Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Proc Natl Acad Sci U S A ; 114(45): E9608-E9617, 2017 11 07.
Article in English | MEDLINE | ID: mdl-29078383

ABSTRACT

Inflammatory bowel disease (IBD) is a chronic inflammatory disorder and is a major risk factor for colorectal cancer (CRC). Hypoxia is a feature of IBD and modulates cellular and mitochondrial metabolism. However, the role of hypoxic metabolism in IBD is unclear. Because mitochondrial dysfunction is an early hallmark of hypoxia and inflammation, an unbiased proteomics approach was used to assess the mitochondria in a mouse model of colitis. Through this analysis, we identified a ferrireductase: six-transmembrane epithelial antigen of prostate 4 (STEAP4) was highly induced in mouse models of colitis and in IBD patients. STEAP4 was regulated in a hypoxia-dependent manner that led to a dysregulation in mitochondrial iron balance, enhanced reactive oxygen species production, and increased susceptibility to mouse models of colitis. Mitochondrial iron chelation therapy improved colitis and demonstrated an essential role of mitochondrial iron dysregulation in the pathogenesis of IBD. To address if mitochondrial iron dysregulation is a key mechanism by which inflammation impacts colon tumorigenesis, STEAP4 expression, function, and mitochondrial iron chelation were assessed in a colitis-associated colon cancer model (CAC). STEAP4 was increased in human CRC and predicted poor prognosis. STEAP4 and mitochondrial iron increased tumor number and burden in a CAC model. These studies demonstrate the importance of mitochondrial iron homeostasis in IBD and CRC.


Subject(s)
Colonic Neoplasms/metabolism , Inflammation/metabolism , Membrane Proteins/metabolism , Mitochondria/metabolism , Animals , Carcinogenesis/metabolism , Disease Models, Animal , Homeostasis/physiology , Humans , Inflammatory Bowel Diseases/metabolism , Iron/metabolism , Mice , Mice, Transgenic/metabolism , Proteomics/methods , Reactive Oxygen Species/metabolism
2.
Environ Toxicol ; 32(6): 1775-1783, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28181387

ABSTRACT

Synthetic nanomaterials have many unique chemical and physical properties, mainly due to their high specific surface area and quantum confinement effect. Specifically, titanium dioxide (TiO2 ) nanomaterial has high stability, anticorrosive, and photocatalytic properties. However, there are concerns over adverse biological effects resulting from bioeffects. This study was to investigate adverse effects associated with acute ingestion of TiO2 nanofiber (TDNF). TDNF was fabricated via electrospinning method, followed by dissolution in water. Six- to seven-week-old male Sprague Dawley rats were exposed to a total of 0, 40, and 60 ppm of TDNF for 2 weeks via oral gavage. Serum total protein and weight gain during the course of this study displayed marginal concentration-dependent alterations. These findings were followed by a global gene expression analysis to identify which transcripts might be responsive to TNDF toxicity. Differentially expressed mRNA levels were dose-dependently higher in animals exposed to TNDF. The majority of the affected genes were biochemically involved in immune response and inflammation. We believe this is due to the fact that TNDF is unable to penetrate the cell and forms phagocytosis sites that trigger inflammatory and immune response. All results taken together, short-term ingestion of TNDF produced marginal effects indicative of inflammation. Finally, the broad gene expression data were validated through quantification of immunoglobulin heavy chain alpha (Igha). Igha gene was upregulated in treated groups, showing similar expression patterns to the global gene expression data.


Subject(s)
Gene Expression/drug effects , Immunoglobulin alpha-Chains/genetics , Nanofibers/toxicity , Pneumonia/virology , Titanium/toxicity , Administration, Oral , Animals , Dose-Response Relationship, Drug , Genome-Wide Association Study , Male , Pneumonia/immunology , Rats , Rats, Sprague-Dawley
3.
Article in English | MEDLINE | ID: mdl-28149833

ABSTRACT

BACKGROUND: A recent diabetes report revealed an increased incidence in diabetes including type 1-diabetes (T1D). The increase in the numbers of T1D incidences are thought to be related to environmental reasons such as the exposure to environmental chemicals including arylamine 2-aminoanthracene (2AA). T1D is an autoimmune disease of the pancreatic islet in which insulin-producing beta cells are destroyed by auto-reactive T-cells and monocytic cells. METHODS: The purpose of this study is to examine the extent to which 2AA exposure contributes to T1D. Three groups of pregnant Sprague Dawley dams ingested various concentrations of dietary 2AA from gestation through the postnatal period. A select number of cytokines and adipokines previously noted to play a significant role in inflammatory response were analyzed in the pancreas of the pups for alteration. The anatomy of the pancreas was also evaluated to determine any histological changes. RESULTS: Results showed over-expression of pro-inflammatory protein IL-6. Up-regulation of humoral genes IL-7 and IL-21 were also noted. Pathologic characterization showed no significant changes. Moreover, serum total protein was significantly reduced in exposed groups. Elevated serum glucose concentration seems to correspond to slightly lower insulin levels in serum. Cumulative neonatal weight gain analysis showed no major alterations between the control and gestationally-exposed rats. CONCLUSION: It appears that systemic effects of 2AA ingestion were mild in the neonates. Further assessments of pups who lived longer than two weeks could be a useful way to measure the progression and possibly further support our hypothesis that 2AA can lead to systemic effects that are indicative of inducing T1D.

4.
J Pharm Sci ; 106(1): 338-347, 2017 01.
Article in English | MEDLINE | ID: mdl-27836109

ABSTRACT

Magnesium stearate is the salt of a complex mixture of fatty acids, with the majority being stearate and palmitate. It has multiple crystalline forms and, potentially, an amorphous form. Magnesium stearate is used in the pharmaceutical manufacturing industry as a powder lubricant, and typically is added at low levels (∼1%) during the manufacturing process and blended for a relatively short time (∼5 min). Proper levels and mixing times are needed, as too short a mixing time or too small a quantity will result in improper lubrication, and too much can negatively impact dissolution rates. The complex mixture of multiple fatty acids and crystalline forms in magnesium stearate leads to variability between commercial sources, and switching between sources can impact both the amount of lubricant and mixing time needed for proper lubrication. In order to better understand the complex nature of magnesium stearate, a variety of analytical techniques were used to characterize both synthesized and commercial magnesium stearate samples. The results show that correlation among differential scanning calorimetry, thermogravimetric analysis, solid-state NMR spectroscopy, and other techniques provides a unique insight into the forms of magnesium stearate. Finally, the ability to monitor form changes of magnesium stearate in an intact tablet using solid-state NMR spectroscopy is shown.


Subject(s)
Lubricants/chemistry , Stearic Acids/chemistry , Calorimetry, Differential Scanning , Lubricants/chemical synthesis , Magnetic Resonance Spectroscopy , Powder Diffraction , Stearic Acids/chemical synthesis , Tablets , Thermogravimetry , X-Ray Diffraction
5.
Diabetes Metab J ; 40(6): 494-508, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27535646

ABSTRACT

BACKGROUND: In recent times, there has been an increase in the incidence of type 2 diabetes mellitus (T2DM) particularly in children. Adipocyte dysfunction provide a critical link between obesity and insulin resistance resulting in diabetes outcome. Further, environmental chemical exposure during early years of life might be a significant contributing factor to the increase in the incidence of T2DM. This study tests the idea that exposure to environmental contaminants (2-aminoanthracene [2AA]) in utero will show effects in the adipose tissue (AT) that signify T2DM vulnerability. 2AA is a polycyclic aromatic hydrocarbon found in a variety of products. METHODS: To accomplish the study objective, pregnant dams were fed various amounts of 2AA adulterated diets from gestation through postnatal period. The neonates and older offspring were analyzed for diabetic-like genes in the ATs and analysis of serum glucose. Furthermore, weight monitoring, histopathology and immunohistochemical (IHC) staining for CD68 in AT, adipocyte size determination and adiponectin amounts in serum were undertaken. RESULTS: Up-regulation of adiponectin and interleukin-6 genes were noted in the pups and older rats. Combination of intrauterine 2AA toxicity with moderate high fat diet exhibited gene expression patterns similar to those of the neonates. Elevated serum glucose levels were noted in treated groups. IHC of the AT indicated no significant malformations; however, CD68+ cells were greater in the animals treated to 2AA. Similarly, mean sizes of the adipocytes were larger in treated and combined 2AA and moderate high fat animals. Adiponectin was reduced in 2AA groups. CONCLUSION: From the preceding, it appears intrauterine 2AA disturbance, when combined with excess fat accumulation will lead to greater risk for the diabetic condition.

SELECTION OF CITATIONS
SEARCH DETAIL