ABSTRACT
Algae have multiple similarities with fungi, with both belonging to the Thallophyte, a polyphyletic group of non-mobile organisms grouped together on the basis of similar characteristics, but not sharing a common ancestor. The main difference between algae and fungi is noted in their metabolism. In fact, although algae have chlorophyll-bearing thalloids and are autotrophic organisms, fungi lack chlorophyll and are heterotrophic, not able to synthesize their own nutrients. However, our studies have shown that the extremophilic microalga Galderia sulphuraria (GS) can also grow very well in heterotrophic conditions like fungi. This study was carried out using several approaches such as scanning electron microscope (SEM), gas chromatography/mass spectrometry (GC/MS), and infrared spectrophotometry (ATR-FTIR). Results showed that the GS, strain ACUF 064, cultured in autotrophic (AGS) and heterotrophic (HGS) conditions, produced different biomolecules. In particular, when grown in HGS, the algae (i) was 30% larger, with an increase in carbon mass that was 20% greater than AGS; (ii) produced higher quantities of stearic acid, oleic acid, monounsaturated fatty acids (MUFAs), and ergosterol; (iii) produced lower quantities of fatty acid methyl esters (FAMEs) such as methyl palmytate, and methyl linoleate, saturated fatty acids (SFAs), and poyliunsaturated fatty acids (PUFAs). ATR-FTIR and principal component analysis (PCA) statistical analysis confirmed that the macromolecular content of HGS was significantly different from AGS. The ability to produce different macromolecules by changing the trophic conditions may represent an interesting strategy to induce microalgae to produce different biomolecules that can find applications in several fields such as food, feed, nutraceutical, or energy production.
Subject(s)
Fatty Acids/metabolism , Rhodophyta/growth & development , Humans , Mass Spectrometry , Rhodophyta/metabolismABSTRACT
In this paper, we report studies concerning four variants of the G-quadruplex forming anti-HIV-integrase aptamer T30923, in which specific 2'-deoxyguanosines have been singly replaced by 8-methyl-2'-deoxyguanosine residues, with the aim to exploit the methyl group positioned in the G-quadruplex grooves as a steric probe to investigate the interaction aptamer/target. Although, the various modified aptamers differ in the localization of the methyl group, NMR, circular dichroism (CD), electrophoretic and molecular modeling data suggest that all of them preserve the ability to fold in a stable dimeric parallel G-quadruplex complex resembling that of their natural counterpart T30923. However, the biological data have shown that the T30923 variants are characterized by different efficiencies in inhibiting the HIV-integrase, thus suggesting the involvement of the G-quadruplex grooves in the aptamer/target interaction.
Subject(s)
Aptamers, Nucleotide/pharmacology , G-Quadruplexes , HIV Integrase Inhibitors/pharmacology , HIV Integrase/metabolism , Oligonucleotides/pharmacology , Circular Dichroism , Dimerization , Humans , Intercellular Signaling Peptides and Proteins/chemistry , Intercellular Signaling Peptides and Proteins/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Transition TemperatureABSTRACT
In this paper, we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy and electrophoresis methods, on three oligonucleotide sequences, each containing one 3'-3' and two 5'-5' inversion of polarity sites, and four G-runs with a variable number of residues, namely two, three and four (mTG2T, mTG3T and mTG4T with sequence 3'-TGnT-5'-5'-TGnT-3'-3'-TGnT-5'-5'-TGnT-3' in which n = 2, 3 and 4, respectively), in comparison with their canonical counterparts (TGnT)4 (n = 2, 3 and 4). Oligonucleotides mTG3T and mTG4T have been proven to form very stable unprecedented monomolecular parallel G-quadruplex structures, characterized by three side loops containing the inversion of polarity sites. Both G-quadruplexes have shown an all-syn G-tetrad, while the other guanosines adopt anti glycosidic conformations. All oligonucleotides investigated have shown a noteworthy antiproliferative activity against lung cancer cell line Calu 6 and colorectal cancer cell line HCT-116 p53-/-. Interestingly, mTG3T and mTG4T have proven to be mostly resistant to nucleases in a fetal bovine serum assay. The whole of the data suggest the involvement of specific pathways and targets for the biological activity.
Subject(s)
G-Quadruplexes , Nucleic Acid Conformation , Nucleic Acid Denaturation , Oligonucleotides/chemistry , Cell Line , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , HCT116 Cells , Humans , Magnetic Resonance Spectroscopy , Oligonucleotides/genetics , Oligonucleotides/pharmacology , TemperatureABSTRACT
BACKGROUND: The thrombin binding aptamer (TBA) is endowed with both anticoagulant and antiproliferative activities. Its chemico-physical and/or biological properties can be tuned by the site-specific replacement of selected residues. METHODS: Four oligodeoxynucleotides (ODNs) based on the TBA sequence (5'-GGTTGGTGTGGTTGG-3') and containing 2'-deoxyuridine (U) or 5-bromo-2'-deoxyuridine (B) residues at positions 4 or 13 have been investigated by NMR and CD techniques. Furthermore, their anticoagulant (PT assay) and antiproliferative properties (MTT assay) have been tested and compared with two further ODNs containing 5-hydroxymethyl-2'-deoxyuridine (H) residues in the same positions, previously investigated. RESULTS: The CD and NMR data suggest that all the investigated ODNs are able to form G-quadruplexes strictly resembling that of TBA. The introduction of B residues in positions 4 or 13 increases the melting temperature of the modified aptamers by 7⯰C. The replacement of thymidines with U in the same positions results in an enhanced anticoagulant activity compared to TBA, also at low ODN concentration. Although all ODNs show antiproliferative properties, only TBA derivatives containing H in the positions 4 and 13 lose the anticoagulant activity and remarkably preserve the antiproliferative one. CONCLUSIONS: All ODNs have shown antiproliferative activities against two cancer cell lines but only those with U and B are endowed with anticoagulant activities similar or improved compared to TBA. GENERAL SIGNIFICANCE: The appropriate site-specific replacement of the residues in the TT loops of TBA with commercially available thymine analogues is a useful strategy either to improve the anticoagulant activity or to preserve the antiproliferative properties by quenching the anticoagulant ones.
Subject(s)
Anticoagulants/pharmacology , Antineoplastic Agents/pharmacology , Aptamers, Nucleotide/pharmacology , Anticoagulants/chemical synthesis , Anticoagulants/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Aptamers, Nucleotide/chemical synthesis , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/metabolism , Cell Line, Tumor , Circular Dichroism , Drug Stability , G-Quadruplexes , Humans , Transition TemperatureABSTRACT
Herein, we reported on the synthesis of cpIPP, which is a new structurally-reduced analogue of cyclic ADP-ribose (cADPR), a potent Ca2+-releasing secondary messenger that was firstly isolated from sea urchin eggs extracts. To obtain cpIPP the "northern" ribose of cADPR was replaced by a pentyl chain and the pyrophosphate moiety by a phophono-phosphate anhydride. The effect of the presence of the new phosphono-phosphate bridge on the intracellular Ca2+ release induced by cpIPP was assessed in PC12 neuronal cells in comparison with the effect of the pyrophosphate bridge of the structurally related cyclic N1-butylinosine diphosphate analogue (cbIDP), which was previously synthesized in our laboratories, and with that of the linear precursor of cpIPP, which, unexpectedly, revealed to be the only one provided with Ca2+ release properties.
Subject(s)
Calcium/metabolism , Cyclic ADP-Ribose/chemistry , Cyclic ADP-Ribose/metabolism , Ovum/metabolism , Sea Urchins/metabolism , Animals , Cell Line, Tumor , Neurons/metabolism , PC12 Cells , Rats , Signal Transduction/physiology , Structure-Activity RelationshipABSTRACT
BACKGROUND: G-quadruplex DNA is involved in many physiological and pathological processes. Both clinical and experimental studies on DNA G-quadruplexes are slowed down by their enzymatic instability. In this frame, more stable chemically modified analogs are needed. METHODS: The bis-end-linked-(gggt)2 PNA molecule (BEL-PNA) was synthesized using in solution and solid phase synthetic approaches. Quadruplex formation was assessed by circular dichroism (CD) and surface enhanced Raman scattering (SERS). RESULTS: An unprecedented bimolecular PNA homo quadruplex is here reported. To achieve this goal, we developed a bifunctional linker that once functionalized with gggt PNA strands and annealed in K+ buffer allowed the obtainment of a PNA homo quadruplex. The identification of the strong SERS band at ~1481cm-1, attributable to vibrations involving the quadruplex diagnostic Hoogsteen type hydrogen bonds, confirmed the formation of the PNA homo quadruplex. CONCLUSIONS: By tethering two G-rich PNA strands to the two ends of a suitable bifunctional linker it is possible to obtain bimolecular PNA homo quadruplexes after annealing in K+-containing buffers. The formation of such CD-unfriendly complexes can be monitored, even at low concentrations, by using the SERS technique. GENERAL SIGNIFICANCE: Given the importance of DNA G-quadruplexes in medicine and nanotechnology, the obtainment of G-quadruplex analogs provided with enhanced enzymatic stability, and their monitoring by highly sensitive label-free techniques are of the highest importance. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.
Subject(s)
G-Quadruplexes , Guanine/chemistry , Peptide Nucleic Acids/chemistry , Base Sequence , Circular Dichroism , Hydrogen Bonding , Models, Molecular , Spectrum Analysis, Raman , Structure-Activity RelationshipABSTRACT
Here we report investigations, based on circular dichroism, nuclear magnetic resonance spectroscopy, molecular modelling, differential scanning calorimetry and prothrombin time assay, on analogues of the thrombin binding aptamer (TBA) in which individual thymidines were replaced by 5-fluoro-2'-deoxyuridine residues. The whole of the data clearly indicate that all derivatives are able to fold in a G-quadruplex structure very similar to the 'chair-like' conformation typical of the TBA. However, only ODNs TBA-F4: and TBA-F13: have shown a remarkable improvement both in the melting temperature (ΔTm ≈ +10) and in the anticoagulant activity in comparison with the original TBA. These findings are unusual, particularly considering previously reported studies in which modifications of T4 and T13 residues in TBA sequence have clearly proven to be always detrimental for the structural stability and biological activity of the aptamer. Our results strongly suggest the possibility to enhance TBA properties through tiny straightforward modifications.
Subject(s)
Anticoagulants/chemistry , Aptamers, Nucleotide/chemistry , Fluorine/chemistry , Circular Dichroism , Deoxyribonucleases , Magnetic Resonance Spectroscopy , Models, Molecular , Nucleic Acid Denaturation , Prothrombin Time , Thermodynamics , Thymidine/chemistryABSTRACT
Many antiproliferative G-quadruplexes (G4s) arise from the folding of GT-rich strands. Among these, the Thrombin Binding Aptamer (TBA), as a rare example, adopts a monomolecular well-defined G4 structure. Nevertheless, the potential anticancer properties of TBA are severely hampered by its anticoagulant action and, consequently, no related studies have appeared so far in the literature. We wish to report here that suitable chemical modifications in the TBA sequence can preserve its antiproliferative over anticoagulant activity. Particularly, we replaced one residue of the TT or TGT loops with a dibenzyl linker to develop seven new quadruplex-forming TBA based sequences (TBA-bs), which were studied for their structural (CD, CD melting, 1D NMR) and biological (fibrinogen, PT and MTT assays) properties. The three-dimensional structures of the TBA-bs modified at T13 (TBA-bs13) or T12 (TBA-bs12), the former endowed with selective antiproliferative activity, and the latter acting as potently as TBA in both coagulation and MTT assays, were further studied by 2D NMR restrained molecular mechanics. The comparative structural analyses indicated that neither the stability, nor the topology of the G4s, but the different localization of the two benzene rings of the linker was responsible for the loss of the antithrombin activity for TBA-bs13.
Subject(s)
Anticoagulants/chemistry , Antineoplastic Agents/chemistry , Aptamers, Nucleotide/chemistry , Anticoagulants/pharmacology , Antineoplastic Agents/pharmacology , Aptamers, Nucleotide/pharmacology , Benzyl Compounds/chemistry , Blood Coagulation Tests , Cell Proliferation/drug effects , Fibrinogen , G-Quadruplexes , HeLa Cells , Humans , Models, Molecular , Nucleic Acid Denaturation , Oligonucleotides/chemical synthesis , Prothrombin TimeABSTRACT
By using a new rapid screening platform set on molecular docking simulations and fluorescence quenching techniques, three new anti-HIV aptamers targeting the viral surface glycoprotein 120 (gp120) were selected, synthesized, and assayed. The use of the short synthetic fluorescent peptide V35-Fluo mimicking the V3 loop of gp120, as the molecular target for fluorescence-quenching binding affinity studies, allowed one to measure the binding affinities of the new aptamers for the HIV-1 gp120 without the need to obtain and purify the full recombinant gp120 protein. The almost perfect correspondence between the calculated Kd and the experimental EC50 on HIV-infected cells confirmed the reliability of the platform as an alternative to the existing methods for aptamer selection and measuring of aptamer-protein equilibria.
Subject(s)
Anti-HIV Agents/chemistry , Anti-HIV Agents/pharmacology , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/pharmacology , Drug Evaluation, Preclinical/methods , Fluorescence , Molecular Docking Simulation , Anti-HIV Agents/chemical synthesis , Aptamers, Nucleotide/chemical synthesis , Cell Line, Tumor , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , HIV/drug effects , HIV/metabolism , HIV Envelope Protein gp120/antagonists & inhibitors , HIV Envelope Protein gp120/metabolism , Humans , Reproducibility of Results , Spectrometry, Fluorescence , ThermodynamicsABSTRACT
5-Aminoimidazole-4-carboxamide riboside (AICAR) has an important role in the regulation of the cellular metabolism showing a broad spectrum of therapeutic activities against different metabolic processes. Due to these proven AICAR properties, we have designed, synthesized and tested the biological activity of two ribose-modified AICAR derivatives, named A3 and A4, in comparison to native AICAR and its 5'-phosphorylated counterpart ZMP. Our findings have shown that A3 and A4 derivatives induce the phosphorylation of 5'-AMP activated protein kinase α (AMPKα), which leads to the inhibition of acetyl-CoA carboxylase (ACC), and down-regulate the activity of the extracellular signal-regulated kinases (ERK1/2). Cytotoxicity tests demonstrated that A3 and A4 do not significantly reduce cell viability up to 24 h. Taken together our results indicate that A3 and A4 have a comparable activity to AICAR and ZMP at 0.5 and 1 mM suggesting their potential use in future pharmacological strategies relating to metabolic diseases.
Subject(s)
AMP-Activated Protein Kinases/metabolism , Acetyl-CoA Carboxylase/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Gene Expression Regulation, Enzymologic/drug effects , Ribonucleotides/chemical synthesis , Ribonucleotides/pharmacology , AMP-Activated Protein Kinases/genetics , Acetyl-CoA Carboxylase/genetics , Aminoimidazole Carboxamide/chemical synthesis , Aminoimidazole Carboxamide/chemistry , Aminoimidazole Carboxamide/pharmacology , Blotting, Western , Cell Line, Tumor , Enzyme Activation/drug effects , Humans , MAP Kinase Signaling System/genetics , Molecular Structure , Ribonucleotides/chemistryABSTRACT
As part of the genome, human telomeric regions can be damaged by the chemically reactive molecules responsible for oxidative DNA damage. Considering that G-quadruplex structures have been proven to occur in human telomere regions, several studies have been devoted to investigating the effect of oxidation products on the properties of these structures. However only investigations concerning the presence in G-quadruplexes of the main oxidation products of deoxyguanosine and deoxyadenosine have appeared in the literature. Here, we investigated the effects of 5-hydroxymethyl-2'-deoxyuridine (5-hmdU), one of the main oxidation products of T, on the physical-chemical properties of the G-quadruplex structures formed by two human telomeric sequences. Collected calorimetric, circular dichroism and electrophoretic data suggest that, in contrast to most of the results on other damage, the replacement of a T with a 5-hmdU results in only negligible effects on structural stability. Reported results and other data from literature suggest a possible protecting effect of the loop residues on the other parts of the G-quadruplexes.
Subject(s)
G-Quadruplexes , Telomere/chemistry , Thymidine/analogs & derivatives , Calorimetry, Differential Scanning , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Humans , Nucleic Acid Denaturation , Oxidation-Reduction , Temperature , Thymidine/chemistryABSTRACT
In order to expand the potential applications of G-quadruplex structures, we explored the ability of heterochiral oligodeoxynucleotides based on the thrombin-binding aptamer (TBA) sequence to fold into similar complexes, with particular focus on their resistance in biological environments. A combination of CD and NMR techniques was used. Similarly to TBA, the ODN ggTTggtgtggTTgg (lower case letters indicate L residues) is able to fold into a chair-like antiparallel G-quadruplex structure, but has a slightly higher thermal stability. The discovery that heterochiral ODNs are able to form stable G-quadruplex structures opens up new possibilities for their development in several fields, as aptamers, sensors and, as recently shown, as catalysts for enantioselective reactions.
Subject(s)
Aptamers, Nucleotide/chemistry , G-Quadruplexes , Oligodeoxyribonucleotides/chemistry , Base Sequence , Circular Dichroism , Models, Molecular , Nuclear Magnetic Resonance, BiomolecularABSTRACT
We report an investigation into analogues of the thrombin binding aptamer (TBA). Individual thymidines were replaced by the unusual residue 5-hydroxymethyl-2'-deoxyuridine (hmU). This differs from the canonical thymidine by a hydroxyl group on the 5-methyl group. NMR and CD data clearly indicate that all TBA derivatives retain the ability to fold into the "chair-like" quadruplex structure. The presence of the hmU residue does not significantly affect the thermal stability of the modified aptamers compared to the parent, except for analogue H9, which showed a marked increase in melting temperature. Although all TBA analogues showed decreased affinities to thrombin, H3, H7, and H9 proved to have improved anticoagulant activities. Our data open up the possibility to enhance TBA biological properties, simply by introducing small chemical modifications.
Subject(s)
Anticoagulants/chemistry , Aptamers, Nucleotide/chemistry , Thrombin/chemistry , Thymidine/analogs & derivatives , Anticoagulants/metabolism , Aptamers, Nucleotide/metabolism , Base Sequence , Circular Dichroism , Fibrinogen/chemistry , Fibrinogen/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Protein Binding , Thrombin/metabolism , Thymidine/chemistryABSTRACT
In this article, we report an investigation, based on NMR and CD spectroscopic and electrophoretic techniques, of 5'TGGGGT3' analogues containing two or three 3'-3' or 5'-5' inversion sites in the G-run, namely 5'TG3'-3'G5'-5'GGT3' (Q350), 5'TG3'-3'GG5'-5'GT3' (Q305), 5'TGG3'-3'G5'-5'GT3' (Q035), 5'TG3'-3'G5'-5'G3'-3'GT5' (Q353) and 3'TG5'-5'G3'-3'G5'-5'GT3' (Q535). Although the sequences investigated contain either no or only one natural 3'-5' linkage in the G-tract, all modified oligodeoxyribonucleotides (ODNs) have been shown to form stable tetramolecular quadruplex structures. The ability of the 3'-3' or 5'-5' inversion sites to affect the glycosidic conformation of guanosines and, consequently, base stacking, has also been investigated. The results of this study allow us to propose some generalizations concerning strand arrangements and the glycosidic conformational preference of residues adjacent to inverted polarity sites. These rules could be of general interest in the design of modified quadruplex structures, in view of their application as G-wires and modified aptamers.
Subject(s)
G-Quadruplexes , Guanine/chemistry , Organophosphates/chemistry , Nucleic Acid ConformationABSTRACT
Degradation of nucleic acids in biological environments is the major drawback of the therapeutic use of aptamers. Among the approaches used to circumvent this negative aspect, the introduction of 3'-3' inversion of polarity sites at the sequence 3'-end has successfully been proposed. However, the introduction of inversion of polarity at the ends of the sequence has never been exploited for G-quadruplex forming aptamers. In this communication we describe CD, UV, electrophoretic and biochemical investigations concerning thrombin binding aptamer analogues containing one or two inversions of polarity sites at the oligonucleotide ends. Data indicate that, in some cases, this straightforward chemical modification is able to improve, at the same time, the thermal stability, affinity to thrombin and nuclease resistance in biological environments, thus suggesting its general application as a post-SELEX modification also for other therapeutically promising aptamers adopting G-quadruplex structures.
Subject(s)
Oligonucleotides/chemistry , Thrombin/chemistry , Binding Sites , G-Quadruplexes , Thrombin/analogs & derivativesABSTRACT
In this article, we report a structural study, based on NMR and CD spectroscopies, and molecular modelling of all possible d(TG(3)T) and d(TG(4)T) analogues containing two 8-methyl-2'-deoxyguanosine residues (M). Particularly, the potential ability of these modified residues to orientate the strands and then to affect the folding topology of tetramolecular quadruplex structures has been investigated. Oligodeoxynucleotides (ODNs) TMMGT (T12) and TMMGGT (F12) form parallel tetramolecular quadruplexes, characterized by an all-syn M-tetrad at the 5'-side stacked to all-anti M- and G-tetrads. ODNs TMGMT (T13) and TMGGMT (F14) form parallel tetramolecular quadruplexes, in which an all-anti G core is sandwiched between two all-syn M-tetrads at the 5'- and the 3'-side. Notably, the quadruplex formed by T13 corresponds to an unprecedented structure in which the syn residues exceed in number the anti ones. Conversely, ODN TGMGMT (F24) adopts a parallel arrangement in which all-anti G-tetrads alternate with all-syn M-tetrads. Most importantly, all data strongly suggest that ODN TMGMGT (F13) forms an unprecedented anti-parallel tetramolecular quadruplex in which G and M residues adopt anti and syn glycosidic conformations, respectively. This article opens up new understandings and perspectives about the intricate relationship between the quadruplex strands orientation and the glycosidic conformation of the residues.
Subject(s)
Deoxyguanosine/analogs & derivatives , G-Quadruplexes , Circular Dichroism , Deoxyguanosine/chemistry , Electrophoresis, Polyacrylamide Gel , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Nucleic Acid Denaturation , Oligodeoxyribonucleotides/chemistryABSTRACT
Among non-canonical DNA secondary structures, G-quadruplexes are currently widely studied because of their probable involvement in many pivotal biological roles, and for their potential use in nanotechnology. The overall quadruplex scaffold can exhibit several morphologies through intramolecular or intermolecular organization of G-rich oligodeoxyribonucleic acid strands. In particular, several G-rich strands can form higher order assemblies by multimerization between several G-quadruplex units. Here, we report on the identification of a novel dimerization pathway. Our Nuclear magnetic resonance, circular dichroism, UV, gel electrophoresis and mass spectrometry studies on the DNA sequence dCGGTGGT demonstrate that this sequence forms an octamer when annealed in presence of K(+) or NH(4)(+) ions, through the 5'-5' stacking of two tetramolecular G-quadruplex subunits via unusual G(:C):G(:C):G(:C):G(:C) octads.
Subject(s)
G-Quadruplexes , Base Sequence , Dimerization , Models, Molecular , Nuclear Magnetic Resonance, BiomolecularABSTRACT
The antiviral activity of certain acyclic nucleosides drew our attention to the fact that the replacement of the furanose ring by an alkyl group bearing hydroxyl(s) could be a useful structural modification to modulate the biological properties of those nucleosides. Herein, we report on the synthesis of some novel acadesine analogues, where the ribose moiety is mimicked by a D-ribityl or by a hydroxybutyl chain.
Subject(s)
Aminoimidazole Carboxamide/analogs & derivatives , Antiviral Agents/chemical synthesis , Ribonucleosides/chemical synthesis , Ribose/chemistry , Structure-Activity Relationship , Aminoimidazole Carboxamide/chemical synthesis , Aminoimidazole Carboxamide/pharmacology , Antiviral Agents/pharmacology , Humans , Nucleotides/chemistry , Ribonucleosides/pharmacology , Viruses/drug effectsABSTRACT
Several anti-HIV aptamers adopt DNA quadruplex structures. Among these, "Hotoda's aptamer" (base sequence TGGGAG) was one of the first to be discovered. Although it has been the topic of some recent research, no detailed structural investigations have been reported. Here we report structural investigations on this aptamer and analogues with related sequences, by using UV, CD, and NMR spectroscopy as well as electrophoretic techniques. The addition of a 3'-end thymine has allowed us to obtain a single, investigable quadruplex structure. Data clearly point to the presence of an A-tetrad. Furthermore, the effects of the incorporation of an 8-methyl-2'-deoxyguanosine at the 5'-end of the G-run were investigated.
Subject(s)
Anti-HIV Agents/chemistry , Aptamers, Nucleotide/chemistry , Deoxyguanosine/analogs & derivatives , G-Quadruplexes , Acquired Immunodeficiency Syndrome/drug therapy , Base Sequence , Circular Dichroism , Deoxyguanosine/chemistry , HIV/drug effects , Humans , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Spectrophotometry, UltravioletABSTRACT
Abasic sites represent the most frequent lesion in DNA. Since several events generating abasic sites concern guanines, this damage is particularly important in quadruplex forming G-rich sequences, many of which are believed to be involved in several biological roles. However, the effects of abasic sites in sequences forming quadruplexes have been poorly studied. Here, we investigated the effects of abasic site mimics on structural, thermodynamic and kinetic properties of parallel quadruplexes. Investigation concerned five oligodeoxynucleotides based on the sequence d(TGGGGGT), in which all guanines have been replaced, one at a time, by an abasic site mimic (dS). All sequences preserve their ability to form quadruplexes; however, both spectroscopic and kinetic experiments point to sequence-dependent different effects on the structural flexibility and stability. Sequences d(TSGGGGT) and d(TGGGGST) form quite stable quadruplexes; however, for the other sequences, the introduction of the dS in proximity of the 3'-end decreases the stability more considerably than the 5'-end. Noteworthy, sequence d(TGSGGGT) forms a quadruplex where dS does not hamper the stacking between the G-tetrads adjacent to it. These results strongly argue for the central role of apurinic/apyrimidinic site damages and they encourage the production of further studies to better delineate the consequences of their presence in the biological relevant regions of the genome.