Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Int J Mol Sci ; 22(15)2021 Jul 28.
Article in English | MEDLINE | ID: mdl-34360839

ABSTRACT

Hypercholesterolemia plays a causal role in the development of atherosclerosis and is one of the main risk factors for cardiovascular disease (CVD), the leading cause of death worldwide especially in developed countries. Current data show that the role of microbiota extends beyond digestion by being implicated in several metabolic and inflammatory processes linked to several diseases including CVD. Studies have reported associations between bacterial metabolites and hypercholesterolemia. However, such associations remain poorly investigated and characterized. In this review, the mechanisms of microbial derived metabolites such as primary and secondary bile acids (BAs), trimethylamine N-oxide (TMAO), and short-chain fatty acids (SCFAs) will be explored in the context of cholesterol metabolism. These metabolites play critical roles in maintaining cardiovascular health and if dysregulated can potentially contribute to CVD. They can be modulated via nutritional and pharmacological interventions such as statins, prebiotics, and probiotics. However, the mechanisms behind these interactions also remain unclear, and mechanistic insights into their impact will be provided. Therefore, the objectives of this paper are to present current knowledge on potential mechanisms whereby microbial metabolites regulate cholesterol homeostasis and to discuss the feasibility of modulating intestinal microbes and metabolites as a novel therapeutic for hypercholesterolemia.


Subject(s)
Atherosclerosis/metabolism , Cholesterol/metabolism , Gastrointestinal Microbiome/physiology , Animals , Atherosclerosis/microbiology , Humans , Hypercholesterolemia
2.
J Immunol ; 201(8): 2462-2471, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30209193

ABSTRACT

CLCF1 is a neurotrophic and B cell-stimulating factor belonging to the IL-6 family. Mutations in the gene coding for CLCF1 or its secretion partner CRLF1 lead to the development of severe phenotypes, suggesting important nonredundant roles in development, metabolism, and immunity. Although CLCF1 was shown to promote the proliferation of the myeloid cell line M1, its roles on myeloid activation remain underinvestigated. We characterized the effects of CLCF1 on myeloid cells with a focus on monocyte-macrophage and macrophage-foam cell differentiations. CLCF1 injections in mice resulted in a significant increase in CD11b+ circulating cells, including proinflammatory monocytes. Furthermore, CLCF1 activated STAT3 phosphorylation in bone marrow CD11b+ cells and in bone marrow-derived macrophages (BMDM). BMDM stimulated with CLCF1 produced a large array of proinflammatory factors comprising IL-6, IL-9, G-CSF, GM-CSF, IL-1ß, IL-12, CCL5, and CX3CL1. The pattern of cytokines and chemokines released by CLCF1-treated BMDM led us to investigate the role of CLCF1 in foam cell formation. When pretreated with CLCF1, BMDM presented a marked SR-A1 upregulation, an increase in acetylated-low-density lipoprotein uptake, and an elevated triglyceride accumulation. CLCF1-induced SR-A1 upregulation, triglyceride accumulation, and acetylated-low-density lipoprotein uptake could be prevented using ruxolitinib, a JAK inhibitor, indicating that the effects of the cytokine on myeloid cells result from activation of the canonical JAK/STAT signaling pathway. Our data reveal novel biological roles for CLCF1 in the control of myeloid function and identify this cytokine as a strong inducer of macrophage-foam cell transition, thus bringing forward a new potential therapeutic target for atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , Cell Differentiation , Cytokines/metabolism , Foam Cells/physiology , Macrophages/physiology , Animals , Atherosclerosis/pathology , Cells, Cultured , Female , Humans , Inflammation Mediators/metabolism , Janus Kinases/metabolism , Mice , Mice, Inbred C57BL , Myelopoiesis , STAT Transcription Factors , Scavenger Receptors, Class A/metabolism , Signal Transduction
3.
Circulation ; 138(16): 1677-1692, 2018 10 16.
Article in English | MEDLINE | ID: mdl-29674325

ABSTRACT

BACKGROUND: Pharmacogenomic studies have shown that ADCY9 genotype determines the effects of the CETP (cholesteryl ester transfer protein) inhibitor dalcetrapib on cardiovascular events and atherosclerosis imaging. The underlying mechanisms responsible for the interactions between ADCY9 and CETP activity have not yet been determined. METHODS: Adcy9-inactivated ( Adcy9Gt/Gt) and wild-type (WT) mice, that were or not transgenic for the CETP gene (CETPtg Adcy9Gt/Gt and CETPtg Adcy9WT), were submitted to an atherogenic protocol (injection of an AAV8 [adeno-associated virus serotype 8] expressing a PCSK9 [proprotein convertase subtilisin/kexin type 9] gain-of-function variant and 0.75% cholesterol diet for 16 weeks). Atherosclerosis, vasorelaxation, telemetry, and adipose tissue magnetic resonance imaging were evaluated. RESULTS: Adcy9Gt/Gt mice had a 65% reduction in aortic atherosclerosis compared to WT ( P<0.01). CD68 (cluster of differentiation 68)-positive macrophage accumulation and proliferation in plaques were reduced in Adcy9Gt/Gt mice compared to WT animals ( P<0.05 for both). Femoral artery endothelial-dependent vasorelaxation was improved in Adcy9Gt/Gt mice (versus WT, P<0.01). Selective pharmacological blockade showed that the nitric oxide, cyclooxygenase, and endothelial-dependent hyperpolarization pathways were all responsible for the improvement of vasodilatation in Adcy9Gt/Gt ( P<0.01 for all). Aortic endothelium from Adcy9Gt/Gt mice allowed significantly less adhesion of splenocytes compared to WT ( P<0.05). Adcy9Gt/Gt mice gained more weight than WT with the atherogenic diet; this was associated with an increase in whole body adipose tissue volume ( P<0.01 for both). Feed efficiency was increased in Adcy9Gt/Gt compared to WT mice ( P<0.01), which was accompanied by prolonged cardiac RR interval ( P<0.05) and improved nocturnal heart rate variability ( P=0.0572). Adcy9 inactivation-induced effects on atherosclerosis, endothelial function, weight gain, adipose tissue volume, and feed efficiency were lost in CETPtg Adcy9Gt/Gt mice ( P>0.05 versus CETPtg Adcy9WT). CONCLUSIONS: Adcy9 inactivation protects against atherosclerosis, but only in the absence of CETP activity. This atheroprotection may be explained by decreased macrophage accumulation and proliferation in the arterial wall, and improved endothelial function and autonomic tone.


Subject(s)
Adenylyl Cyclases/deficiency , Aorta/enzymology , Aortic Diseases/prevention & control , Atherosclerosis/prevention & control , Cholesterol Ester Transfer Proteins/deficiency , Plaque, Atherosclerotic , Adenylyl Cyclases/genetics , Adiposity , Animals , Aorta/pathology , Aorta/physiopathology , Aortic Diseases/enzymology , Aortic Diseases/genetics , Aortic Diseases/pathology , Atherosclerosis/enzymology , Atherosclerosis/genetics , Atherosclerosis/pathology , Autonomic Nervous System/physiopathology , Biological Factors/metabolism , Cell Proliferation , Cholesterol Ester Transfer Proteins/genetics , Diet, High-Fat , Disease Models, Animal , Endothelial Cells/enzymology , Endothelial Cells/pathology , Lipids/blood , Lipolysis , Macrophages/enzymology , Macrophages/pathology , Male , Mice, Inbred C57BL , Mice, Knockout , Nitric Oxide/metabolism , Proprotein Convertase 9/genetics , Prostaglandin-Endoperoxide Synthases/metabolism , Signal Transduction , Vasodilation , Weight Gain
4.
J Biol Chem ; 292(26): 11109-11124, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28495885

ABSTRACT

Voltage-gated L-type CaV1.2 channels in cardiomyocytes exist as heteromeric complexes with the pore-forming CaVα1, CaVß, and CaVα2δ1 subunits. The full complement of subunits is required to reconstitute the native-like properties of L-type Ca2+ currents, but the molecular determinants responsible for the formation of the heteromeric complex are still being studied. Enzymatic treatment with phosphatidylinositol-specific phospholipase C, a phospholipase C specific for the cleavage of glycosylphosphatidylinositol (GPI)-anchored proteins, disrupted plasma membrane localization of the cardiac CaVα2δ1 prompting us to investigate deletions of its hydrophobic transmembrane domain. Patch-clamp experiments indicated that the C-terminally cleaved CaVα2δ1 proteins up-regulate CaV1.2 channels. In contrast, deleting the residues before the single hydrophobic segment (CaVα2δ1 Δ1059-1063) impaired current up-regulation. CaVα2δ1 mutants G1060I and G1061I nearly eliminated the cell-surface fluorescence of CaVα2δ1, indicated by two-color flow cytometry assays and confocal imaging, and prevented CaVα2δ1-mediated increase in peak current density and modulation of the voltage-dependent gating of CaV1.2. These impacts were specific to substitutions with isoleucine residues because functional modulation was partially preserved in CaVα2δ1 G1060A and G1061A proteins. Moreover, C-terminal fragments exhibited significantly altered mobility in denatured immunoblots of CaVα2δ1 G1060I and CaVα2δ1 G1061I, suggesting that these mutant proteins were impaired in proteolytic processing. Finally, CaVα2δ1 Δ1059-1063, but not CaVα2δ1 G1060A, failed to co-immunoprecipitate with CaV1.2. Altogether, our data support a model in which small neutral hydrophobic residues facilitate the post-translational cleavage of the CaVα2δ1 subunit at the predicted membrane interface and further suggest that preventing GPI anchoring of CaVα2δ1 averts its cell-surface expression, its interaction with CaVα1, and modulation of CaV1.2 currents.


Subject(s)
Calcium Channels, L-Type/metabolism , Ion Channel Gating/physiology , Myocardium/metabolism , Amino Acid Substitution , Animals , Calcium Channels, L-Type/chemistry , Calcium Channels, L-Type/genetics , Cell Line , Humans , Mutation, Missense , Protein Domains , Rabbits
5.
J Biol Chem ; 290(30): 18609-20, 2015 Jul 24.
Article in English | MEDLINE | ID: mdl-26085104

ABSTRACT

Amyloid precursor-like protein 2 (APLP2) and sortilin were reported to individually bind the proprotein convertase subtilisin/kexin type 9 (PCSK9) and regulate its activity on the low-density lipoprotein receptor (LDLR). The data presented herein demonstrate that mRNA knockdowns of APLP2, sortilin, or both in the human hepatocyte cell lines HepG2 and Huh7 do not affect the ability of extracellular PCSK9 to enhance the degradation of the LDLR. Furthermore, mice deficient in APLP2 or sortilin do not exhibit significant changes in liver LDLR or plasma total cholesterol levels. Moreover, cellular overexpression of one or both proteins does not alter PCSK9 secretion, or its activity on the LDLR. We conclude that PCSK9 enhances the degradation of the LDLR independently of either APLP2 or sortilin both ex vivo and in mice. Interestingly, when co-expressed with PCSK9, both APLP2 and sortilin were targeted for lysosomal degradation. Using chemiluminescence proximity and co-immunoprecipitation assays, as well as biosynthetic analysis, we discovered that sortilin binds and stabilizes APLP2, and hence could regulate its intracellular functions on other targets.


Subject(s)
Adaptor Proteins, Vesicular Transport/metabolism , Amyloid beta-Protein Precursor/metabolism , Nerve Tissue Proteins/metabolism , Proprotein Convertases/metabolism , Proteolysis , Receptors, LDL/biosynthesis , Serine Endopeptidases/metabolism , Adaptor Proteins, Vesicular Transport/biosynthesis , Adaptor Proteins, Vesicular Transport/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Gene Expression Regulation , Hep G2 Cells , Hepatocytes/metabolism , Humans , Liver/metabolism , Mice , Nerve Tissue Proteins/genetics , Proprotein Convertase 9 , Proprotein Convertases/genetics , Receptors, LDL/genetics , Serine Endopeptidases/genetics
6.
Arterioscler Thromb Vasc Biol ; 35(12): 2517-25, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26494228

ABSTRACT

OBJECTIVE: Proprotein convertase subtilisin/kexin type 9 (PCSK9) promotes the degradation of the low-density lipoprotein receptor thereby elevating plasma low-density lipoprotein cholesterol levels and the risk of coronary heart disease. Thus, the use of PCSK9 inhibitors holds great promise to prevent heart disease. Previous work found that PCSK9 is involved in triglyceride metabolism, independently of its action on low-density lipoprotein receptor, and that other yet unidentified receptors could mediate this effect. Therefore, we assessed whether PCSK9 enhances the degradation of CD36, a major receptor involved in transport of long-chain fatty acids and triglyceride storage. APPROACH AND RESULTS: Overexpressed or recombinant PCSK9 induced CD36 degradation in cell lines and primary adipocytes and reduced the uptake of the palmitate analog Bodipy FL C16 and oxidized low-density lipoprotein in 3T3-L1 adipocytes and hepatic HepG2 cells, respectively. Surface plasmon resonance, coimmunoprecipitation, confocal immunofluorescence microscopy, and protein degradation pathway inhibitors revealed that PCSK9 directly interacts with CD36 and targets the receptor to lysosomes through a mechanism involving the proteasome. Importantly, the level of CD36 protein was increased by >3-fold upon small interfering RNA knockdown of endogenous PCSK9 in hepatic cells and similarly increased in the liver and visceral adipose tissue of Pcsk9(-/-) mice. In Pcsk9(-/-) mice, increased hepatic CD36 was correlated with an amplified uptake of fatty acid and accumulation of triglycerides and lipid droplets. CONCLUSIONS: Our results demonstrate an important role of PCSK9 in modulating the function of CD36 and triglyceride metabolism. PCSK9-mediated CD36 degradation may serve to limit fatty acid uptake and triglyceride accumulation in tissues, such as the liver.


Subject(s)
Adipocytes/enzymology , CD36 Antigens/metabolism , Fatty Acids/metabolism , Intra-Abdominal Fat/enzymology , Liver/enzymology , Proprotein Convertases/metabolism , Serine Endopeptidases/metabolism , Triglycerides/metabolism , 3T3-L1 Cells , Adipocytes/drug effects , Animals , Boron Compounds/metabolism , CD36 Antigens/genetics , Female , HEK293 Cells , Hep G2 Cells , Humans , Intra-Abdominal Fat/drug effects , Lipoproteins, LDL/metabolism , Liver/drug effects , Lysosomes/enzymology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Palmitic Acids/metabolism , Proprotein Convertase 9 , Proprotein Convertases/deficiency , Proprotein Convertases/genetics , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Proteolysis , RNA Interference , Serine Endopeptidases/deficiency , Serine Endopeptidases/genetics , Time Factors , Transfection
7.
Traffic ; 14(4): 458-69, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23350547

ABSTRACT

Niemann-Pick type C (NPC) disease is a fatal neurodegenerative disorder characterized by over-accumulation of low-density lipoprotein-derived cholesterol and glycosphingolipids in late endosomes/lysosomes (LE/L) throughout the body. Human mutations in either NPC1 or NPC2 genes have been directly associated with impaired cholesterol efflux from LE/L. Independent from its role in cholesterol homeostasis and its NPC2 partner, NPC1 was unexpectedly identified as a critical player controlling intracellular entry of filoviruses such as Ebola. In this study, a yeast three-hybrid system revealed that the NPC1 cytoplasmic tail directly interacts with the clathrin adaptor protein AP-1 via its acidic/di-leucine motif. Consequently, a nonfunctional AP-1A cytosolic complex resulted in a typical NPC-like phenotype mainly due to a direct impairment of NPC1 trafficking to LE/L and a partial secretion of NPC2. Furthermore, the mislocalization of NPC1 was not due to cholesterol accumulation in LE/L, as it was not rescued upon treatment with Mß-cyclodextrin, which almost completely eliminated intracellular free cholesterol. Our cumulative data demonstrate that the cytosolic clathrin adaptor AP-1A is essential for the lysosomal targeting and function of NPC1 and NPC2.


Subject(s)
Adaptor Protein Complex 1/metabolism , Carrier Proteins/metabolism , Membrane Glycoproteins/metabolism , Vesicular Transport Proteins/metabolism , Amino Acid Motifs , Animals , Cell Line , Cholesterol/metabolism , Exocytosis , Intracellular Signaling Peptides and Proteins , Lysosomes/drug effects , Lysosomes/metabolism , Mice , Niemann-Pick C1 Protein , Protein Interaction Domains and Motifs , Protein Transport , Two-Hybrid System Techniques , beta-Cyclodextrins/pharmacology
8.
J Biol Chem ; 289(27): 18736-51, 2014 Jul 04.
Article in English | MEDLINE | ID: mdl-24855646

ABSTRACT

DNA methylation and histone acetylation inhibitors are widely used to study the role of epigenetic marks in the regulation of gene expression. In addition, several of these molecules are being tested in clinical trials or already in use in the clinic. Antimetabolites, such as the DNA-hypomethylating agent 5-azacytidine (5-AzaC), have been shown to lower malignant progression to acute myeloid leukemia and to prolong survival in patients with myelodysplastic syndromes. Here we examined the effects of DNA methylation inhibitors on the expression of lipid biosynthetic and uptake genes. Our data demonstrate that, independently of DNA methylation, 5-AzaC selectively and very potently reduces expression of key genes involved in cholesterol and lipid metabolism (e.g. PCSK9, HMGCR, and FASN) in all tested cell lines and in vivo in mouse liver. Treatment with 5-AzaC disturbed subcellular cholesterol homeostasis, thereby impeding activation of sterol regulatory element-binding proteins (key regulators of lipid metabolism). Through inhibition of UMP synthase, 5-AzaC also strongly induced expression of 1-acylglycerol-3-phosphate O-acyltransferase 9 (AGPAT9) and promoted triacylglycerol synthesis and cytosolic lipid droplet formation. Remarkably, complete reversal was obtained by the co-addition of either UMP or cytidine. Therefore, this study provides the first evidence that inhibition of the de novo pyrimidine synthesis by 5-AzaC disturbs cholesterol and lipid homeostasis, probably through the glycerolipid biosynthesis pathway, which may contribute mechanistically to its beneficial cytostatic properties.


Subject(s)
Azacitidine/pharmacology , Cholesterol/metabolism , Epigenesis, Genetic/drug effects , Animals , Cell Line, Tumor , Cell Nucleus/drug effects , Cell Nucleus/metabolism , Cricetinae , DNA Methylation/drug effects , Homeostasis/drug effects , Humans , Liver/drug effects , Liver/metabolism , Male , Mice , Pyrimidines/biosynthesis , Sterol Regulatory Element Binding Protein 2/genetics
9.
Theranostics ; 12(3): 1440-1458, 2022.
Article in English | MEDLINE | ID: mdl-35154499

ABSTRACT

Rationale: Impairment in lymphatic transport is associated with the onset and progression of atherosclerosis in animal models. The downregulation of low-density-lipoprotein receptor (LDLR) expression, rather than increased circulating cholesterol level per se, is involved in early atherosclerosis-related lymphatic dysfunction. Enhancing lymphatic function in Ldlr-/- mice with a mutant form of VEGF-C (VEGF-C 152s), a selective VEGFR-3 agonist, successfully delayed atherosclerotic plaque onset when mice were subsequently fed a high-fat diet. However, the specific mechanisms by which LDLR protects against lymphatic function impairment is unknown. Methods and results: We have thus injected wild-type and Pcsk9-/- mice with an adeno-associated virus type 1 expressing a shRNA for silencing Ldlr in vivo. We herein report that lymphatic contractility is reduced upon Ldlr dowregulation in wild-type mice only. Our in vitro experiments reveal that a decrease in LDLR expression at the mRNA level reduces the chromosome duplication phase and the protein expression of VEGFR-3, a membrane-bound key lymphatic marker. Furthermore, it also significantly reduced the levels of 18 lipid subclasses, including key constituents of lipid rafts as well as the transcription of several genes involved in cholesterol biosynthesis and cellular and metabolic processes. Exogenous PCSK9 only reduces lymphatic endothelial-LDLR at the protein level and does not affect lymphatic endothelial cell integrity. This puts forward that PCSK9 may act upon lymphatic muscle cells to mediate its effect on lymphatic contraction capacity in vivo. Conclusion: Our results suggest that treatments that specifically palliate the down regulation of LDLR mRNA in lymphatic endothelial cells preserve the integrity of the lymphatic endothelium and sustain lymphatic function, a prerequisite player in atherosclerosis.


Subject(s)
Atherosclerosis , Hyperlipidemias , Animals , Atherosclerosis/genetics , Atherosclerosis/metabolism , Cholesterol/metabolism , Down-Regulation , Endothelial Cells/metabolism , Hyperlipidemias/metabolism , Lipids , Lipoproteins, LDL/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Proprotein Convertase 9/genetics , Proprotein Convertase 9/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vascular Endothelial Growth Factor C/genetics , Vascular Endothelial Growth Factor C/metabolism , Vascular Endothelial Growth Factor Receptor-3/genetics , Vascular Endothelial Growth Factor Receptor-3/metabolism
10.
J Biol Chem ; 285(52): 40965-78, 2010 Dec 24.
Article in English | MEDLINE | ID: mdl-20937814

ABSTRACT

PCSK9, a target for the treatment of dyslipidemia, enhances the degradation of the LDL receptor (LDLR) in endosomes/lysosomes, up-regulating LDL-cholesterol levels. Whereas the targeting and degradation of the PCSK9-LDLR complex are under scrutiny, the roles of the N- and C-terminal domains of PCSK9 are unknown. Although autocatalytic zymogen processing of PCSK9 occurs at Gln(152)↓, here we show that human PCSK9 can be further cleaved in its N-terminal prosegment at Arg(46)↓ by an endogenous enzyme of insect High Five cells and by a cellular mammalian protease, yielding an ∼4-fold enhanced activity. Removal of the prosegment acidic stretch resulted in ∼3-fold higher binding to LDLR in vitro, in ≥4-fold increased activity on cellular LDLR, and faster cellular internalization in endosome/lysosome-like compartments. Finally, swapping the acidic stretch of PCSK9 with a similar one found in the glycosylphosphatidylinositol-anchored heparin-binding protein 1 does not impair PCSK9 autoprocessing, secretion, or activity and confirmed that the acidic stretch acts as an inhibitor of PCSK9 function. We also show that upon short exposure to pH values 6.5 to 5.5, an ∼2.5-fold increase in PCSK9 activity on total and cell surface LDLR occurs, and PCSK9 undergoes a second cleavage at Arg(248), generating a two-chain PCSK9-ΔN(248). At pH values below 5.5, PCSK9 dissociates from its prosegment and loses its activity. This pH-dependent activation of PCSK9 represents a novel pathway to further activate PCSK9 in acidic endosomes. These data enhance our understanding of the functional role of the acidic prosegment and on the effect of pH in the regulation of PCSK9 activity.


Subject(s)
Endosomes/enzymology , Peptides/metabolism , Protein Processing, Post-Translational/physiology , Receptors, LDL/metabolism , Serine Endopeptidases/metabolism , Animals , Endosomes/genetics , Enzyme Activation/physiology , HEK293 Cells , Hep G2 Cells , Humans , Hydrogen-Ion Concentration , Lysosomes/enzymology , Lysosomes/genetics , Moths , Peptides/genetics , Proprotein Convertase 9 , Proprotein Convertases , Protein Binding/physiology , Receptors, LDL/genetics , Serine Endopeptidases/genetics
11.
Physiol Rep ; 9(3): e14721, 2021 02.
Article in English | MEDLINE | ID: mdl-33527668

ABSTRACT

BACKGROUND: LDL-cholesterol lowering variants that upregulate receptor uptake of LDL, such as in PCSK9 and HMGCR, are associated with diabetes via unclear mechanisms. Activation of the NLRP3 inflammasome/interleukin-1 beta (IL-1ß) pathway promotes white adipose tissue (WAT) dysfunction and type 2 diabetes (T2D) and is regulated by LDL receptors (LDLR and CD36). We hypothesized that: (a) normocholesterolemic subjects with lower plasma PCSK9, identifying those with higher WAT surface-expression of LDLR and CD36, have higher activation of WAT NLRP3 inflammasome and T2D risk factors, and; (b) LDL upregulate adipocyte NLRP3 inflammasome and inhibit adipocyte function. METHODOLOGY: Post hoc analysis was conducted in 27 overweight/ obese subjects with normal plasma LDL-C and measures of disposition index (DI during Botnia clamps) and postprandial fat metabolism. WAT was assessed for surface-expression of LDLR and CD36 (immunohistochemistry), protein expression (immunoblot), IL-1ß secretion (AlphaLISA), and function (3 H-triolein storage). RESULTS: Compared to subjects with higher than median plasma PCSK9, subjects with lower PCSK9 had higher WAT surface-expression of LDLR (+81%) and CD36 (+36%), WAT IL-1ß secretion (+284%), plasma IL-1 receptor-antagonist (+85%), and postprandial hypertriglyceridemia, and lower WAT pro-IL-1ß protein (-66%), WAT function (-62%), and DI (-28%), without group-differences in body composition, energy intake or expenditure. Adjusting for WAT LDLR or CD36 eliminated group-differences in WAT function, DI, and postprandial hypertriglyceridemia. Native LDL inhibited Simpson-Golabi Behmel-syndrome (SGBS) adipocyte differentiation and function and increased inflammation. CONCLUSION: Normocholesterolemic subjects with lower plasma PCSK9 and higher WAT surface-expression of LDLR and CD36 have higher WAT NLRP3 inflammasome activation and T2D risk factors. This may be due to LDL-induced inhibition of adipocyte function.


Subject(s)
Adipose Tissue, White/metabolism , CD36 Antigens/metabolism , Cholesterol/blood , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Obesity/blood , Proprotein Convertase 9/blood , Receptors, LDL/metabolism , Adipocytes, White/immunology , Adipocytes, White/metabolism , Adipogenesis , Adipose Tissue, White/immunology , Aged , Biomarkers/blood , Cells, Cultured , Diabetes Mellitus, Type 2/etiology , Down-Regulation , Female , Humans , Interleukin-1beta/metabolism , Male , Middle Aged , Obesity/complications , Obesity/enzymology , Obesity/immunology , Risk Assessment , Risk Factors
12.
J Biol Chem ; 284(42): 28856-64, 2009 Oct 16.
Article in English | MEDLINE | ID: mdl-19635789

ABSTRACT

Elevated levels of plasma low density lipoprotein (LDL)-cholesterol, leading to familial hypercholesterolemia, are enhanced by mutations in at least three major genes, the LDL receptor (LDLR), its ligand apolipoprotein B, and the proprotein convertase PCSK9. Single point mutations in PCSK9 are associated with either hyper- or hypocholesterolemia. Accordingly, PCSK9 is an attractive target for treatment of dyslipidemia. PCSK9 binds the epidermal growth factor domain A (EGF-A) of the LDLR and directs it to endosomes/lysosomes for destruction. Although the mechanism by which PCSK9 regulates LDLR degradation is not fully resolved, it seems to involve both intracellular and extracellular pathways. Here, we show that clathrin light chain small interfering RNAs that block intracellular trafficking from the trans-Golgi network to lysosomes rapidly increased LDLR levels within HepG2 cells in a PCSK9-dependent fashion without affecting the ability of exogenous PCSK9 to enhance LDLR degradation. In contrast, blocking the extracellular LDLR endocytosis/degradation pathway by a 4-, 6-, or 24-h incubation of cells with Dynasore or an EGF-AB peptide or by knockdown of endogenous autosomal recessive hypercholesterolemia did not significantly affect LDLR levels. The present data from HepG2 cells and mouse primary hepatocytes favor a model whereby depending on the dose and/or incubation period, endogenous PCSK9 enhances the degradation of the LDLR both extra- and intracellularly. Therefore, targeting either pathway, or both, would be an effective method to reduce PCSK9 activity in the treatment of hypercholesterolemia and coronary heart disease.


Subject(s)
Receptors, LDL/metabolism , Serine Endopeptidases/metabolism , Animals , Clathrin Light Chains/metabolism , Endosomes/metabolism , Golgi Apparatus/metabolism , Hepatocytes/metabolism , Humans , Hypercholesterolemia/metabolism , Lysosomes/metabolism , Mice , Proprotein Convertase 9 , Proprotein Convertases , Protein Structure, Tertiary , trans-Golgi Network/metabolism
13.
Hepatology ; 50(1): 17-24, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19489072

ABSTRACT

UNLABELLED: Human PCSK9 is known to enhance the degradation of membrane-bound receptors such as the hepatocyte low-density lipoprotein receptor (LDLR), ApoER2, and very low-density lipoprotein receptor. Because the LDLR is suspected to be involved in hepatitis C virus (HCV) entry, we also tested whether PCSK9 can affect the levels of CD81, a major HCV receptor. Interestingly, stable expression of PCSK9 or a more active membrane-bound form of the protein (PCSK9-ACE2) resulted in a marked reduction in CD81 and LDLR expression. Therefore, we analyzed the antiviral effect of PCSK9 in vitro using the HCV genotype 2a (JFH1) virus. The results clearly demonstrated that cells expressing PCSK9 or PCSK9-ACE2, but not the ACE2 control protein, were resistant to HCV infection. Furthermore, addition of purified soluble PCSK9 to cell culture supernatant impeded HCV infection in a dose-dependent manner. As expected, HuH7 cells expressing PCSK9-ACE2 were also resistant to infection by HCV pseudoparticles. In addition, we showed that CD81 cell surface expression is modulated by PCSK9 in an LDLR-independent manner. Finally, in the liver of single Pcsk9 and double (Pcsk9 + Ldlr) knockout mice, both LDLR and/or CD81 protein expression levels were significantly reduced, but not those of transferrin and scavenger receptor class B type 1. CONCLUSION: Our results demonstrate an antiviral effect of the circulating liver PCSK9 on HCV in cells and show that PCSK9 down-regulates the level of mouse liver CD81 expression in vivo. Therefore, we propose that the plasma level and/or activity of PCSK9 may modulate HCV infectivity in humans.


Subject(s)
Antigens, CD/biosynthesis , Hepatitis C/prevention & control , Liver/drug effects , Liver/metabolism , Serine Endopeptidases/pharmacology , Serine Endopeptidases/physiology , Cells, Cultured , Humans , Proprotein Convertase 9 , Proprotein Convertases , Tetraspanin 28
14.
Obesity (Silver Spring) ; 28(12): 2357-2367, 2020 12.
Article in English | MEDLINE | ID: mdl-33043593

ABSTRACT

OBJECTIVE: Human conditions with upregulated receptor uptake of low-density lipoproteins (LDL) are associated with diabetes risk, the reasons for which remain unexplored. LDL induce metabolic dysfunction in murine adipocytes. Thus, it was hypothesized that white adipose tissue (WAT) surface expression of LDL receptor (LDLR) and/or CD36 is associated with WAT and systemic metabolic dysfunction. Whether WAT LDLR and CD36 expression is predicted by plasma lipoprotein-related parameters was also explored. METHODS: This was a cross-sectional analysis of 31 nondiabetic adults (BMI > 25 kg/m2 ) assessed for WAT surface expression of LDLR and CD36 (immunohistochemistry), WAT function, WAT and systemic inflammation, postprandial fat metabolism, and insulin resistance (IR; hyperinsulinemic-euglycemic clamp). RESULTS: Fasting WAT surface expression of LDLR and CD36 was negatively associated with WAT function (3 H-triglyceride storage, r = -0.45 and -0.66, respectively) and positively associated with plasma IL-1 receptor antagonist (r = 0.64 and 0.43, respectively). Their expression was suppressed 4 hours postprandially, and reduced LDLR was further associated with IR (M/Iclamp , r = 0.61 women, r = 0.80 men). Plasma apolipoprotein B (apoB)-to-PCSK9 ratio predicted WAT surface expression of LDLR and CD36, WAT dysfunction, WAT NLRP3 inflammasome priming and disrupted cholesterol-sensing genes, and systemic IR independent of sex and body composition. CONCLUSIONS: Higher fasting and lower postprandial WAT surface expression of LDLR and CD36 is associated with WAT dysfunction, systemic inflammation, and IR in adults with overweight/obesity, anomalies that are predicted by higher plasma apoB-to-PCSK9 ratio.


Subject(s)
Adipose Tissue, White/metabolism , CD36 Antigens/metabolism , Diabetes Mellitus, Type 2/genetics , Obesity/metabolism , Receptors, LDL/metabolism , Aged , Cross-Sectional Studies , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Male , Middle Aged , Postprandial Period , Risk Factors
15.
Int J Biochem Cell Biol ; 40(6-7): 1111-25, 2008.
Article in English | MEDLINE | ID: mdl-18343183

ABSTRACT

The mammalian secretory proprotein convertases are part of a family of nine serine proteinases of the subtilisin-type. Seven of them cleave after basic amino acids and are called PC1/3, PC2, furin, PC4, PC5/6, PACE4 and PC7. The two other convertases SKI-1/S1P and PCSK9 are implicated in cholesterol and/or fatty acid metabolism. The convertases PC5/6 and PACE4 are activated at the cell surface where they are tethered to heparan sulfate proteoglycans. This activation pathway is unique and differs from that of furin and PC7, which are activated in the trans-Golgi network and from PC1/3 and PC2 that are activated in dense core secretory granules. While some of the basic amino acid-specific convertases may display redundant cleavages of substrates, they uniquely process certain substrates in vivo. Indeed, the conditional knockout of the PC5/6 gene in the embryo proper in mice led to severe malformations, bone morphogenic defects and death at birth. This is likely due to the absence of processing of the growth differentiating factor 11 (Gdf11). Both complete and liver-specific knockout of Pcsk9 revealed that it is a major convertase that regulates the level of circulating low-density lipoproteins (LDL) via the degradation of the hepatic LDL-receptor. This apparently non-enzymatic mechanism implicates the enhanced degradation of the LDLR in endosomes/lysosomes. These data provide evidence that an inhibitor of PCSK9-LDLR interaction is a viable target for the development of a novel cholesterol lowering drug in conjunction with the classical statins.


Subject(s)
Proprotein Convertases/physiology , Amino Acid Motifs , Amino Acid Sequence , Animals , Consensus Sequence , Enzyme Activation , Humans , Molecular Sequence Data , Proprotein Convertases/chemistry , Proprotein Convertases/genetics , Proprotein Convertases/metabolism , Sequence Homology, Amino Acid , Substrate Specificity
16.
Mol Biol Cell ; 16(11): 5215-26, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16135528

ABSTRACT

The proprotein convertases PC5, PACE4 and furin contain a C-terminal cysteine-rich domain (CRD) of unknown function. We demonstrate that the CRD confers to PC5A and PACE4 properties to bind tissue inhibitors of metalloproteinases (TIMPs) and the cell surface. Confocal microscopy and biochemical analyses revealed that the CRD is essential for cell surface tethering of PC5A and PACE4 and that it colocalizes and coimmunoprecipitates with the full-length and C-terminal domain of TIMP-2. Surface-bound PC5A in TIMP-2 null fibroblasts was only observed upon coexpression with TIMP-2. In COS-1 cells, plasma membrane-associated PC5A can be displaced by heparin, suramin, or heparinases I and III and by competition with excess exogenous TIMP-2. Furthermore, PC5A and TIMP-2 are shown to be colocalized over the surface of enterocytes in the mouse duodenum and jejunum, as well as in liver sinusoids. In conclusion, the CRD of PC5A and PACE4 functions as a cell surface anchor favoring the processing of their cognate surface-anchored substrates, including endothelial lipase.


Subject(s)
Membrane Proteins/physiology , Proprotein Convertase 5/metabolism , Serine Endopeptidases/metabolism , Tissue Inhibitor of Metalloproteinases/metabolism , Animals , CHO Cells , COS Cells , Cell Line , Chlorocebus aethiops , Cricetinae , Cricetulus , Cysteine , Heparitin Sulfate/physiology , Humans , Membrane Proteins/metabolism , Metalloproteases/metabolism , Mice , Proprotein Convertase 5/physiology , Proprotein Convertases , Protein Processing, Post-Translational , Protein Structure, Tertiary/physiology , Serine Endopeptidases/physiology , Transfection
17.
Biochim Biophys Acta Gene Regul Mech ; 1861(1): 29-40, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29208426

ABSTRACT

Hepatic low-density lipoprotein receptor (LDLR) is the primary conduit for the clearance of plasma LDL-cholesterol and increasing its expression represents a central goal for treating cardiovascular disease. However, LDLR mRNA is unstable and undergoes rapid turnover mainly due to the three AU-rich elements (ARE) in its proximal 3'-untranslated region (3'-UTR). Herein, our data revealed that 5-azacytidine (5-AzaC), an antimetabolite used in the treatment of myelodysplastic syndrome, stabilizes the LDLR mRNA through a previously unrecognized signaling pathway resulting in a strong increase of its protein level in human hepatocytes in culture. 5-AzaC caused a sustained activation of the inositol-requiring enzyme 1α (IRE1α) kinase domain and c-Jun N-terminal kinase (JNK) independently of endoplasmic reticulum stress. This resulted in activation of the epidermal growth factor receptor (EGFR) and extracellular signal-regulated kinase1/2 (ERK1/2) that, in turn, stabilized LDLR mRNA. Systematic mutation of the AREs (ARE1-3) in the LDLR 3'UTR and expression of each mutant coupled to a luciferase reporter in Huh7 cells demonstrated that ARE1 is required for rapid LDLR mRNA decay and 5-AzaC-induced mRNA stabilization via the IRE1α-EGFR-ERK1/2 signaling cascade. The characterization of this pathway will help to reveal potential targets to enhance plasma LDL clearance and novel cholesterol-lowering therapeutic strategies.


Subject(s)
AU Rich Elements/genetics , Azacitidine/administration & dosage , Endoribonucleases/genetics , ErbB Receptors/genetics , Protein Serine-Threonine Kinases/genetics , Receptors, LDL/genetics , 3' Untranslated Regions/genetics , Cell Line, Tumor , Cholesterol, LDL/genetics , Gene Expression Regulation/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/genetics , MAP Kinase Signaling System/drug effects , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , RNA Stability/genetics , RNA, Messenger/drug effects , RNA, Messenger/genetics
18.
Sci Rep ; 8(1): 3990, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29507344

ABSTRACT

The cytokines CLCF1 and CNTF are ligands for the CNTF receptor and the apolipoprotein E (ApoE) receptor sortilin. Both share structural similarities with the N-terminal domain of ApoE, known to bind CNTF. We therefore evaluated whether ApoE or ApoE-containing lipoproteins interact with CLCF1 and regulate its activity. We observed that CLCF1 forms complexes with the three major isoforms of ApoE in co-immunoprecipitation and proximity assays. FPLC analysis of mouse and human sera mixed with CLCF1 revealed that CLCF1 co-purifies with plasma lipoproteins. Studies with sera from ApoE-/- mice indicate that ApoE is not required for CLCF1-lipoprotein interactions. VLDL- and LDL-CLCF1 binding was confirmed using proximity and ligand blots assays. CLCF1-induced STAT3 phosphorylation was significantly reduced when the cytokine was complexed with VLDL. Physiological relevance of our findings was asserted in a mouse model of oxygen-induced retinopathy, where the beneficial anti-angiogenic properties of CLCF1 were abrogated when co-administrated with VLDL, indicating, that CLCF1 binds purified lipoproteins or lipoproteins in physiological fluids such as serum and behave as a "lipocytokine". Albeit it is clear that lipoproteins modulate CLCF1 activity, it remains to be determined whether lipoprotein binding directly contributes to its neurotrophic function and its roles in metabolic regulation.


Subject(s)
Cytokines/metabolism , Lipoproteins, VLDL/metabolism , Animals , Apolipoproteins E/metabolism , Humans , Lipoproteins, LDL/metabolism , Mice, Inbred C57BL , Phosphorylation , Protein Binding , Retinal Diseases/metabolism , STAT3 Transcription Factor/metabolism
19.
PLoS One ; 11(7): e0159550, 2016.
Article in English | MEDLINE | ID: mdl-27442011

ABSTRACT

The purpose of this study was to investigate the effects of three weeks of rosuvastatin (Ros) treatment alone and in combination with voluntary training (Tr) on expression of genes involved in cholesterol metabolism (LDLR, PCSK9, LRP-1, SREBP-2, IDOL, ACAT-2 and HMGCR) in the liver of eight week-old ovariectomized (Ovx) rats. Sprague Dawley rats were Ovx or sham-operated (Sham) and kept sedentary for 8 weeks under a standard diet. Thereafter, rats were transferred for three weeks in running wheel cages for Tr or kept sedentary (Sed) with or without Ros treatment (5mg/kg/day). Six groups were formed: Sham-Sed treated with saline (Sal) or Ros (Sham-Sed-Sal; Sham-Sed-Ros), Ovx-Sed treated with Sal or Ros (Ovx-Sed-Sal; Ovx-Sed-Ros), Ovx trained treated with Sal or Ros (Ovx-Tr-Sal; Ovx-Tr-Ros). Ovx-Sed-Sal rats depicted higher (P < 0.05) body weight, plasma total cholesterol (TC) and LDL-C, and liver TC content compared to Sham-Sed-Sal rats. In contrast, mRNA levels of liver PCSK9, LDLR, LRP-1 as well as plasma PCSK9 concentrations and protein levels of LRP-1 were reduced (P < 0.01) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. However, protein levels of LDLR increased (P < 0.05) in Ovx-Sed-Sal compared to Sham-Sed-Sal rats. Treatment of Ovx rats with Ros increased (P < 0.05) mRNA and protein levels of LRP-1 and PCSK9 but not mRNA levels of LDLR, while its protein abundance was reduced at the level of Sham rats. As a result, plasma LDL-C was not reduced. Exercise alone did not affect the expression of any of these markers in Ovx rats. Overall, Ros treatment corrected Ovx-induced decrease in gene expression of markers of cholesterol metabolism in liver of Ovx rats, but without reducing plasma LDL-C concentrations. Increased plasma PCSK9 levels could be responsible for the reduction of liver LDLR protein abundance and the absence of reduction of plasma LDL-C after Ros treatment.


Subject(s)
Cholesterol/metabolism , Gene Expression Regulation/drug effects , Ovariectomy , Physical Conditioning, Animal , Rosuvastatin Calcium/pharmacology , Animals , Body Weight , Cholesterol/blood , Female , Liver/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction
20.
Sci Rep ; 6: 27862, 2016 06 09.
Article in English | MEDLINE | ID: mdl-27279328

ABSTRACT

Atherosclerosis is driven by the accumulation of immune cells and cholesterol in the arterial wall. Although recent studies have shown that lymphatic vessels play an important role in macrophage reverse cholesterol transport, the specific underlying mechanisms of this physiological feature remain unknown. In the current report, we sought to better characterize the lymphatic dysfunction that is associated with atherosclerosis by studying the physiological and temporal origins of this impairment. First, we assessed that athero-protected Pcsk9(-/-) mice exhibited improved collecting lymphatic vessel function throughout age when compared to WT mice for up to six months, while displaying enhanced expression of LDLR on lymphatic endothelial cells. Lymphatic dysfunction was present before the atherosclerotic lesion formation in a mouse model that is predisposed to develop atherosclerosis (Ldlr(-/-); hApoB100(+/+)). This dysfunction was presumably associated with a defect in the collecting lymphatic vessels in a non-specific cholesterol- but LDLR-dependent manner. Treatment with a selective VEGFR-3 agonist rescued this impairment observed early in the onset of this arterial disease. We suggest that LDLR modulation is associated with early atherosclerosis-related lymphatic dysfunction, and bring forth a pleiotropic role for PCSK9 in lymphatic function. Our study unveils new potential therapeutic targets for the prevention and treatment of atherosclerosis.


Subject(s)
Atherosclerosis/metabolism , Endothelial Cells/metabolism , Lymphatic Vessels/metabolism , Proprotein Convertase 9/metabolism , Receptors, LDL/metabolism , Animals , Atherosclerosis/genetics , Atherosclerosis/pathology , Disease Models, Animal , Endothelial Cells/pathology , Female , Lymphatic Vessels/pathology , Male , Mice , Mice, Knockout , Proprotein Convertase 9/genetics , Receptors, LDL/genetics
SELECTION OF CITATIONS
SEARCH DETAIL