Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
1.
Nature ; 611(7937): 780-786, 2022 11.
Article in English | MEDLINE | ID: mdl-36385534

ABSTRACT

Enteric pathogens are exposed to a dynamic polymicrobial environment in the gastrointestinal tract1. This microbial community has been shown to be important during infection, but there are few examples illustrating how microbial interactions can influence the virulence of invading pathogens2. Here we show that expansion of a group of antibiotic-resistant, opportunistic pathogens in the gut-the enterococci-enhances the fitness and pathogenesis of Clostridioides difficile. Through a parallel process of nutrient restriction and cross-feeding, enterococci shape the metabolic environment in the gut and reprogramme C. difficile metabolism. Enterococci provide fermentable amino acids, including leucine and ornithine, which increase C. difficile fitness in the antibiotic-perturbed gut. Parallel depletion of arginine by enterococci through arginine catabolism provides a metabolic cue for C. difficile that facilitates increased virulence. We find evidence of microbial interaction between these two pathogenic organisms in multiple mouse models of infection and patients infected with C. difficile. These findings provide mechanistic insights into the role of pathogenic microbiota in the susceptibility to and the severity of C. difficile infection.


Subject(s)
Clostridioides difficile , Enterococcus , Microbial Interactions , Animals , Humans , Mice , Anti-Bacterial Agents/pharmacology , Arginine/deficiency , Arginine/metabolism , Clostridioides difficile/metabolism , Clostridioides difficile/pathogenicity , Clostridioides difficile/physiology , Disease Models, Animal , Drug Resistance, Bacterial , Enterococcus/drug effects , Enterococcus/metabolism , Enterococcus/pathogenicity , Enterococcus/physiology , Gastrointestinal Microbiome/drug effects , Intestines/drug effects , Intestines/metabolism , Intestines/microbiology , Leucine/metabolism , Ornithine/metabolism , Virulence , Disease Susceptibility
2.
PLoS Biol ; 21(7): e3002183, 2023 07.
Article in English | MEDLINE | ID: mdl-37432955

ABSTRACT

Mitigating climate change and sustainably feeding our growing population in the changing climate are 2 significant challenges facing the global community. Engineering photosynthesis, nature's carbon capture machinery, can help us surmount these threats.


Subject(s)
Photosynthesis , Carbon/chemistry , Carbon Dioxide/chemistry
3.
J Biol Chem ; : 107784, 2024 Sep 18.
Article in English | MEDLINE | ID: mdl-39303918

ABSTRACT

Redox signaling is a fundamental mechanism that controls all major biological processes partly via protein cysteine oxidations, including S-glutathionylation. Despite over 2,000 cysteines identified to form S-glutathionylation in databases, the identification of redox cysteines functionally linked to a biological process of interest remains challenging. Here, we demonstrate a strategy combining glutathionylation proteomic database, bioinformatics, and biological screening, which resulted in the identification of S-glutathionylated proteins, including PP2Cα, as redox players of cell migration. We showed that PP2Cα, a prototypical magnesium-dependent serine/threonine phosphatase, is susceptible to S-glutathionylation selectively at non-conserved C314. PP2Cα glutathionylation causes increased migration and invasion of breast cancer cell lines in oxidative stress or upon hydrogen peroxide production. Mechanistically, PP2Cα glutathionylation modulates its protein-protein interactions, activating c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase (ERK) pathways to elevate migration and invasion. In addition, PP2Cα glutathionylation occurs in response to epidermal-growth factor, supporting a serine/threonine phosphatase PP2Cα as a new redox player in growth factor signal transduction.

4.
Mol Cell Neurosci ; 125: 103842, 2023 06.
Article in English | MEDLINE | ID: mdl-36924917

ABSTRACT

Chemical platforms that facilitate both the identification and elucidation of new areas for therapeutic development are necessary but lacking. Activity-based protein profiling (ABPP) leverages active site-directed chemical probes as target discovery tools that resolve activity from expression and immediately marry the targets identified with lead compounds for drug design. However, this approach has traditionally focused on predictable and intrinsic enzyme functionality. Here, we applied our activity-based proteomics discovery platform to map non-encoded and post-translationally acquired enzyme functionalities (e.g. cofactors) in vivo using chemical probes that exploit the nucleophilic hydrazine pharmacophores found in a classic antidepressant drug (e.g. phenelzine, Nardil®). We show the probes are in vivo active and can map proteome-wide tissue-specific target engagement of the drug. In addition to engaging targets (flavoenzymes monoamine oxidase A/B) that are associated with the known therapeutic mechanism as well as several other members of the flavoenzyme family, the probes captured the previously discovered N-terminal glyoxylyl (Glox) group of Secernin-3 (SCRN3) in vivo through a divergent mechanism, indicating this functional feature has biochemical activity in the brain. SCRN3 protein is ubiquitously expressed in the brain, yet gene expression is regulated by inflammatory stimuli. In an inflammatory pain mouse model, behavioral assessment of nociception showed Scrn3 male knockout mice selectively exhibited impaired thermal nociceptive sensitivity. Our study provides a guided workflow to entangle molecular (off)targets and pharmacological mechanisms for therapeutic development.


Subject(s)
Nociception , Phenelzine , Animals , Mice , Male , Phenelzine/pharmacology , Proteome , Nerve Tissue Proteins
5.
New Phytol ; 240(2): 744-756, 2023 10.
Article in English | MEDLINE | ID: mdl-37649265

ABSTRACT

Nitrogen-fixing symbioses allow legumes to thrive in nitrogen-poor soils at the cost of diverting some photoassimilate to their microsymbionts. Effort is being made to bioengineer nitrogen fixation into nonleguminous crops. This requires a quantitative understanding of its energetic costs and the links between metabolic variations and symbiotic efficiency. A whole-plant metabolic model for soybean (Glycine max) with its associated microsymbiont Bradyrhizobium diazoefficiens was developed and applied to predict the cost-benefit of nitrogen fixation with varying soil nitrogen availability. The model predicted a nitrogen-fixation cost of c. 4.13 g C g-1 N, which when implemented into a crop scale model, translated to a grain yield reduction of 27% compared with a non-nodulating plant receiving its nitrogen from the soil. Considering the lower nitrogen content of cereals, the yield cost to a hypothetical N-fixing cereal is predicted to be less than half that of soybean. Soybean growth was predicted to be c. 5% greater when the nodule nitrogen export products were amides versus ureides. This is the first metabolic reconstruction in a tropical crop species that simulates the entire plant and nodule metabolism. Going forward, this model will serve as a tool to investigate carbon use efficiency and key mechanisms within N-fixing symbiosis in a tropical species forming determinate nodules.


Subject(s)
Glycine max , Nitrogen Fixation , Glycine max/genetics , Edible Grain , Nitrogen , Soil
6.
Field Crops Res ; 296: 108907, 2023 May 15.
Article in English | MEDLINE | ID: mdl-37193044

ABSTRACT

Context: Photosynthetic stimulations have shown promising outcomes in improving crop photosynthesis, including soybean. However, it is still unclear to what extent these changes can impact photosynthetic assimilation and yield under long-term field climate conditions. Objective: In this paper, we present a systematic evaluation of the response of canopy photosynthesis and yield to two critical parameters in leaf photosynthesis: the maximum carboxylation rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Vcmax) and the maximum electron transport of the ribulose-1,5-bisphosphate regeneration rate (Jmax). Methods: Using the field-scale crop model Soybean-BioCro and ten years of observed climate data in Urbana, Illinois, U.S., we conducted sensitivity experiments to estimate the changes in canopy photosynthesis, leaf area index, and biomass due to the changes in Vcmax and Jmax. Results: The results show that 1) Both the canopy photosynthetic assimilation (An) and pod biomass yields were more sensitive to the changes in Jmax, particularly at high atmospheric carbon-dioxide concentrations ([CO2]); 2) Higher [CO2] undermined the effectiveness of increasing the two parameters to improve An and yield; 3) Under the same [CO2], canopy light interception and canopy respiration were key factors that undermined improvements in An and yield; 4) A canopy with smaller leaf area index tended to have a higher yield improvement, and 5) Increases in assimilations and yields were highly dependent on growing-season climatic conditions. The solar radiation, temperature, and relative humidity were the main climate drivers that impacted the yield improvement, and they had opposite correlations with improved yield during the vegetative phase compared to the reproductive phase. Conclusions: In a world with elevated [CO2], genetic engineering crop photosynthesis should focus more on improving Jmax. Further, long-term climate conditions and seasonal variations must be considered to determine the improvements in soybean canopy photosynthesis and yield at the field scale. Implications: Quantifying the effectiveness of changing Vcmax and Jmax helps understand their individual and combined contributions to potential improvements in assimilation and yield. This work provides a framework for evaluating how altering the photosynthetic rate parameters impacts soybean yield and assimilation under different seasonal climate scenarios at the field scale.

7.
J Am Chem Soc ; 144(12): 5377-5388, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35235319

ABSTRACT

Electrophilic cofactors are widely distributed in nature and play important roles in many physiological and disease processes, yet they have remained blind spots in traditional activity-based protein profiling (ABPP) approaches that target nucleophiles. More recently, reverse-polarity (RP)-ABPP using hydrazine probes identified an electrophilic N-terminal glyoxylyl (Glox) group for the first time in secernin-3 (SCRN3). The biological function(s) of both the protein and Glox as a cofactor has not yet been pharmacologically validated because of the lack of selective inhibitors that could disrupt and therefore identify its activity. Here, we present the first platform for analyzing the reactivity and selectivity of an expanded nucleophilic probe library toward main-chain carbonyl cofactors such as Glox and pyruvoyl (Pyvl) groups. We first applied the library proteome-wide to profile and confirm engagement with various electrophilic protein targets, including secernin-2 (SCRN2), shown here also to possess a Glox group. A broadly reactive indole ethylhydrazine probe was used for a competitive in vitro RP-ABPP assay to screen for selective inhibitors against such cofactors from a set of commercially available nucleophilic fragments. Using Glox-containing SCRN proteins as a case study, naphthyl hydrazine was identified as a potent and selective SCRN3 inhibitor, showing complete inhibition in cell lysates with no significant cross-reactivity detected for other enzymes. Moving forward, this platform provides the fundamental basis for the development of selective Glox inhibitors and represents a starting point to advance small molecules that modulate electrophile-dependent function.


Subject(s)
Hydrazines , Proteome , Hydrazines/pharmacology
8.
Med Vet Entomol ; 36(3): 320-328, 2022 09.
Article in English | MEDLINE | ID: mdl-35266572

ABSTRACT

Culicoides midges are hematophagous insects that transmit arboviruses of veterinary importance. These viruses include bluetongue virus (BTV) and epizootic hemorrhagic fever virus (EHDV). The endosymbiont Wolbachia pipientis Hertig spreads rapidly through insect host populations and has been demonstrated to inhibit viral pathogen transmission in multiple mosquito vectors. Here, we have demonstrated a replication inhibitory effect on BTV and EHDV in a Wolbachia (wAlbB strain)-infected Culicoides sonorensis Wirth and Jones W8 cell line. Viral replication was significantly reduced by day 5 for BTV and by day 2 for EHDV as detected by real-time polymerase chain reaction (RT-qPCR) of the non-structural NS3 gene of both viruses. Evaluation of innate cellular immune responses as a cause of the inhibitory effect showed responses associated with BTV but not with EHDV infection. Wolbachia density also did not play a role in the observed pathogen inhibitory effects, and an alternative hypothesis is suggested. Applications of Wolbachia-mediated pathogen interference to impact disease transmission by Culicoides midges are discussed.


Subject(s)
Bluetongue virus , Bluetongue , Ceratopogonidae , Dengue Virus , Sheep Diseases , Wolbachia , Animals , Bluetongue virus/physiology , Ceratopogonidae/physiology , Dengue Virus/genetics , Real-Time Polymerase Chain Reaction/veterinary , Sheep , Wolbachia/genetics
9.
PLoS Comput Biol ; 16(4): e1007197, 2020 04.
Article in English | MEDLINE | ID: mdl-32275650

ABSTRACT

Accurate manipulation of metabolites in monolignol biosynthesis is a key step for controlling lignin content, structure, and other wood properties important to the bioenergy and biomaterial industries. A crucial component of this strategy is predicting how single and combinatorial knockdowns of monolignol specific gene transcripts influence the abundance of monolignol proteins, which are the driving mechanisms of monolignol biosynthesis. Computational models have been developed to estimate protein abundances from transcript perturbations of monolignol specific genes. The accuracy of these models, however, is hindered by their inability to capture indirect regulatory influences on other pathway genes. Here, we examine the manifestation of these indirect influences on transgenic transcript and protein abundances, identifying putative indirect regulatory influences that occur when one or more specific monolignol pathway genes are perturbed. We created a computational model using sparse maximum likelihood to estimate the resulting monolignol transcript and protein abundances in transgenic Populus trichocarpa based on targeted knockdowns of specific monolignol genes. Using in-silico simulations of this model and root mean square error, we showed that our model more accurately estimated transcript and protein abundances, in comparison to previous models, when individual and families of monolignol genes were perturbed. We leveraged insight from the inferred network structure obtained from our model to identify potential genes, including PtrHCT, PtrCAD, and Ptr4CL, involved in post-transcriptional and/or post-translational regulation. Our model provides a useful computational tool for exploring the cascaded impact of single and combinatorial modifications of monolignol specific genes on lignin and other wood properties.


Subject(s)
Computational Biology/methods , Lignin/genetics , Lignin/metabolism , Gene Expression Regulation, Plant/genetics , Gene Knockdown Techniques/methods , Lignin/biosynthesis , Models, Theoretical , Populus/genetics , Wood/genetics
10.
Proc Natl Acad Sci U S A ; 115(40): 10022-10027, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30224458

ABSTRACT

All cells obtain 2'-deoxyribonucleotides for DNA synthesis through the activity of a ribonucleotide reductase (RNR). The class I RNRs found in humans and pathogenic bacteria differ in (i) use of Fe(II), Mn(II), or both for activation of the dinuclear-metallocofactor subunit, ß; (ii) reaction of the reduced dimetal center with dioxygen or superoxide for this activation; (iii) requirement (or lack thereof) for a flavoprotein activase, NrdI, to provide the superoxide from O2; and (iv) use of either a stable tyrosyl radical or a high-valent dimetal cluster to initiate each turnover by oxidizing a cysteine residue in the α subunit to a radical (Cys•). The use of manganese by bacterial class I, subclass b-d RNRs, which contrasts with the exclusive use of iron by the eukaryotic Ia enzymes, appears to be a countermeasure of certain pathogens against iron deprivation imposed by their hosts. Here, we report a metal-free type of class I RNR (subclass e) from two human pathogens. The Cys• in its α subunit is generated by a stable, tyrosine-derived dihydroxyphenylalanine radical (DOPA•) in ß. The three-electron oxidation producing DOPA• occurs in Escherichia coli only if the ß is coexpressed with the NrdI activase encoded adjacently in the pathogen genome. The independence of this new RNR from transition metals, or the requirement for a single metal ion only transiently for activation, may afford the pathogens an even more potent countermeasure against transition metal-directed innate immunity.


Subject(s)
Dihydroxyphenylalanine/chemistry , Escherichia coli Proteins/chemistry , Escherichia coli/enzymology , Free Radicals/chemistry , Ribonucleotide Reductases/chemistry , Tyrosine/chemistry , Dihydroxyphenylalanine/metabolism , Escherichia coli Proteins/metabolism , Free Radicals/metabolism , Ribonucleotide Reductases/metabolism , Tyrosine/metabolism
11.
J Am Chem Soc ; 141(38): 15153-15165, 2019 09 25.
Article in English | MEDLINE | ID: mdl-31475820

ABSTRACT

Iron(II)- and 2-oxoglutarate-dependent (Fe/2OG) oxygenases generate iron(IV)-oxo (ferryl) intermediates that can abstract hydrogen from aliphatic carbons (R-H). Hydroxylation proceeds by coupling of the resultant substrate radical (R•) and oxygen of the Fe(III)-OH complex ("oxygen rebound"). Nonhydroxylation outcomes result from different fates of the Fe(III)-OH/R• state; for example, halogenation results from R• coupling to a halogen ligand cis to the hydroxide. We previously suggested that halogenases control substrate-cofactor disposition to disfavor oxygen rebound and permit halogen coupling to prevail. Here, we explored the general implication that, when a ferryl intermediate can ambiguously target two substrate carbons for different outcomes, rebound to the site capable of the alternative outcome should be slower than to the adjacent, solely hydroxylated site. We evaluated this prediction for (i) the halogenase SyrB2, which exclusively hydroxylates C5 of norvaline appended to its carrier protein but can either chlorinate or hydroxylate C4 and (ii) two bifunctional enzymes that normally hydroxylate one carbon before coupling that oxygen to a second carbon (producing an oxacycle) but can, upon encountering deuterium at the first site, hydroxylate the second site instead. In all three cases, substrate hydroxylation incorporates a greater fraction of solvent-derived oxygen at the site that can also undergo the alternative outcome than at the other site, most likely reflecting an increased exchange of the initially O2-derived oxygen ligand in the longer-lived Fe(III)-OH/R• states. Suppression of rebound may thus be generally important for nonhydroxylation outcomes by these enzymes.


Subject(s)
Ferrous Compounds/metabolism , Ketoglutaric Acids/metabolism , Oxygen/metabolism , Oxygenases/metabolism , Ferrous Compounds/chemistry , Ketoglutaric Acids/chemistry , Molecular Structure , Oxygen/chemistry , Oxygenases/chemistry , Stereoisomerism
12.
Nature ; 499(7458): 320-3, 2013 Jul 18.
Article in English | MEDLINE | ID: mdl-23868262

ABSTRACT

Mononuclear non-haem iron (NHFe) enzymes catalyse a broad range of oxidative reactions, including halogenation, hydroxylation, ring closure, desaturation and aromatic ring cleavage reactions. They are involved in a number of biological processes, including phenylalanine metabolism, the production of neurotransmitters, the hypoxic response and the biosynthesis of secondary metabolites. The reactive intermediate in the catalytic cycles of these enzymes is a high-spin S = 2 Fe(IV)=O species, which has been trapped for a number of NHFe enzymes, including the halogenase SyrB2 (syringomycin biosynthesis enzyme 2). Computational studies aimed at understanding the reactivity of this Fe(IV)=O intermediate are limited in applicability owing to the paucity of experimental knowledge about its geometric and electronic structure. Synchrotron-based nuclear resonance vibrational spectroscopy (NRVS) is a sensitive and effective method that defines the dependence of the vibrational modes involving Fe on the nature of the Fe(IV)=O active site. Here we present NRVS structural characterization of the reactive Fe(IV)=O intermediate of a NHFe enzyme, namely the halogenase SyrB2 from the bacterium Pseudomonas syringae pv. syringae. This intermediate reacts via an initial hydrogen-atom abstraction step, performing subsequent halogenation of the native substrate or hydroxylation of non-native substrates. A correlation of the experimental NRVS data to electronic structure calculations indicates that the substrate directs the orientation of the Fe(IV)=O intermediate, presenting specific frontier molecular orbitals that can activate either selective halogenation or hydroxylation.


Subject(s)
Iron/chemistry , Oxidoreductases/chemistry , Biocatalysis , Halogenation , Hydroxylation , Oxidoreductases/metabolism , Pseudomonas syringae/enzymology
13.
J Am Chem Soc ; 139(20): 7052-7061, 2017 05 24.
Article in English | MEDLINE | ID: mdl-28498651

ABSTRACT

The design and examination of 4,1,2-benzoxathiazin-3-one 1,1-dioxides as candidate serine hydrolase inhibitors are disclosed, and represent the synthesis and study of a previously unexplored heterocycle. This new class of activated cyclic carbamates provided selective irreversible inhibition of a small subset of serine hydrolases without release of a leaving group, does not covalently modify active site catalytic cysteine and lysine residues of other enzyme classes, and was found to be amenable to predictable structural modifications that modulate intrinsic reactivity or active site recognition. Even more remarkable and within the small pilot series of candidate inhibitors examined in an initial study, an exquisitely selective inhibitor for a poorly characterized serine hydrolase (PNPLA4, patatin-like phospholipase domain-containing protein 4) involved in adipocyte triglyceride homeostasis was discovered.


Subject(s)
Drug Design , Lipase/antagonists & inhibitors , Serine Proteinase Inhibitors/pharmacology , Humans , Lipase/metabolism , Molecular Structure , Serine Proteinase Inhibitors/chemical synthesis , Serine Proteinase Inhibitors/chemistry
14.
Inorg Chem ; 56(21): 13382-13389, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-28960972

ABSTRACT

The iron(II)- and 2-(oxo)glutarate-dependent (Fe/2OG) oxygenases catalyze an array of challenging transformations via a common iron(IV)-oxo (ferryl) intermediate, which in most cases abstracts hydrogen (H•) from an aliphatic carbon of the substrate. Although it has been shown that the relative disposition of the Fe-O and C-H bonds can control the rate of H• abstraction and fate of the resultant substrate radical, there remains a paucity of structural information on the actual ferryl states, owing to their high reactivity. We demonstrate here that the stable vanadyl ion [(VIV-oxo)2+] binds along with 2OG or its decarboxylation product, succinate, in the active site of two different Fe/2OG enzymes to faithfully mimic their transient ferryl states. Both ferryl and vanadyl complexes of the Fe/2OG halogenase, SyrB2, remain stably bound to its carrier protein substrate (l-aminoacyl-S-SyrB1), whereas the corresponding complexes harboring transition metals (Fe, Mn) in lower oxidation states dissociate. In the well-studied taurine:2OG dioxygenase (TauD), the disposition of the substrate C-H bond relative to the vanadyl ion defined by pulse electron paramagnetic resonance methods is consistent with the crystal structure of the reactant complex and computational models of the ferryl state. Vanadyl substitution may thus afford access to structural details of the key ferryl intermediates in this important enzyme class.


Subject(s)
Iron/chemistry , Nonheme Iron Proteins/chemistry , Oxidoreductases/chemistry , Vanadates/chemistry , Carrier Proteins/chemistry , Catalytic Domain , Mixed Function Oxygenases/chemistry , Oxidation-Reduction , Succinic Acid/chemistry , Taurine/chemistry
15.
J Am Chem Soc ; 138(15): 5110-22, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-27021969

ABSTRACT

Low temperature magnetic circular dichroism (LT MCD) spectroscopy in combination with quantum-chemical calculations are used to define the electronic structure associated with the geometric structure of the Fe(IV)═O intermediate in SyrB2 that was previously determined by nuclear resonance vibrational spectroscopy. These studies elucidate key frontier molecular orbitals (FMOs) and their contribution to H atom abstraction reactivity. The VT MCD spectra of the enzymatic S = 2 Fe(IV)═O intermediate with Br(-) ligation contain information-rich features that largely parallel the corresponding spectra of the S = 2 model complex (TMG3tren)Fe(IV)═O (Srnec, M.; Wong, S. D.; England, J; Que, L; Solomon, E. I. Proc. Natl. Acad. Sci. USA 2012, 109, 14326-14331). However, quantitative differences are observed that correlate with π-anisotropy and oxo donor strength that perturb FMOs and affect reactivity. Due to π-anisotropy, the Fe(IV)═O active site exhibits enhanced reactivity in the direction of the substrate cavity that proceeds through a π-channel that is controlled by perpendicular orientation of the substrate C-H bond relative to the halide-Fe(IV)═O plane. Also, the increased intrinsic reactivity of the SyrB2 intermediate relative to the ferryl model complex is correlated to a higher oxyl character of the Fe(IV)═O at the transition states resulting from the weaker ligand field of the halogenase.


Subject(s)
Glutarates/chemistry , Hydrogen/chemistry , Iron Compounds/chemistry , Nonheme Iron Proteins/chemistry , Oxidoreductases/chemistry , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Circular Dichroism , Glutarates/metabolism , Iron Compounds/metabolism , Models, Molecular , Nonheme Iron Proteins/metabolism , Oxidoreductases/metabolism , Quantum Theory , Threonine/chemistry , Threonine/metabolism
16.
J Am Chem Soc ; 138(40): 13335-13343, 2016 10 12.
Article in English | MEDLINE | ID: mdl-27689866

ABSTRACT

Methylation is a fundamental mechanism used in Nature to modify the structure and function of biomolecules, including proteins, DNA, RNA, and metabolites. Methyl groups are predominantly installed into biomolecules by a large and diverse class of S-adenosyl methionine (SAM)-dependent methyltransferases (MTs), of which there are ∼200 known or putative members in the human proteome. Deregulated MT activity contributes to numerous diseases, including cancer, and several MT inhibitors are in clinical development. Nonetheless, a large fraction of the human MT family remains poorly characterized, underscoring the need for new technologies to characterize MTs and their inhibitors in native biological systems. Here, we describe a suite of S-adenosyl homocysteine (SAH) photoreactive probes and their application in chemical proteomic experiments to profile and enrich a large number of MTs (>50) from human cancer cell lysates with remarkable specificity over other classes of proteins. We further demonstrate that the SAH probes can enrich MT-associated proteins and be used to screen for and assess the selectivity of MT inhibitors, leading to the discovery of a covalent inhibitor of nicotinamide N-methyltransferase (NNMT), an enzyme implicated in cancer and metabolic disorders. The chemical proteomics probes and methods for their utilization reported herein should prove of value for the functional characterization of MTs, MT complexes, and MT inhibitors in mammalian biology and disease.


Subject(s)
Methyltransferases/metabolism , Proteomics , Cell Line, Tumor , Enzyme Activation , Humans , Molecular Probes/metabolism , S-Adenosylhomocysteine/metabolism , Ultraviolet Rays
17.
Nat Chem Biol ; 10(3): 209-15, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24463698

ABSTRACT

Iron-dependent halogenases employ cis-halo-Fe(IV)-oxo (haloferryl) complexes to functionalize unactivated aliphatic carbon centers, a capability elusive to synthetic chemists. Halogenation requires (i) coordination of a halide anion (Cl(-) or Br(-)) to the enzyme's Fe(II) cofactor, (ii) coupled activation of O2 and decarboxylation of α-ketoglutarate to generate the haloferryl intermediate, (iii) abstraction of hydrogen (H•) from the substrate by the ferryl and (iv) transfer of the cis halogen as Cl• or Br• to the substrate radical. This enzymatic solution to an unsolved chemical challenge is potentially generalizable to installation of other functional groups, provided that the corresponding anions can support the four requisite steps. We show here that the wild-type halogenase SyrB2 can indeed direct aliphatic nitration and azidation reactions by the same chemical logic. The discovery and enhancement by mutagenesis of these previously unknown reaction types suggest unrecognized or untapped versatility in ferryl-mediated enzymatic C-H bond activation.


Subject(s)
Azides/chemistry , Enzymes/metabolism , Iron/chemistry , Nitrates/chemistry , Pseudomonas syringae/enzymology , Chromatography, Liquid , Coordination Complexes/chemistry , Ketoglutaric Acids/chemistry , Mass Spectrometry , Mutation , Pseudomonas syringae/genetics
18.
Nat Chem Biol ; 10(5): 386-91, 2014 May.
Article in English | MEDLINE | ID: mdl-24705591

ABSTRACT

A challenge in the computational design of enzymes is that multiple properties, including substrate binding, transition state stabilization and product release, must be simultaneously optimized, and this has limited the absolute activity of successful designs. Here, we focus on a single critical property of many enzymes: the nucleophilicity of an active site residue that initiates catalysis. We design proteins with idealized serine-containing catalytic triads and assess their nucleophilicity directly in native biological systems using activity-based organophosphate probes. Crystal structures of the most successful designs show unprecedented agreement with computational models, including extensive hydrogen bonding networks between the catalytic triad (or quartet) residues, and mutagenesis experiments demonstrate that these networks are critical for serine activation and organophosphate reactivity. Following optimization by yeast display, the designs react with organophosphate probes at rates comparable to natural serine hydrolases. Co-crystal structures with diisopropyl fluorophosphate bound to the serine nucleophile suggest that the designs could provide the basis for a new class of organophosphate capture agents.


Subject(s)
Catalytic Domain , Serine/metabolism , Crystallography, X-Ray , Hydrolases/metabolism , Models, Molecular , Molecular Structure
19.
Curr Opin Biotechnol ; 88: 103144, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38815490

ABSTRACT

Global yield gaps can be reduced through breeding and improved agronomy. However, signs of yield plateaus from wheat and rice grown in intensively farmed systems indicate a need for new strategies if output is to continue to increase. Approaches to improve photosynthesis are suggested as a solution. Empirical evidence supporting this approach comes from small-scale free-CO2 air enrichment and transgenic studies. However, the likely achievable gains from improving photosynthesis are less understood. Models predict maximum increases in yield of 5.3-19.1% from genetic manipulation depending on crop, environment, and approach, but uncertainty remains in the presence of stress. This review seeks to provide context to the rationale for improving photosynthesis, highlight areas of uncertainty, and identify the steps required to create more accurate projections.


Subject(s)
Crops, Agricultural , Photosynthesis , Photosynthesis/physiology , Crops, Agricultural/growth & development , Crops, Agricultural/metabolism , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Triticum/growth & development , Triticum/metabolism
20.
ACS Chem Biol ; 19(8): 1674-1682, 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39041925

ABSTRACT

Rhomboid proteases have fascinated scientists by virtue of their membrane-embedded active sites and proposed involvement in physiological and disease pathways. The human rhomboid protease RHBDL4 has generated particular interest due to its role in endoplasmic reticulum-associated protein degradation and upregulation in several cancers; however, chemical tools for studying this enzyme are currently lacking. Here, we describe the development of an activity-based protein profiling (ABPP) assay for RHBDL4. We have employed this assay to determine that human RHBDL4 undergoes proteolytic processing in cells to produce multiple active proteoforms with truncated C-termini. We have also used this assay to identify chemical scaffolds capable of inhibiting RHBDL4 activity and have observed distinct inhibitor preferences between RHBDL4 and a second human rhomboid protease PARL. Our work demonstrates the power of ABPP technology to characterize active forms of enzymes that might otherwise elude detection and the potential to achieve selective inhibition among the human rhomboid proteases.


Subject(s)
Proteolysis , Humans , Proteolysis/drug effects , Membrane Proteins/metabolism , Membrane Proteins/antagonists & inhibitors , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Protease Inhibitors/metabolism , Endopeptidases/metabolism , HEK293 Cells
SELECTION OF CITATIONS
SEARCH DETAIL