ABSTRACT
OBJECTIVE: Tissue stem cells are central regulators of organ homoeostasis. We looked for a protein that is exclusively expressed and functionally involved in stem cell activity in rapidly proliferating isthmus stem cells in the stomach corpus. DESIGN: We uncovered the specific expression of Iqgap3 in proliferating isthmus stem cells through immunofluorescence and in situ hybridisation. We performed lineage tracing and transcriptomic analysis of Iqgap3 +isthmus stem cells with the Iqgap3-2A-tdTomato mouse model. Depletion of Iqgap3 revealed its functional importance in maintenance and proliferation of stem cells. We further studied Iqgap3 expression and the associated gene expression changes during tissue repair after tamoxifen-induced damage. Immunohistochemistry revealed elevated expression of Iqgap3 in proliferating regions of gastric tumours from patient samples. RESULTS: Iqgap3 is a highly specific marker of proliferating isthmus stem cells during homoeostasis. Iqgap3+isthmus stem cells give rise to major cell types of the corpus unit. Iqgap3 expression is essential for the maintenance of stem potential. The Ras pathway is a critical partner of Iqgap3 in promoting strong proliferation in isthmus stem cells. The robust induction of Iqgap3 expression following tissue damage indicates an active role for Iqgap3 in tissue regeneration. CONCLUSION: IQGAP3 is a major regulator of stomach epithelial tissue homoeostasis and repair. The upregulation of IQGAP3 in gastric cancer suggests that IQGAP3 plays an important role in cancer cell proliferation.
Subject(s)
GTPase-Activating Proteins/metabolism , Gastric Mucosa/cytology , Homeostasis/physiology , Stem Cells/cytology , Stomach Neoplasms/metabolism , Animals , Biomarkers, Tumor/metabolism , Cell Proliferation/physiology , Disease Models, Animal , Gene Expression Profiling , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Stomach Neoplasms/drug therapy , Tamoxifen/toxicityABSTRACT
The runt-related transcription factors (RUNX) play prominent roles in cell cycle progression, differentiation, apoptosis, immunity and epithelial-mesenchymal transition. There are three members in the mammalian RUNX family, each with distinct tissue expression profiles. RUNX genes play unique and redundant roles during development and adult tissue homeostasis. The ability of RUNX proteins to influence signaling pathways, such as Wnt, TGFß and Hippo-YAP, suggests that they integrate signals from the environment to dictate cell fate decisions. All RUNX genes hold master regulator roles, albeit in different tissues, and all have been implicated in cancer. Paradoxically, RUNX genes exert tumor suppressive and oncogenic functions, depending on tumor type and stage. Unlike RUNX1 and 2, the role of RUNX3 in stem cells is poorly understood. A recent study using cancer-derived RUNX3 mutation R122C revealed a gatekeeper role for RUNX3 in gastric epithelial stem cell homeostasis. The corpora of RUNX3R122C/R122C mice showed a dramatic increase in proliferating stem cells as well as inhibition of differentiation. Tellingly, RUNX3R122C/R122C mice also exhibited a precancerous phenotype. This review focuses on the impact of RUNX3 dysregulation on (1) stem cell fate and (2) the molecular mechanisms underpinning early carcinogenesis.
Subject(s)
Core Binding Factor alpha Subunits , Neoplasms , Animals , Mice , Biology , Core Binding Factor alpha Subunits/genetics , Core Binding Factor alpha Subunits/metabolism , Mammals/metabolism , Mutation , Neoplasms/genetics , Signal Transduction , HumansABSTRACT
We reported earlier that IQGAP3 is an important stem cell factor in rapidly proliferating isthmus stem cells in the stomach and that IQGAP3 expression is robustly induced in terminally differentiated chief cells and de-differentiated cells following tissue damage. The elevated IQGAP3 expression in cancer and its association with metastasis suggest a fundamental role for IQGAP3 in proliferating cancer stem cells. What causes IQGAP3 upregulation in cancer is unclear. Here, we show that IGF2BP1 and IQGAP3 expression levels are highest in the blastocyst, with both decreasing during adulthood. This suggests that IQGAP3, like IGF2BP1, is an early developmental gene that is aberrantly upregulated upon re-expression of IGF2BP1 during carcinogenesis. IGF2BP1 binds and stabilizes m6A-modified IQGAP3 transcripts. Downstream targets of IGF2BP1, namely SRF and FOXM1, also upregulate IQGAP3 expression. These multiple layers of IQGAP3 regulation, which may safeguard against inappropriate stem cell proliferation, present additional drug targets to inhibit IQGAP3-driven malignant growth.