Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 67
Filter
Add more filters

Country/Region as subject
Publication year range
1.
J Neuropsychiatry Clin Neurosci ; 36(1): 53-62, 2024.
Article in English | MEDLINE | ID: mdl-37559510

ABSTRACT

OBJECTIVE: The authors sought to identify predictive factors of new-onset or novel oppositional defiant disorder or conduct disorder assessed 24 months after traumatic brain injury (TBI). METHODS: Children ages 5 to 14 years who had experienced TBI were recruited from consecutive hospital admissions. Soon after injury, participants were assessed for preinjury characteristics, including psychiatric disorders, socioeconomic status (SES), psychosocial adversity, and family function, and the presence and location of lesions were documented by MRI. Psychiatric outcomes, including novel oppositional defiant disorder or conduct disorder, were assessed 24 months after injury. RESULTS: Of the children without preinjury oppositional defiant disorder, conduct disorder, or disruptive behavior disorder not otherwise specified who were recruited in this study, 165 were included in this sample; 95 of these children returned for the 24-month assessment. Multiple imputation was used to address attrition. The prevalence of novel oppositional defiant disorder or conduct disorder was 23.7 out of 165 (14%). In univariable analyses, novel oppositional defiant disorder or conduct disorder was significantly associated with psychosocial adversity (p=0.049) and frontal white matter lesions (p=0.016) and was marginally but not significantly associated with SES. In the final multipredictor model, frontal white matter lesions were significantly associated with novel oppositional defiant disorder or conduct disorder (p=0.021), and psychosocial adversity score was marginally but not significantly associated with the outcome. The odds ratio of novel oppositional defiant disorder or conduct disorder among the children with versus those without novel depressive disorder was significantly higher for girls than boys (p=0.025), and the odds ratio of novel oppositional defiant disorder or conduct disorder among the children with versus those without novel attention-deficit hyperactivity disorder (ADHD) was significantly higher for boys than girls (p=0.006). CONCLUSION: Approximately 14% of children with TBI developed oppositional defiant disorder or conduct disorder. The risk for novel oppositional defiant disorder or conduct disorder can be understood from a biopsychosocial perspective. Sex differences were evident for comorbid novel depressive disorder and comorbid novel ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Brain Injuries, Traumatic , Conduct Disorder , Child , Humans , Adolescent , Female , Male , Conduct Disorder/complications , Conduct Disorder/epidemiology , Conduct Disorder/psychology , Oppositional Defiant Disorder , Attention Deficit and Disruptive Behavior Disorders/epidemiology , Attention Deficit Disorder with Hyperactivity/psychology , Comorbidity , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/epidemiology
2.
J Neuropsychiatry Clin Neurosci ; 35(2): 141-150, 2023.
Article in English | MEDLINE | ID: mdl-35989573

ABSTRACT

OBJECTIVE: To investigate the factors predictive of novel psychiatric disorders in the interval 0-6 months following traumatic brain injury (TBI). METHODS: Children ages 5-14 years consecutively hospitalized for mild to severe TBI at five hospitals were recruited. Participants were evaluated at baseline (soon after injury) for pre-injury characteristics including psychiatric disorders, socioeconomic status (SES), psychosocial adversity, family function, family psychiatric history, and adaptive function. In addition to the psychosocial variables, injury severity and lesion location detected with acquisition of a research MRI were measured to develop a biopsychosocial predictive model for development of novel psychiatric disorders. Psychiatric outcome, including occurrence of a novel psychiatric disorder, was assessed 6 months after the injury. RESULTS: The recruited sample numbered 177 children, and 141 children (80%) returned for the six-month assessment. Of the 141 children, 58 (41%) developed a novel psychiatric disorder. In univariable analyses, novel psychiatric disorder was significantly associated with lower SES, higher psychosocial adversity, and lesions in frontal lobe locations, such as frontal white matter, superior frontal gyrus, inferior frontal gyrus, and orbital gyrus. Multivariable analyses found that novel psychiatric disorder was independently and significantly associated with frontal-lobe white matter, superior frontal gyrus, and orbital gyrus lesions. CONCLUSION: The results demonstrate that occurrence of novel psychiatric disorders following pediatric TBI requiring hospitalization is common and has identifiable psychosocial and specific biological predictors. However, only the lesion predictors were independently related to this adverse psychiatric outcome.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Mental Disorders , Child , Humans , Adolescent , Child, Preschool , Brain Injuries/complications , Mental Disorders/etiology , Mental Disorders/complications , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Brain Injuries, Traumatic/epidemiology , Magnetic Resonance Imaging , Prefrontal Cortex
3.
J Neuropsychiatry Clin Neurosci ; 34(1): 60-67, 2022.
Article in English | MEDLINE | ID: mdl-34538075

ABSTRACT

OBJECTIVE: The investigators aimed to extend findings regarding predictive factors of psychiatric outcomes among children and adolescents with traumatic brain injury (TBI) from 2 to 24 years postinjury. METHODS: Youths aged 6-14 years who were hospitalized following TBI from 1992 to 1994 were assessed at baseline for TBI severity and for preinjury psychiatric, adaptive, and behavioral functioning; family functioning; family psychiatric history; socioeconomic status; and intelligence within weeks of injury. Predictors of psychiatric outcomes following pediatric TBI at 3, 6, 12, and 24 months postinjury have previously been reported. In this study, repeat psychiatric assessments were completed at 24 years postinjury with the same cohort, now adults aged 29-39 years, with the outcome measure being presence of a psychiatric disorder not present before the TBI ("novel psychiatric disorder"). RESULTS: Fifty participants with pediatric TBI were initially enrolled, and the long-term outcome analyses focused on data from 45 individuals. Novel psychiatric disorder was present in 24 out of 45 (53%) participants. Presence of a current novel psychiatric disorder was independently predicted by the presence of a preinjury lifetime psychiatric disorder and by severity of TBI. CONCLUSIONS: Long-term psychiatric outcome (mean=23.92 years [SD=2.17]) in children and adolescents hospitalized for TBI can be predicted at the point of the initial hospitalization encounter by the presence of a preinjury psychiatric disorder and by greater injury severity.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Mental Disorders , Adolescent , Adult , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/epidemiology , Child , Cohort Studies , Humans , Mental Disorders/epidemiology , Mental Disorders/etiology , Risk Factors
4.
J Neuropsychiatry Clin Neurosci ; 34(2): 149-157, 2022.
Article in English | MEDLINE | ID: mdl-35040660

ABSTRACT

OBJECTIVE: The investigators examined the factors predictive of novel oppositional defiant disorder in the 6-12 months following traumatic brain injury (TBI). METHODS: Children ages 5-14 years old who experienced a TBI were recruited from consecutive admissions to five hospitals. Participants were evaluated soon after injury (baseline) for preinjury characteristics, including psychiatric disorders, adaptive function, family function, psychosocial adversity, family psychiatric history, socioeconomic status, and injury severity, to develop a biopsychosocial predictive model for development of novel oppositional defiant disorder. MRI analyses were conducted to examine potential brain lesions. Psychiatric outcome, including that of novel oppositional defiant disorder, was assessed 12 months after injury. RESULTS: Although 177 children were recruited for the study, 120 children without preinjury oppositional defiant disorder, conduct disorder, or disruptive behavior disorder not otherwise specified (DBD NOS) returned for the 12-month assessment. Of these 120 children, seven (5.8%) exhibited novel oppositional defiant disorder, and none developed conduct disorder or DBD NOS in the 6-12 months postinjury. Novel oppositional defiant disorder was significantly associated with lower socioeconomic status, higher psychosocial adversity, and lower preinjury adaptive functioning. CONCLUSIONS: These results demonstrate that novel oppositional defiant disorder following TBI selectively and negatively affects an identifiable group of children. Both proximal (preinjury adaptive function) and distal (socioeconomic status and psychosocial adversity) psychosocial variables significantly increase risk for this outcome.


Subject(s)
Attention Deficit and Disruptive Behavior Disorders , Brain Injuries, Traumatic , Adolescent , Attention Deficit and Disruptive Behavior Disorders/epidemiology , Attention Deficit and Disruptive Behavior Disorders/etiology , Brain Injuries, Traumatic/complications , Child , Child, Preschool , Humans , Magnetic Resonance Imaging , Social Class
5.
J Neuropsychiatry Clin Neurosci ; 34(1): 68-76, 2022.
Article in English | MEDLINE | ID: mdl-34763527

ABSTRACT

OBJECTIVE: The investigators aimed to assess predictive factors of novel oppositional defiant disorder (ODD) among children and adolescents in the first 6 months following traumatic brain injury (TBI). METHODS: Children ages 5-14 years who experienced a TBI were recruited from consecutive admissions to five hospitals. Testing of a biopsychosocial model that may elucidate the development of novel ODD included assessment soon after injury (baseline) of preinjury characteristics, including psychiatric disorders, adaptive function, family function, psychosocial adversity, family psychiatric history, socioeconomic status, injury severity, and postinjury processing speed (which may be a proxy for brain injury). MRI analyses were also conducted to examine potential brain lesions. Psychiatric outcome, including that of novel ODD, was assessed 6 months after the injury. RESULTS: A total of 177 children and adolescents were recruited for the study, and 134 who were without preinjury ODD, conduct disorder, or disruptive behavior disorder not otherwise specified (DBD NOS) returned for the 6-month assessment. Of those who returned 6 months postinjury, 11 (8.2%) developed novel ODD, and none developed novel conduct disorder or DBD NOS. Novel ODD was significantly associated with socioeconomic status, preinjury family functioning, psychosocial adversity, and processing speed. CONCLUSIONS: These findings show that an important minority of children with TBI developed ODD. Psychosocial and injury-related variables, including socioeconomic status, lower family function, psychosocial adversity, and processing speed, significantly increase risk for this outcome.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Adolescent , Attention Deficit and Disruptive Behavior Disorders/epidemiology , Attention Deficit and Disruptive Behavior Disorders/etiology , Brain Injuries, Traumatic/complications , Child , Child, Preschool , Humans , Magnetic Resonance Imaging , Social Class
6.
Can J Psychiatry ; 61(5): 259-69, 2016 05.
Article in English | MEDLINE | ID: mdl-27254800

ABSTRACT

BACKGROUND: Evidence regarding longer-term psychiatric, psychological, and behavioural outcomes (for example, anxiety, mood disorders, depression, and attention disorders) following mild traumatic brain injury (mTBI) in children and adolescents has not been previously synthesized. OBJECTIVE: To conduct a systematic review of the available evidence examining psychiatric, psychological, and behavioural outcomes following mTBI in children and adolescents. MATERIALS AND METHODS: Nine electronic databases were systematically searched from 1980 to August 2014. Studies selected met the following criteria: original data; study design was a randomized controlled trial, quasi-experimental design, cohort or historical cohort study, case-control study, or cross-sectional study; exposure included mTBI (including concussion); population included children and adolescents (<19 years) at the time of mTBI, as well as a comparison group (for example, healthy children, children with orthopaedic injuries); and included psychiatric, psychological, or behavioural outcomes (for example, anxiety, mood disorders, depression, attention disorders). Two authors independently assessed the quality and level of evidence with the Downs and Black (DB) criteria and Oxford Centre of Evidence-Based Medicine (OCEBM) model, respectively, for each manuscript. RESULTS: Of 9472 studies identified in the initial search, 30 were included and scored. Heterogeneity in methodology and injury definition precluded meta-analyses. The median methodological quality for all 30 studies, based on the DB criteria, was 15/33 (range 6 to 19). The highest level of evidence demonstrated by all reviewed studies was level 2b based on OCEBM criteria, with the majority (28/30 studies) classified at this level. Based on the literature included in this systematic review, psychological and psychiatric problems in children with a history of mTBI were found to be more prevalent when mTBI is associated with hospitalization, when assessment occurs earlier in the recovery period (that is, resolves over time), when there are multiple previous mTBIs, in individuals with preexisting psychiatric illness, when outcomes are based on retrospective recall, and when the comparison group is noninjured healthy children (as opposed to children with injuries not involving the head). CONCLUSIONS: Overall, few rigorous prospective studies have examined psychological, behavioural, and psychiatric outcomes following mTBI. In the absence of true reports of preinjury problems and when ideally comparing mild TBI to non-TBI injured controls, there is little evidence to suggest that psychological, behavioural, and/or psychiatric problems persist beyond the acute and subacute period following an mTBI in children and adolescents.


Subject(s)
Brain Concussion , Mental Disorders , Adolescent , Brain Concussion/complications , Brain Concussion/physiopathology , Brain Concussion/psychology , Child , Humans , Mental Disorders/etiology , Mental Disorders/physiopathology , Mental Disorders/psychology
7.
J Neuropsychiatry Clin Neurosci ; 27(4): 272-9, 2015.
Article in English | MEDLINE | ID: mdl-26185905

ABSTRACT

Personality change due to traumatic brain injury (PC) in children is an important psychiatric complication of injury and is a form of severe affective dysregulation. This study aimed to examine neurocognitive correlates of PC. The sample included 177 children 5-14 years old with traumatic brain injury who were enrolled from consecutive admissions to five trauma centers. Patients were followed up prospectively at baseline and at 6 months, and they were assessed with semistructured psychiatric interviews. Injury severity, socioeconomic status, and neurocognitive function (measures of attention, processing speed, verbal memory, IQ, verbal working memory, executive function, naming/reading, expressive language, motor speed, and motor inhibition) were assessed with standardized instruments. Unremitted PC was present in 26 (18%) of 141 participants assessed at 6 months postinjury. Attention, processing speed, verbal memory, IQ, and executive function were significantly associated with PC even after socioeconomic status, injury severity, and preinjury attention deficit hyperactivity disorder were controlled. These findings are a first step in characterizing concomitant cognitive impairments associated with PC. The results have implications beyond brain injury to potentially elucidate the neurocognitive symptom complex associated with mood instability regardless of etiology.


Subject(s)
Brain Injuries/complications , Cognition Disorders/etiology , Personality Disorders/etiology , Personality , Adolescent , Attention/physiology , Brain Injuries/psychology , Child , Child, Preschool , Cognition Disorders/psychology , Executive Function/physiology , Female , Humans , Intelligence/physiology , Male , Memory, Short-Term/physiology , Neurologic Examination , Neuropsychological Tests , Personality Disorders/psychology , Psychiatric Status Rating Scales , Socioeconomic Factors
8.
J Neuropsychiatry Clin Neurosci ; 27(2): 112-20, 2015.
Article in English | MEDLINE | ID: mdl-25923850

ABSTRACT

This study aimed to better understand the occurrence of novel psychiatric disorders (NPDs) in children with mild traumatic brain injury (mTBI) in relation to preinjury variables, injury-related variables, and concurrent neurocognitive outcome. Eighty-seven children aged 5-14 years who had experienced mTBI were studied from consecutive hospital admissions with semistructured psychiatric interviews soon after injury (baseline). Fifty-four children were reassessed 24 months postinjury. Standardized instruments were used to evaluate injury severity, lesion characteristics, preinjury variables (lifetime psychiatric disorder, family psychiatric history, family function, socioeconomic status, psychosocial adversity, adaptive function, and academic function), and finally, postinjury neurocognitive and adaptive function. At 24 months postinjury, NPDs had occurred in 17 of 54 (31%) participants. NPD at 24 months was related to frontal white matter lesions and was associated with estimated preinjury reading, preinjury adaptive function, and concurrent deficits in reading, processing speed, and adaptive function. These findings extend earlier reports that the psychiatric morbidity after mTBI in children is more common than previously thought, and moreover, it is linked to preinjury individual variables and injury characteristics and is associated with postinjury adaptive and neurocognitive functioning.


Subject(s)
Brain Injuries/complications , Brain Injuries/psychology , Cognition Disorders/etiology , Mental Disorders/etiology , Adolescent , Child , Child, Preschool , Cognition Disorders/diagnosis , Cohort Studies , Female , Humans , Magnetic Resonance Imaging , Male , Mental Disorders/diagnosis , Neurologic Examination , Neuropsychological Tests , Psychiatric Status Rating Scales
9.
J Int Neuropsychol Soc ; 20(10): 971-81, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25489810

ABSTRACT

The present study compared executive dysfunction among children with attention-deficit/hyperactivity disorder (ADHD) after traumatic brain injury (TBI), also called secondary ADHD (S-ADHD), pre-injury ADHD and children with TBI only (i.e., no ADHD). Youth aged 6-16 years admitted for TBI to five trauma centers were enrolled (n=177) and evaluated with a semi-structured psychiatric interview scheduled on three occasions (within 2 weeks of TBI, i.e., baseline assessment for pre-injury status; 6-months and 12-months post-TBI). This permitted the determination of 6- and 12-month post-injury classifications of membership in three mutually exclusive groups (S-ADHD; pre-injury ADHD; TBI-only). Several executive control measures were administered. Unremitted S-ADHD was present in 17/141 (12%) children at the 6-month assessment, and in 14/125 (11%) children at 12-months post-injury. The study found that children with S-ADHD exhibited deficient working memory, attention, and psychomotor speed as compared to children with pre-injury ADHD. Furthermore, the children with S-ADHD and the children with TBI-only were impaired compared to the children with pre-injury ADHD with regard to planning. No group differences related to response inhibition emerged. Age, but not injury severity, gender, or adaptive functioning was related to executive function outcome. Neuropsychological sequelae distinguish among children who develop S-ADHD following TBI and those with TBI only. Moreover, there appears to be a different pattern of executive control performance in those who develop S-ADHD than in children with pre-injury ADHD suggesting that differences exist in the underlying neural mechanisms that define each disorder, underscoring the need to identify targeted treatment interventions.


Subject(s)
Attention Deficit Disorder with Hyperactivity/complications , Attention Deficit Disorder with Hyperactivity/etiology , Brain Injuries/complications , Cognition Disorders/diagnosis , Cognition Disorders/etiology , Child , Female , Humans , Male , Memory, Short-Term/physiology , Neuropsychological Tests , Psychiatric Status Rating Scales , Reaction Time/physiology , Time Factors
10.
Dev Cogn Neurosci ; 66: 101344, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38277713

ABSTRACT

Adolescent traumatic brain injury (TBI) has long-term effects on brain functioning and behavior, impacting neural activity under cognitive load, especially in the reward network. Adolescent TBI is also linked to risk-taking behaviors including alcohol misuse. It remains unclear how TBI and neural functioning interact to predict alcohol experimentation during adolescence. Using Adolescent Brain Cognitive Development (ABCD) study data, this project examined if TBI at ages 9-10 predicts increased odds of alcohol sipping at ages 11-13 and if this association is moderated by neural activity during the Emotional EN-Back working memory task at ages 11-13. Logistic regression analyses showed that neural activity in regions of the fronto-basal ganglia network predicted increased odds of sipping alcohol by ages 11-13 (p < .05). TBI and left frontal pole activity interacted to predict alcohol sipping (OR = 0.507, 95% CI [0.303 - 0.846], p = .009) - increased activity predicted decreased odds of alcohol sipping for those with a TBI (OR = 0.516, 95% CI [0.314 - 0.850], p = .009), but not for those without (OR = 0.971, 95% CI [0.931 -1.012], p = .159). These findings suggest that for youth with a TBI, increased BOLD activity in the frontal pole, underlying working memory, may be uniquely protective against the early initiation of alcohol experimentation. Future work will examine TBI and alcohol misuse in the ABCD cohort across more time points and the impact of personality traits such as impulsivity on these associations.

11.
Front Psychiatry ; 15: 1364271, 2024.
Article in English | MEDLINE | ID: mdl-38903634

ABSTRACT

Introduction: Suicide is a current leading cause of death in adolescents and young adults. The neurobiological underpinnings of suicide risk in youth, however, remain unclear and a brain-based model is lacking. In adult samples, current models highlight deficient serotonin release as a potential suicide biomarker, and in particular, involvement of serotonergic dysfunction in relation to the putamen and suicidal behavior. Less is known about associations among striatal regions and relative suicidal risk across development. The current study examined putamen connectivity in depressed adolescents with (AT) and without history of a suicide attempt (NAT), specifically using resting-state functional magnetic resonance imaging (fMRI) to evaluate patterns in resting-state functional connectivity (RSFC). We hypothesized the AT group would exhibit lower striatal RSFC compared to the NAT group, and lower striatal RSFC would associate with greater suicidal ideation severity and/or lethality of attempt. Methods: We examined whole-brain RSFC of six putamen regions in 17 adolescents with depression and NAT (MAge [SD] = 16.4[0.3], 41% male) and 13 with AT (MAge [SD] = 16.2[0.3], 31% male). Results: Only the dorsal rostral striatum showed a statistically significant bilateral between-group difference in RSFC with the superior frontal gyrus and supplementary motor area, with higher RSFC in the group without a suicide attempt compared to those with attempt history (voxel-wise p<.001, cluster-wise p<.01). No significant associations were found between any putamen RSFC patterns and suicidal ideation severity or lethality of attempts among those who had attempted. Discussion: The results align with recent adult literature and have interesting theoretical and clinical implications. A possible interpretation of the results is a mismatch of the serotonin transport to putamen and to the supplementary motor area and the resulting reduced functional connectivity between the two areas in adolescents with attempt history. The obtained results can be used to enhance the diathesis-stress model and the Emotional paiN and social Disconnect (END) model of adolescent suicidality by adding the putamen. We also speculate that connectivity between putamen and the supplementary motor area may in the future be used as a valuable biomarker of treatment efficacy and possibly prediction of treatment outcome.

12.
J Neuropsychiatry Clin Neurosci ; 25(3): 187-97, 2013.
Article in English | MEDLINE | ID: mdl-24026712

ABSTRACT

The objective was to assess the nature, rate, predictive factors, and neurocognitive correlates of novel psychiatric disorders (NPD) after mild traumatic brain injury (MTBI). Children age 5-14 years with MTBI (N=87) from consecutive admissions to five trauma centers were enrolled and studied with semistructured psychiatric interviews soon after injury (baseline), and 70 of these children were assessed again 6 months post-injury. Injury severity; lesion characteristics; pre-injury variables, including psychiatric disorder, family psychiatric history, family functioning, socioeconomic status, psychosocial adversity, and adaptive functioning; and post-injury neurocognitive and adaptive functioning measures were assessed with standardized instruments. NPD occurred in 25 of 70 participants (36%) in the first 6 months after injury. NPD at 6 months was predicted by the presence of frontal white-matter lesions on MRI at 3 months post-injury, and was associated with concurrent decrements on neurocognitive indices of processing speed, expressive language, and intellectual functioning. NPD was not predicted by other indices of severity, pre-injury psychosocial variables, estimated pre-injury academic functioning, or adaptive and executive function decrements 6 months post-injury. These findings suggest that short-term psychiatric morbidity associated with MTBI in children and adolescents may be more common than previously thought and may have readily identifiable neuroimaging and neurocognitive correlates.


Subject(s)
Brain Injuries/complications , Mental Disorders/diagnosis , Mental Disorders/etiology , Adolescent , Brain/pathology , Child , Cohort Studies , Female , Humans , Magnetic Resonance Imaging , Male , Mental Disorders/psychology , Neurologic Examination , Neuropsychological Tests , Psychiatric Status Rating Scales , Psychological Tests , Statistics as Topic
13.
J Neuropsychiatry Clin Neurosci ; 25(4): 272-82, 2013.
Article in English | MEDLINE | ID: mdl-24247854

ABSTRACT

The objective of this study was to understand how novel psychiatric disorders (NPD) in children with mild traumatic brain injury (MTBI) are related to pre-injury variables, injury-related variables, and concurrent neurocognitive outcome. A group of 79 children, ages 5 to 14 years, who had experienced MTBI, were studied from consecutive hospital admissions with semistructured psychiatric interviews soon after injury (baseline); 60 children were reassessed 12 months post-injury. Standardized instruments were used to assess injury severity; lesion characteristics; pre-injury variables, including psychiatric disorder, family psychiatric history, family functioning, socioeconomic status, psychosocial adversity, adaptive functioning, and post-injury neurocognitive and adaptive functioning. NPD occurred in 17 of 60 participants (28%) in the 6-12-month interval after injury, with disorders that were significantly associated with socioeconomic status, psychosocial adversity, estimated pre-injury academic functioning, and concurrent deficits in adaptive functioning, academic performance, processing speed, memory, and expressive language. NPD was not significantly associated with pre-injury adaptive functioning, injury severity, family psychiatric history, pre-injury psychiatric disorder, lesion location, gender, or age at injury. These findings suggest that the short-term psychiatric morbidity associated with MTBI in children occurs more commonly than previously reported and is related to both pre-injury social factors and concurrent neurocognitive functioning.


Subject(s)
Brain Injuries/complications , Brain Injuries/psychology , Mental Disorders/complications , Mental Disorders/psychology , Adaptation, Psychological , Adolescent , Brain/pathology , Brain Injuries/pathology , Canada , Child , Child, Preschool , Comorbidity , Family Health , Female , Humans , Magnetic Resonance Imaging , Male , Mental Disorders/pathology , Neuroimaging , Neuropsychological Tests , Risk Factors , Severity of Illness Index , Social Class , Texas
14.
Behav Neurol ; 2023: 7254574, 2023.
Article in English | MEDLINE | ID: mdl-37786433

ABSTRACT

Introduction: Risk of suicidal ideation and suicidal behaviors greatly increases during adolescence, and rates have risen dramatically over the past two decades. However, few risk factors or biomarkers predictive of suicidal ideation or attempted suicide have been identified in adolescents. Neuroimaging correlates hold potential for early identification of adolescents at increased risk of suicidality and risk stratification for those at high risk of suicide attempt. Methods: In this systematic review, we evaluated neural regions and networks associated with suicidal ideation and suicide attempt in adolescents derived from magnetic resonance imaging (MRI) studies. A total of 28 articles were included in this review. Results: After descriptively synthesizing the literature, we propose the Emotional paiN and social Disconnect (END) model of adolescent suicidality and present two key neural circuits: (1) the emotional/mental pain circuit and (2) the social disconnect/distortion circuit. In the END model, the emotional pain circuit-consisting of the cerebellum, amygdala, and hippocampus-shows similar aberrations in adolescents with suicidal ideation as in those with a history of a suicide attempt (but to a smaller degree). The social disconnect circuit is unique to adolescent suicide attempters and includes the lateral orbitofrontal cortex (OFC), the temporal gyri, and the connections between them. Conclusion: Our proposed END brain model of suicidal behavior in youth, if confirmed by future prospective studies, can have implications for clinical goals of early detection, risk stratification, and intervention development. Treatments that target emotional pain and social disconnect may be ideal interventions for reducing suicidality in adolescents.


Subject(s)
Magnetic Resonance Imaging , Suicidal Ideation , Humans , Adolescent , Prospective Studies , Risk Factors , Amygdala , Pain
15.
J Neurotrauma ; 40(11-12): 1112-1129, 2023 06.
Article in English | MEDLINE | ID: mdl-36884305

ABSTRACT

The objectives of this machine-learning (ML) resting-state magnetoencephalography (rs-MEG) study involving children with mild traumatic brain injury (mTBI) and orthopedic injury (OI) controls were to define a neural injury signature of mTBI and to delineate the pattern(s) of neural injury that determine behavioral recovery. Children ages 8-15 years with mTBI (n = 59) and OI (n = 39) from consecutive admissions to an emergency department were studied prospectively for parent-rated post-concussion symptoms (PCS) at: 1) baseline (average of 3 weeks post-injury) to measure pre-injury symptoms and also concurrent symptoms; and 2) at 3-months post-injury. rs-MEG was conducted at the baseline assessment. The ML algorithm predicted cases of mTBI versus OI with sensitivity of 95.5 ± 1.6% and specificity of 90.2 ± 2.7% at 3-weeks post-injury for the combined delta-gamma frequencies. The sensitivity and specificity were significantly better (p < 0.0001) for the combined delta-gamma frequencies compared with the delta-only and gamma-only frequencies. There were also spatial differences in rs-MEG activity between mTBI and OI groups in both delta and gamma bands in frontal and temporal lobe, as well as more widespread differences in the brain. The ML algorithm accounted for 84.5% of the variance in predicting recovery measured by PCS changes between 3 weeks and 3 months post-injury in the mTBI group, and this was significantly lower (p < 10-4) in the OI group (65.6%). Frontal lobe pole (higher) gamma activity was significantly (p < 0.001) associated with (worse) PCS recovery exclusively in the mTBI group. These findings demonstrate a neural injury signature of pediatric mTBI and patterns of mTBI-induced neural injury related to behavioral recovery.


Subject(s)
Brain Concussion , Brain Injuries , Post-Concussion Syndrome , Humans , Child , Brain Concussion/diagnosis , Brain Concussion/complications , Magnetoencephalography/methods , Brain , Post-Concussion Syndrome/diagnosis , Brain Injuries/complications
16.
JAMA Netw Open ; 6(11): e2343410, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37966838

ABSTRACT

Importance: Traumatic brain injury (TBI) is known to cause widespread neural disruption in the cerebrum. However, less is known about the association of TBI with cerebellar structure and how such changes may alter executive functioning. Objective: To investigate alterations in subregional cerebellum volume and cerebral white matter microstructure after pediatric TBI and examine subsequent changes in executive function. Design, Setting, and Participants: This retrospective cohort study combined 12 data sets (collected between 2006 and 2020) from 9 sites in the Enhancing Neuroimaging Genetics Through Meta-Analysis Consortium Pediatric TBI working group in a mega-analysis of cerebellar structure. Participants with TBI or healthy controls (some with orthopedic injury) were recruited from trauma centers, clinics, and institutional trauma registries, some of which were followed longitudinally over a period of 0.7 to 1.9 years. Healthy controls were recruited from the surrounding community. Data analysis occurred from October to December 2022. Exposure: Accidental mild complicated-severe TBI (msTBI) for those in the TBI group. Some controls received a diagnosis of orthopedic injury. Main Outcomes and Measures: Volume of 18 cerebellar lobules and vermal regions were estimated from 3-dimensional T1-weighted magnetic resonance imaging (MRI) scans. White matter organization in 28 regions of interest was assessed with diffusion tensor MRI. Executive function was measured by parent-reported scores from the Behavior Rating Inventory of Executive Functioning. Results: A total of 598 children and adolescents (mean [SD] age, 14.05 [3.06] years; range, 5.45-19.70 years; 386 male participants [64.5%]; 212 female participants [35.5%]) were included in the study, with 314 participants in the msTBI group, and 284 participants in the non-TBI group (133 healthy individuals and 151 orthopedically injured individuals). Significantly smaller total cerebellum volume (d = -0.37; 95% CI, -0.52 to -0.22; P < .001) and subregional cerebellum volumes (eg, corpus medullare; d = -0.43; 95% CI, -0.58 to -0.28; P < .001) were observed in the msTBI group. These alterations were primarily seen in participants in the chronic phase (ie, >6 months postinjury) of injury (total cerebellar volume, d = -0.55; 95% CI, -0.75 to -0.35; P < .001). Smaller cerebellum volumes were associated with higher scores on the Behavior Rating Inventory of Executive Functioning Global Executive Composite score (ß = -208.9 mm3; 95% CI, -319.0 to -98.0 mm3; P = .008) and Metacognition Index score (ß = -202.5 mm3; 95% CI, -319.0 to -85.0 mm3; P = .02). In a subset of 185 participants with longitudinal data, younger msTBI participants exhibited cerebellum volume reductions (ß = 0.0052 mm3; 95% CI, 0.0013 to 0.0090 mm3; P = .01), and older participants slower growth rates. Poorer white matter organization in the first months postinjury was associated with decreases in cerebellum volume over time (ß=0.52 mm3; 95% CI, 0.19 to 0.84 mm3; P = .005). Conclusions and Relevance: In this cohort study of pediatric msTBI, our results demonstrated robust cerebellar volume alterations associated with pediatric TBI, localized to the posterior lobe. Furthermore, longitudinal cerebellum changes were associated with baseline diffusion tensor MRI metrics, suggesting secondary cerebellar atrophy. These results provide further understanding of secondary injury mechanisms and may point to new opportunities for intervention.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Adolescent , Humans , Child , Female , Male , Cohort Studies , Retrospective Studies , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/diagnostic imaging , Cerebellum/diagnostic imaging , Atrophy
17.
J Neuropsychiatry Clin Neurosci ; 24(4): 427-36, 2012.
Article in English | MEDLINE | ID: mdl-23224448

ABSTRACT

The objective was to examine the effects of traumatic brain injury (TBI), as compared with orthopedic injury (OI), relative to the risk for psychiatric disorder. There has only been one previous prospective study of this nature. Participants were age 7-17 years at the time of hospitalization for either TBI (complicated mild-to-severe) or OI. The study used a prospective, longitudinal, controlled design, with standardized psychiatric assessments conducted at baseline (reflecting pre-injury functioning) and 3 months post-injury. Assessments of pre-injury psychiatric, adaptive functioning, family adversity, and family psychiatric history status were conducted. Severity of injury was assessed by standard clinical scales. The outcome measure was the presence of a psychiatric disorder not present before the injury ("novel"), during the first 3 months after TBI. Enrolled participants (N=141) included children with TBI (N=75) and with OI (N=66). The analyses focused on 118 children (84%) (TBI: N=65; OI: N=53) who returned for follow-up assessment at 3 months. Novel psychiatric disorder (NPD) occurred significantly more frequently in the TBI (32/65; 49%) than the OI (7/53; 13%) group. This difference was not accounted for by pre-injury lifetime psychiatric status; pre-injury adaptive functioning; pre-injury family adversity, family psychiatric history, socioeconomic status, injury severity, or age at injury. Furthermore, none of these variables significantly discriminated between children with TBI who developed, versus those who did not develop, NPD. These findings suggest that children with complicated mild-to-severe TBI are at significantly higher risk than OI-controls for the development of NPD in the first 3 months after injury.


Subject(s)
Brain Injuries/complications , Mental Disorders/etiology , Adaptation, Psychological , Adolescent , Brain Injuries/psychology , Case-Control Studies , Child , Family/psychology , Female , Follow-Up Studies , Humans , Longitudinal Studies , Male , Mental Disorders/psychology , Prospective Studies , Psychiatric Status Rating Scales , Risk Factors , Trauma Severity Indices
18.
Front Psychol ; 13: 1012745, 2022.
Article in English | MEDLINE | ID: mdl-36337478

ABSTRACT

Adolescence is a crucial time for social development, especially for helping (prosocial) and compassionate behaviors; yet brain networks involved in adolescent prosociality and compassion currently remain underexplored. Here, we sought to evaluate a recently proposed domain-general developmental (Do-GooD) network model of prosocial cognition by relating adolescent functional and structural brain networks with prosocial and compassionate disposition. We acquired resting state fMRI and diffusion MRI from 95 adolescents (ages 14-19 years; 46 males; 49 females) along with self-report questionnaires assessing prosociality and compassion. We then applied the Network-Based Statistic (NBS) to inductively investigate whether there is a significant subnetwork related to prosociality and compassion while controlling for age and sex. Based on the Do-GooD model, we expected that this subnetwork would involve connectivity to the ventromedial prefrontal cortex (VMPFC) from three domain-general networks, the default mode network (DMN), the salience network, and the control network, as well as from the DMN to the mirror neuron systems. NBS revealed a significant functional (but not structural) subnetwork related to prosociality and compassion connecting 31 regions (p = 0.02), showing DMN and DLPFC connectivity to the VMPFC; DMN connectivity to mirror neuron systems; and connectivity between the DMN and cerebellum. These findings largely support and extend the Do-GooD model of prosocial cognition in adolescents by further illuminating network-based relationships that have the potential to advance our understanding of brain mechanisms of prosociality.

19.
Front Hum Neurosci ; 16: 1022791, 2022.
Article in English | MEDLINE | ID: mdl-36561836

ABSTRACT

Introduction: Childhood trauma is known to have dramatic effects on the risks for developing psychiatric disorders and increased suicidality. We conducted a meta-analysis of whole brain voxel-based morphometry (VBM) correlates of childhood trauma in adolescents exposed to childhood maltreatment (N = 379) and unexposed controls (N = 348). Methods: Anisotropic effect size-signed differential mapping (AES-SDM) was utilized to synthesize the studies. Results: We observed increased volume amongst adolescents with a history of childhood trauma in regions that are involved in motor functions and language production: left precentral gyrus, including part of the left inferior frontal gyrus, left fibers of the body of corpus callosum, and left postcentral gyrus. We observed decreased volume amongst adolescents with a history of childhood trauma in regions that are involved in language processing and/or sensory processing: bilateral cerebellum, bilateral middle temporal gyrus, left rostrum of corpus callosum, and bilateral supramarginal gyrus. Discussion: We suggest that these morphometric differences may be reflective of impaired motor development and increased sensory sensitivity and hypervigilance in adolescents with experiences of childhood trauma. Our results differ from meta-analytical findings in adults with history of childhood trauma and may contribute to a better understanding of neural mechanisms of childhood trauma, prediction of neurodevelopmental outcomes, and development of more effective and personalized therapies.

20.
J Neuropsychiatry Clin Neurosci ; 23(1): 29-39, 2011.
Article in English | MEDLINE | ID: mdl-21304136

ABSTRACT

The study's objective was to assess the nature, rate, predictive factors, and neuroimaging correlates of novel (new-onset) definite anxiety disorders and novel definite/subclinical anxiety disorders (in a broader group of children with at least subclinical anxiety disorders) after traumatic brain injury (TBI). Children with TBI from consecutive admissions to five trauma centers were enrolled and studied with psychiatric interviews soon after injury (baseline) and again 6 months post-injury. Novel definite anxiety disorder and novel definite/subclinical anxiety disorders were heterogeneous and occurred in 8.5% (N=12) and 17% (N=24) of participants, respectively, in the first 6 months after injury. Novel definite anxiety disorder was significantly associated with younger age at injury and tended to be associated with novel depressive disorder, as well as lesions of the superior frontal gyrus. Novel definite/subclinical anxiety disorder was significantly associated with concurrent psychiatric problems of personality change due to TBI and novel definite/subclinical depressive disorder, as well as with lesions of the superior frontal gyrus and a trend-association with frontal lobe white-matter lesions. These findings suggest that anxiety after childhood TBI may be part of a broader problem of affective dysregulation related to damaged dorsal frontal lobe and frontal white-matter systems, with younger children being at greatest risk for developing novel anxiety disorder after TBI.


Subject(s)
Anxiety Disorders/etiology , Anxiety Disorders/psychology , Brain Injuries/complications , Brain Injuries/psychology , Adolescent , Anxiety Disorders/diagnosis , Child , Child, Preschool , Female , Humans , Male , Predictive Value of Tests , Risk Factors , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL