Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Mol Cell Proteomics ; 14(5): 1385-99, 2015 May.
Article in English | MEDLINE | ID: mdl-25759509

ABSTRACT

Several cytoplasmic proteins that are involved in G protein-coupled receptor signaling cascades are known to translocate to the plasma membrane upon receptor activation, such as beta-arrestin2. Based on this example and in order to identify new cytoplasmic proteins implicated in the ON-and-OFF cycle of G protein-coupled receptor, a live-imaging screen of fluorescently labeled cytoplasmic proteins was performed using translocation criteria. The screening of 193 fluorescently tagged human proteins identified eight proteins that responded to activation of the tachykinin NK2 receptor by a change in their intracellular localization. Previously we have presented the functional characterization of one of these proteins, REDD1, that translocates to the plasma membrane. Here we report the results of the entire screening. The process of cell activation was recorded on videos at different time points and all the videos can be visualized on a dedicated website. The proteins BAIAP3 and BIN1, partially translocated to the plasma membrane upon activation of NK2 receptors. Proteins ARHGAP12 and PKM2 translocated toward membrane blebs. Three proteins that associate with the cytoskeleton were of particular interest : PLEKHH2 rearranged from individual dots located near the cell-substrate adhesion surface into lines of dots. The speriolin-like protein, SPATC1L, redistributed to cell-cell junctions. The Chloride intracellular Channel protein, CLIC2, translocated from actin-enriched plasma membrane bundles to cell-cell junctions upon activation of NK2 receptors. CLIC2, and one of its close paralogs, CLIC4, were further shown to respond with the same translocation pattern to muscarinic M3 and lysophosphatidic LPA receptors. This screen allowed us to identify potential actors in signaling pathways downstream of G protein-coupled receptors and could be scaled-up for high-content screening.


Subject(s)
Biological Assay , Molecular Imaging/methods , Receptors, Neurokinin-2/genetics , Signal Transduction , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chloride Channels/genetics , Chloride Channels/metabolism , Cytoskeletal Proteins , GTPase-Activating Proteins/genetics , GTPase-Activating Proteins/metabolism , Gene Expression Regulation , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Protein Transport , Receptors, Neurokinin-2/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Thyroid Hormones/genetics , Thyroid Hormones/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Thyroid Hormone-Binding Proteins
2.
J Cell Sci ; 127(Pt 4): 773-87, 2014 Feb 15.
Article in English | MEDLINE | ID: mdl-24338366

ABSTRACT

The mTORC1 kinase promotes cell growth in response to growth factors by activation of receptor tyrosine kinase. It is regulated by the cellular energy level and the availability of nutrients. mTORC1 activity is also inhibited by cellular stresses through overexpression of REDD1 (regulated in development and DNA damage responses). We report the identification of REDD1 in a fluorescent live-imaging screen aimed at discovering new proteins implicated in G-protein-coupled receptor signaling, based on translocation criteria. Using a sensitive and quantitative plasma membrane localization assay based on bioluminescent resonance energy transfer, we further show that a panel of endogenously expressed GPCRs, through a Ca(2+)/calmodulin pathway, triggers plasma membrane translocation of REDD1 but not of its homolog REDD2. REDD1 and REDD2 share a conserved mTORC1-inhibitory motif characterized at the functional and structural level and differ most in their N-termini. We show that the N-terminus of REDD1 and its mTORC1-inhibitory motif participate in the GPCR-evoked dynamic interaction of REDD1 with the plasma membrane. We further identify REDD1 as a novel effector in GPCR signaling. We show that fast activation of mTORC1 by GPCRs correlates with fast and maximal translocation of REDD1 to the plasma membrane. Overexpression of functional REDD1 leads to a reduction of mTORC1 activation by GPCRs. By contrast, depletion of endogenous REDD1 protein unleashes mTORC1 activity. Thus, translocation to the plasma membrane appears to be an inactivation mechanism of REDD1 by GPCRs, which probably act by sequestering its functional mTORC1-inhibitory motif that is necessary for plasma membrane targeting.


Subject(s)
Cell Membrane/metabolism , Multiprotein Complexes/metabolism , Receptors, Neurokinin-2/metabolism , TOR Serine-Threonine Kinases/metabolism , Transcription Factors/metabolism , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Calcium Signaling , Calmodulin/metabolism , Enzyme Activation , HEK293 Cells , Humans , Mechanistic Target of Rapamycin Complex 1 , Molecular Sequence Data , Protein Interaction Domains and Motifs , Protein Sorting Signals , Protein Transport , Proteins/metabolism , Transcription Factors/chemistry
3.
J Neurosci ; 22(3): 1146-54, 2002 Feb 01.
Article in English | MEDLINE | ID: mdl-11826143

ABSTRACT

Repeated THC administration produces motivational and somatic adaptive changes leading to dependence in rodents. To investigate the molecular basis for cannabinoid dependence and its possible relationship with the endogenous opioid system, we explored delta9-tetrahydrocannabinol (THC) activity in mice lacking mu-, delta- or kappa-opioid receptor genes. Acute THC-induced hypothermia, antinociception, and hypolocomotion remained unaffected in these mice, whereas THC tolerance and withdrawal were minimally modified in mutant animals. In contrast, profound phenotypic changes are observed in several place conditioning protocols that reveal both THC rewarding and aversive properties. Absence of microreceptors abolishes THC place preference. Deletion of kappa receptors ablates THC place aversion and furthermore unmasks THC place preference. Thus, an opposing activity of mu- and kappa-opioid receptors in modulating reward pathways forms the basis for the dual euphoric-dysphoric activity of THC.


Subject(s)
Cannabinoids/pharmacology , Marijuana Abuse/physiopathology , Motivation , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism , Analysis of Variance , Animals , Behavior, Animal/drug effects , Cannabinoids/antagonists & inhibitors , Crosses, Genetic , Dronabinol/antagonists & inhibitors , Dronabinol/pharmacology , Drug Tolerance/genetics , Hypothermia/chemically induced , Mice , Mice, Inbred Strains , Mice, Knockout , Motor Activity/drug effects , Piperidines/pharmacology , Psychotropic Drugs/antagonists & inhibitors , Psychotropic Drugs/pharmacology , Pyrazoles/pharmacology , Receptors, Opioid, delta/deficiency , Receptors, Opioid, delta/genetics , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/deficiency , Receptors, Opioid, kappa/genetics , Receptors, Opioid, mu/deficiency , Receptors, Opioid, mu/genetics , Reward , Rimonabant , Spatial Behavior/drug effects , Substance Withdrawal Syndrome/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL