-356, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27321482

ABSTRACT

OBJECTIVE: Neuroimaging studies of depression considered as a stress-related disorder have shown uncoupling in regional cerebral blood flow (rCBF) and regional cerebral metabolic rate for glucose (rCMRglc). We hypothesised that the mismatch change of rCBF and rCMRglc could be a stress-related phenomenon. METHODS: We exposed male rats to 15-min period of forced swim (FS), followed by the measurement of rCBF using N-isopropyl-4-[123I] iodoamphetamine (123I-IMP) and rCMRglc using 2-deoxy-2-[18F] fluoro-D-glucose (18F-FDG). RESULTS: The uptake rate of 18F-FDG in the FS group showed a significant decrease in the prefrontal cortex (0.86±0.20%ID/g, p<0.01) and thalamus (0.77±0.17%ID/g, p<0.05) and tended to be lower in the hippocampus (0.58±0.13%ID/g) and cerebellum (0.59±0.13%ID/g) without overt alteration in the uptake rate of 123I-IMP. CONCLUSIONS: The FS stress can cause mismatch change of rCBF and rCMRglc, which reflect a stress-related phenomenon.


Subject(s)
Brain/metabolism , Cerebrovascular Circulation , Glucose/metabolism , Stress, Psychological/metabolism , Stress, Psychological/physiopathology , Animals , Brain/blood supply , Male , Rats , Rats, Sprague-Dawley , Swimming
9.
Front Psychiatry ; 15: 1403476, 2024.
Article in English | MEDLINE | ID: mdl-38903649

ABSTRACT

Background: Social isolation during critical periods of development is associated with alterations in behavior and neuronal circuitry. This study aimed to investigate the immediate and developmental effects of social isolation on firing properties, neuronal activity-regulated pentraxin (NARP) and parvalbumin (PV) expression in the prefrontal cortex (PFC), social behavior in juvenile socially isolated mice, and the biological relevance of NARP expression in autism spectrum disorder (ASD). Methods: Mice were subjected to social isolation during postnatal days 21-35 (P21-P35) and were compared with group-housed control mice. Firing properties in the PFC pyramidal neurons were altered in P35 socially isolated mice, which might be associated with alterations in NARP and PV expression. Results: In adulthood, mice that underwent juvenile social isolation exhibited difficulty distinguishing between novel and familiar mice during a social memory task, while maintaining similar levels of social interaction as the control mice. Furthermore, a marked decrease in NARP expression in lymphoblastoid cell lines derived from adolescent humans with ASD as compared to typically developing (TD) humans was found. Conclusion: Our study highlights the role of electrophysiological properties, as well as NARP and PV expression in the PFC in mediating the developmental consequences of social isolation on behavior.

10.
Proteomics ; 13(23-24): 3548-53, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24167090

ABSTRACT

Myelination of the CNS is performed by oligodendrocytes (OLs), which have been implicated in brain disorders, such as multiple sclerosis and schizophrenia. We have used the human oligodendroglial cell line MO3.13 to establish an OL reference proteome database. Proteins were prefractionationated by SDS-PAGE and after in-gel digestion subjected to nanoflow LC-MS analysis. Approximately 11 600 unique peptides were identified and, after stringent filtering, resulted in 2290 proteins representing nine distinct biological processes and various molecular classes and functions. OL-specific proteins, such as myelin basic protein (MBP) and 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNP), as well as other proteins involved in multiple sclerosis and schizophrenia were also identified and are discussed. Proteins of this dataset have also been classified according to their chromosomal origin for providing useful data to the Chromosome-centric Human Proteome Project (C-HPP). Given the importance of OLs in the etiology of demyelinating and oligodendrogial disorders, the MO3.13 proteome database is a valuable data resource. The MS proteomics data have been deposited to the ProteomeXchange with identifier PXD000263 (http://proteomecentral.proteomexchange.org/dataset/PXD000263).


Subject(s)
Oligodendroglia/metabolism , Proteome/metabolism , Cell Line , Databases, Protein , Humans , Myelin Basic Protein/metabolism , Nerve Tissue Proteins/metabolism , Protein Isoforms/metabolism , Protein Subunits/metabolism
11.
Brain Behav Immun Health ; 30: 100630, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37251547

ABSTRACT

Objective: Genetic and environmental factors contribute to the development of Attention Deficit/Hyperactivity Disorder (ADHD). Perinatal inflammation is one of the promising environmental risk factors for ADHD, but the relationship between the genetic risk for ADHD and perinatal inflammation requires further examination. Methods: A possible gene-environmental interaction between perinatal inflammation and ADHD polygenic risk score (ADHD-PRS) on ADHD symptoms was investigated in children aged 8-9 from the Hamamatsu Birth Cohort for Mothers and Children (N = 531). Perinatal inflammation was evaluated by the level of concentration of three cytokines assayed in umbilical cord blood. The genetic risk for ADHD was assessed by calculating ADHD-PRS for each individual using a previously collected genome-wide association study of ADHD. Results: Perinatal inflammation (ß [SE], 0.263 [0.017]; P < 0.001), ADHD-PRS (ß [SE], 0.116[0.042]; P = 0.006), and an interaction between the two (ß [SE], 0.031[0.011]; P = 0.010) were associated with ADHD symptoms. The association between perinatal inflammation and ADHD symptoms measured by ADHD-PRS was evident only in the two higher genetic risk groups (ß [SE], 0.623[0.122]; P < 0.001 for the medium-high risk group; ß [SE], 0.664[0.152]; P < 0.001 for the high-risk group). Conclusion: Inflammation in the perinatal period both directly elevated ADHD symptoms and magnified the impact of genetic vulnerability on ADHD risk particularly among children aged 8-9 with genetically higher risk for ADHD.

12.
Front Endocrinol (Lausanne) ; 13: 986650, 2022.
Article in English | MEDLINE | ID: mdl-36093109

ABSTRACT

Background: Low-birth-weight infants exhibit a high risk for postnatal morbidity. Cytochrome P450 (CYP) and epoxide hydrolase (EH) are involved in the metabolism of factors responsible for low-birth-weight in infants. Both CYPs and EHs have high substrate specificity and are involved in polyunsaturated fatty acid (PUFA) metabolism. The CYP pathway produces epoxy fatty acids (EpFAs), which are further degraded by soluble EH (sEH). Additionally, sEH inhibition enhances the action of EpFAs and suppresses inflammatory responses. During pregnancy, excessive activation of maternal inflammatory response is a significant factor associated with low-birth-weight. However, the association of EpFAs, which have potential anti-inflammatory properties, with the low-birth-weight of infants remains uninvestigated. This study aimed to clarify the association between the umbilical cord serum EpFA and low-birth-weight using data obtained from the Hamamatsu Birth Cohort for Mothers and Children (HBC Study) by analyzing the umbilical cord blood samples. Method: We selected a subgroup of 200 infants (106 boys and 94 girls), quantified EpFA concentration in their cord blood samples collected at birth, and examined its correlation with birth weight. Results: The comparison between the low-birth-weight and normal-birth-weight groups revealed no significant correlation between PUFA and EpFA concentrations, but a significant correlation was observed in the linoleate diol concentrations of the two groups. Furthermore, birth weight did not significantly correlate with PUFA, EpFA, and diol concentrations in cord blood; however, multiple regression analysis showed a significant negative correlation of birth weight with the concentration of linoleic acid (LA) (r = -0.101, p = 0.016) as well as LA-derived dihydroxyoctadecenoic acid (diHOME) (r = -0.126, p = 0.007), 9,10-diHOME (r = -0.115, p = 0.014), and 12,13-diHOME (r = -0.126, p = 0.007) after adjusting for obstetric factors, including gestational age, infant's sex, childbirth history, delivery method, and maternal height. Conclusions: Birth weight was significantly correlated with the concentration of LA and linoleate diol diHOME after adjusting for obstetric confounders. Our results show that CYP and sEH involved in PUFA metabolism may influence the birth weight of infants. Further validation is needed to provide insights regarding maternal intervention strategies required to avoid low-birth-weight in infants in the future.


Subject(s)
Fetal Blood , Linoleic Acid , Birth Weight , Child , Cytochrome P-450 Enzyme System/metabolism , Fatty Acids/metabolism , Female , Fetal Blood/metabolism , Gestational Age , Humans , Infant , Infant, Low Birth Weight , Infant, Newborn , Linoleic Acid/metabolism , Male , Pregnancy
13.
Neurosci Res ; 185: 1-10, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36162735

ABSTRACT

Morphologically dynamic dendritic spines are the major sites of neuronal plasticity in the brain; however, the molecular mechanisms underlying their morphological dynamics have not been fully elucidated. Phldb2 is a protein that contains two predicted coiled-coil domains and the pleckstrin homology domain, whose binding is highly sensitive to PIP3. We have previously demonstrated that Phldb2 regulates synaptic plasticity, glutamate receptor trafficking, and PSD-95 turnover. Drebrin is one of the most abundant neuron-specific F-actin-binding proteins that are pivotal for synaptic morphology and plasticity. We observed that Phldb2 bound to drebrin A (adult-type drebrin), but not to drebrin E (embryonic-type drebrin). In the absence of Phldb2, the subcellular localization of drebrin A in the hippocampal spines and its distribution in the hippocampus were altered. Immature spines, such as the filopodium type, increased relatively in the CA1 regions of the hippocampus, whereas mushroom spines, a typical mature type, decreased in Phldb2-/- mice. Phldb2 suppressed the formation of an abnormal filopodium structure induced by drebrin A overexpression. Taken together, these findings demonstrate that Phldb2 is pivotal for dendritic spine morphology and possibly for synaptic plasticity in mature animals by regulating drebrin A localization.


Subject(s)
Dendritic Spines , Hippocampus , Animals , Mice , Dendritic Spines/metabolism , Hippocampus/metabolism , Neuronal Plasticity/physiology , Protein Isoforms/metabolism
14.
Psychiatry Res ; 190(2-3): 364-6, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-21684615

ABSTRACT

The expression level of hnRNP C1/C2 protein has been reported to be significantly decreased in the post-mortem brain of schizophrenic patients. In this study, we investigated whether overexpression of the hnRNP C variants hnRNP C1 and C2 changed the expression of myelination-related genes in the human neuroblastoma cell line SK-N-SH. In both hnRNP C1- and C2-overexpressing cells, the expression of quaking (QKI)-6 and QKI-7 significantly increased or decreased compared to the control, respectively. Intriguingly, QKI-5 and myelin basic protein were markedly up- or down-regulated by overexpressing hnRNP C2, respectively. Our findings are the first to demonstrate distinct functions of hnRNP C1 and C2, and may be helpful in understanding the functions of these molecules. These findings indicate that altered expression levels of hnRNP C in the brain of patients with schizophrenia could be involved in the pathophysiology of this disease through alteration of the QKI isoform and myelin basic protein expression.


Subject(s)
Gene Expression Regulation, Neoplastic/physiology , Heterogeneous-Nuclear Ribonucleoprotein Group C/metabolism , RNA-Binding Proteins/metabolism , Cell Line, Tumor , Heterogeneous-Nuclear Ribonucleoprotein Group C/genetics , Humans , Myelin Basic Protein/genetics , Myelin Basic Protein/metabolism , Neuroblastoma/pathology , Protein Isoforms/metabolism , RNA-Binding Proteins/genetics
15.
Brain Sci ; 11(7)2021 Jul 10.
Article in English | MEDLINE | ID: mdl-34356147

ABSTRACT

Early life stress (ELS), such as neglect and maltreatment, exhibits a strong impact on the mental and brain development of children. However, it is not fully understood how ELS affects the body and behavior of children. Therefore, in this study, we performed social isolation on weaned pre-adolescent mice and investigated how ELS could affect gut microbiota and mouse behavior. Using the metagenomics approach, we detected an overall ELS-related change in the gut microbiota and identified Bacteroidales and Clostridiales as significantly altered bacterial groups. These metagenomic alterations impaired social behavior in ELS mice, which also correlated with the abundance of Bacteroidales and Clostridiales. Our results demonstrate that ELS alters the gut microbiota and reduces social behavior in adolescent mice.

16.
Front Genet ; 12: 754198, 2021.
Article in English | MEDLINE | ID: mdl-34795694

ABSTRACT

Early life stress (ELS), such as abuse, neglect, and maltreatment, exhibits a strong impact on the brain and mental development of children. However, it is not fully understood how ELS affects social behaviors and social-associated behaviors as well as developing prefrontal cortex (PFC). In this study, we performed social isolation on weaned pre-adolescent mice until adolescence and investigated these behaviors and PFC characteristics in adolescent mice. We found the ELS induced social impairments in social novelty, social interaction, and social preference in adolescent mice. We also observed increases of anxiety-like behaviors in ELS mice. In histological analysis, we found a reduced number of neurons and an increased number of microglia in the PFC of ELS mice. To identify the gene associated with behavioral and histological features, we analyzed transcriptome in the PFC of ELS mice and identified 15 differentially expressed genes involved in transcriptional regulation, stress, and synaptic signaling. Our study demonstrates that ELS influences social behaviors, anxiety-like behaviors through cytoarchitectural and transcriptomic alterations in the PFC of adolescent mice.

17.
Transl Psychiatry ; 11(1): 242, 2021 04 24.
Article in English | MEDLINE | ID: mdl-33895774

ABSTRACT

Zinc finger and BTB domain containing 16 (ZBTB16) play the roles in the neural progenitor cell proliferation and neuronal differentiation during development, however, how the function of ZBTB16 is involved in brain function and behaviors unknown. Here we show the deletion of Zbtb16 in mice leads to social impairment, repetitive behaviors, risk-taking behaviors, and cognitive impairment. To elucidate the mechanism underlying the behavioral phenotypes, we conducted histological analyses and observed impairments in thinning of neocortical layer 6 (L6) and a reduction of TBR1+ neurons in Zbtb16 KO mice. Furthermore, we found increased dendritic spines and microglia, as well as developmental defects in oligodendrocytes and neocortical myelination in the prefrontal cortex (PFC) of Zbtb16 KO mice. Using genomics approaches, we identified the Zbtb16 transcriptome that includes genes involved in neocortical maturation such as neurogenesis and myelination, and both autism spectrum disorder (ASD) and schizophrenia (SCZ) pathobiology. Co-expression networks further identified Zbtb16-correlated modules that are unique to ASD or SCZ, respectively. Our study provides insight into the novel roles of ZBTB16 in behaviors and neocortical development related to the disorders.


Subject(s)
Autism Spectrum Disorder , Neocortex , Schizophrenia , Animals , Autism Spectrum Disorder/genetics , Cognition , Mice , Neurons , Promyelocytic Leukemia Zinc Finger Protein
18.
Front Genet ; 12: 748627, 2021.
Article in English | MEDLINE | ID: mdl-34745222

ABSTRACT

Autism spectrum disorder (ASD), characterized by profound impairment in social interactions and communication skills, is the most common neurodevelopmental disorder. Many studies on the mechanisms underlying the development of ASD have focused on the serotonergic system; however, these studies have failed to completely elucidate the mechanisms. We previously identified N-ethylmaleimide-sensitive factor (NSF) as a new serotonin transporter (SERT)-binding protein and described its importance in SERT membrane trafficking and uptake in vitro. In the present study, we generated Nsf +/- mice and investigated their behavioral, neurotransmitter, and neurophysiological phenotypes in vivo. Nsf +/- mice exhibited abnormalities in sociability, communication, repetitiveness, and anxiety. Additionally, Nsf loss led to a decrease in membrane SERT expression in the raphe and accumulation of glutamate alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptors at the synaptic membrane surface in the hippocampal CA1 region. We found that postsynaptic density and long-term depression were impaired in the hippocampal CA1 region of Nsf +/- mice. Taken together, these findings demonstrate that NSF plays a role in synaptic plasticity and glutamatergic and serotonergic systems, suggesting a possible mechanism by which the gene is linked to the pathophysiology of autistic behaviors.

19.
Front Neurosci ; 15: 799761, 2021.
Article in English | MEDLINE | ID: mdl-35145374

ABSTRACT

The present study examined the relationship between DNA methylation differences and variations in brain structures involved in the development of attention-deficit hyperactivity disorder (ADHD). First, we used monozygotic (MZ) twins discordant (2 pairs of 4 individuals, 2 boys, mean age 12.5 years) for ADHD to identify candidate DNA methylation sites involved in the development of ADHD. Next, we tried to replicate these candidates in a case-control study (ADHD: N = 18, 15 boys, mean age 10.0 years; Controls: N = 62, 40 boys, mean age 13.9 years). Finally, we examined how methylation rates at those sites relate to the degree of local structural alterations where significant differences were observed between cases and controls. As a result, we identified 61 candidate DNA methylation sites involved in ADHD development in two pairs of discordant MZ twins, among which elevated methylation at a site in the sortilin-related Vps10p domain containing receptor 2 (SorCS2) gene was replicated in the case-control study. We also observed that the ADHD group had significantly reduced gray matter volume (GMV) in the precentral and posterior orbital gyri compared to the control group and that this volume reduction was positively associated with SorCS2 methylation. Furthermore, the reduced GMV regions in children with ADHD are involved in language processing and emotional control, while SorCS2 methylation is also negatively associated with emotional behavioral problems in children. These results indicate that SorCS2 methylation might mediate a reduced GMV in the precentral and posterior orbital gyri and therefore influence the pathology of children with ADHD.

20.
Front Psychiatry ; 12: 816196, 2021.
Article in English | MEDLINE | ID: mdl-35185642

ABSTRACT

INTRODUCTION: Accumulating evidence has shown that maternal metabolic conditions, such as pre-pregnancy overweight, diabetes mellitus, and hypertensive disorders of pregnancy (HDP) are potential risk factors of autism spectrum disorder (ASD). However, it remains unclear how these maternal conditions lead to neurodevelopmental outcomes in the offspring, including autistic symptoms. Leptin, an adipokine that has pro-inflammatory effects and affects fetal neurodevelopment, is a candidate mediator of the association between maternal metabolic factors and an increased risk of ASD. However, whether prenatal exposure to leptin mediates the association between maternal metabolic conditions and autistic symptoms in children has not been investigated yet. METHODS: This study investigated the associations between mothers' metabolic conditions (pre-pregnancy overweight, diabetes mellitus during or before pregnancy, and HDP), leptin concentrations in umbilical cord serum, and autistic symptoms among 762 children from an ongoing cohort study, using generalized structural equation modeling. We used the Social Responsive Scale, Second Edition (SRS-2) at 8-9 years old to calculate total T-scores. Additionally, we used the T-scores for two subdomains: Social Communication and Interaction (SCI) and Restricted Interests and Repetitive Behavior (RRB). RESULTS: Umbilical cord leptin levels were associated with pre-pregnancy overweight [coefficient = 1.297, 95% confidence interval (CI) 1.081-1.556, p = 0.005] and diabetes mellitus (coefficient = 1.574, 95% CI 1.206-2.055, p = 0.001). Furthermore, leptin levels were significantly associated with SRS-2 total T-scores (coefficient = 1.002, 95% CI 1.000-1.004, p = 0.023), SCI scores (coefficient = 1.002, 95% CI 1.000-1.004, p = 0.020), and RRB scores (coefficient = 1.001, 95% CI 1.000-1.003, p = 0.044) in children. Associations between maternal metabolic factors and autistic symptoms were not significant. DISCUSSION: The present study uncovered an association between cord leptin levels and autistic symptoms in children, while maternal metabolic conditions did not have an evident direct influence on the outcome. These results imply that prenatal pro-inflammatory environments affected by maternal metabolic conditions may contribute to the development of autistic symptoms in children. The findings warrant further investigation into the role of leptin in the development of autistic symptoms.

SELECTION OF CITATIONS
SEARCH DETAIL