Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters

Publication year range
1.
Magn Reson Med ; 91(2): 640-648, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37753628

ABSTRACT

PURPOSE: To demonstrate the technical feasibility and the value of ultrahigh-performance gradient in imaging the prostate in a 3T MRI system. METHODS: In this local institutional review board-approved study, prostate MRI was performed on 4 healthy men. Each subject was scanned in a prototype 3T MRI system with a 42-cm inner-diameter gradient coil that achieves a maximum gradient amplitude of 200 mT/m and slew rate of 500 T/m/s. PI-RADS V2.1-compliant axial T2 -weighted anatomical imaging and single-shot echo planar DWI at standard gradient of 70 mT/m and 150 T/m/s were obtained, followed by DWI at maximum performance (i.e., 200 mT/m and 500 T/m/s). In comparison to state-of-the-art clinical whole-body MRI systems, the high slew rate improved echo spacing from 1020 to 596 µs and, together with a high gradient amplitude for diffusion encoding, TE was reduced from 55 to 36 ms. RESULTS: In all 4 subjects (waist circumference = 81-91 cm, age = 45-65 years), no peripheral nerve stimulation sensation was reported during DWI. Reduced image distortion in the posterior peripheral zone prostate gland and higher signal intensity, such as in the surrounding muscle of high-gradient DWI, were noted. CONCLUSION: Human prostate MRI at simultaneously high gradient amplitude of 200 mT/m and slew rate of 500 T/m/s is feasible, demonstrating that improved gradient performance can address image distortion and T2 decay-induced SNR issues for in vivo prostate imaging.


Subject(s)
Magnetic Resonance Imaging , Prostatic Neoplasms , Male , Humans , Middle Aged , Aged , Prostate/diagnostic imaging , Feasibility Studies , Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Reproducibility of Results
2.
J Magn Reson Imaging ; 2024 May 04.
Article in English | MEDLINE | ID: mdl-38703143

ABSTRACT

Breast cancer is one of the most prevalent forms of cancer affecting women worldwide. Hypoxia, a condition characterized by insufficient oxygen supply in tumor tissues, is closely associated with tumor aggressiveness, resistance to therapy, and poor clinical outcomes. Accurate assessment of tumor hypoxia can guide treatment decisions, predict therapy response, and contribute to the development of targeted therapeutic interventions. Over the years, functional magnetic resonance imaging (fMRI) and magnetic resonance spectroscopy (MRS) techniques have emerged as promising noninvasive imaging options for evaluating hypoxia in cancer. Such techniques include blood oxygen level-dependent (BOLD) MRI, oxygen-enhanced MRI (OE) MRI, chemical exchange saturation transfer (CEST) MRI, and proton MRS (1H-MRS). These may help overcome the limitations of the routinely used dynamic contrast-enhanced (DCE) MRI and diffusion-weighted imaging (DWI) techniques, contributing to better diagnosis and understanding of the biological features of breast cancer. This review aims to provide a comprehensive overview of the emerging functional MRI and MRS techniques for assessing hypoxia in breast cancer, along with their evolving clinical applications. The integration of these techniques in clinical practice holds promising implications for breast cancer management. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 1.

3.
Chem Rec ; 24(1): e202200266, 2024 Jan.
Article in English | MEDLINE | ID: mdl-36995072

ABSTRACT

The ever-growing demand of human society for clean and reliable energy sources spurred a substantial academic interest in exploring the potential of biological resources for developing energy generation and storage systems. As a result, alternative energy sources are needed in populous developing countries to compensate for energy deficits in an environmentally sustainable manner. This review aims to evaluate and summarize the recent progress in bio-based polymer composites (PCs) for energy generation and storage. The articulated review provides an overview of energy storage systems, e. g., supercapacitors and batteries, and discusses the future possibilities of various solar cells (SCs), using both past research progress and possible future developments as a basis for discussion. These studies examine systematic and sequential advances in different generations of SCs. Developing novel PCs that are efficient, stable, and cost-effective is of utmost importance. In addition, the current state of high-performance equipment for each of the technologies is evaluated in detail. We also discuss the prospects, future trends, and opportunities regarding using bioresources for energy generation and storage, as well as the development of low-cost and efficient PCs for SCs.

4.
J Magn Reson Imaging ; 57(2): 353-369, 2023 02.
Article in English | MEDLINE | ID: mdl-36073323

ABSTRACT

In recent years, several key advances in the management of locally advanced rectal cancer have been made, including the implementation of total mesorectal excision as the standard surgical approach; use of neoadjuvant chemoradiotherapy in selected patients with a high risk of local recurrence, and finally, adoption of organ preservation strategies, through either local excision or nonoperative management in selected patients with clinical complete response following neoadjuvant chemoradiotherapy. This review aims to shed light on the role of rectal MRI in the assessment of treatment response after neoadjuvant therapy, which is especially important given the growing feasibility of nonoperative management. First, an overview of current neoadjuvant therapies and response assessment based on digital rectal examination, endoscopy, and MRI will be provided. Second, the use of a high-quality restaging rectal MRI protocol will be presented. Third, a step-by-step approach to assessing treatment response on restaging rectal MRI following neoadjuvant treatment will be outlined, acknowledging challenges faced by radiologists during MRI interpretation. Finally, research related to response assessment will be discussed. LEVEL OF EVIDENCE: 4 TECHNICAL EFFICACY: Stage 3.


Subject(s)
Neoadjuvant Therapy , Rectal Neoplasms , Humans , Neoadjuvant Therapy/methods , Chemoradiotherapy/methods , Neoplasm Staging , Rectum/diagnostic imaging , Rectum/pathology , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Rectal Neoplasms/pathology , Magnetic Resonance Imaging , Treatment Outcome , Neoplasm Recurrence, Local/diagnostic imaging
5.
NMR Biomed ; 35(7): e4718, 2022 07.
Article in English | MEDLINE | ID: mdl-35226774

ABSTRACT

The aim of this work is to develop a data-driven quantitative dynamic contrast-enhanced (DCE) MRI technique using Golden-angle RAdial Sparse Parallel (GRASP) MRI with high spatial resolution and high flexible temporal resolution and pharmacokinetic (PK) analysis with an arterial input function (AIF) estimated directly from the data obtained from each patient. DCE-MRI was performed on 13 patients with gynecological malignancy using a 3-T MRI scanner with a single continuous golden-angle stack-of-stars acquisition and image reconstruction with two temporal resolutions, by exploiting a unique feature in GRASP that reconstructs acquired data with user-defined temporal resolution. Joint estimation of the AIF (both AIF shape and delay) and PK parameters was performed with an iterative algorithm that alternates between AIF and PK estimation. Computer simulations were performed to determine the accuracy (expressed as percentage error [PE]) and precision of the estimated parameters. PK parameters (volume transfer constant [Ktrans ], fractional volume of the extravascular extracellular space [ve ], and blood plasma volume fraction [vp ]) and normalized root-mean-square error [nRMSE] (%) of the fitting errors for the tumor contrast kinetic data were measured both with population-averaged and data-driven AIFs. On patient data, the Wilcoxon signed-rank test was performed to compare nRMSE. Simulations demonstrated that GRASP image reconstruction with a temporal resolution of 1 s/frame for AIF estimation and 5 s/frame for PK analysis resulted in an absolute PE of less than 5% in the estimation of Ktrans and ve , and less than 11% in the estimation of vp . The nRMSE (mean ± SD) for the dual temporal resolution image reconstruction and data-driven AIF was 0.16 ± 0.04 compared with 0.27 ± 0.10 (p < 0.001) with 1 s/frame using population-averaged AIF, and 0.23 ± 0.07 with 5 s/frame using population-averaged AIF (p < 0.001). We conclude that DCE-MRI data acquired and reconstructed with the GRASP technique at dual temporal resolution can successfully be applied to jointly estimate the AIF and PK parameters from a single acquisition resulting in data-driven AIFs and voxelwise PK parametric maps.


Subject(s)
Contrast Media , Magnetic Resonance Imaging , Algorithms , Arteries , Contrast Media/pharmacokinetics , Humans , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Reproducibility of Results
6.
J Magn Reson Imaging ; 55(6): 1745-1758, 2022 06.
Article in English | MEDLINE | ID: mdl-34767682

ABSTRACT

BACKGROUND: Diffusion-weighted imaging (DWI) is commonly used to detect prostate cancer, and a major clinical challenge is differentiating aggressive from indolent disease. PURPOSE: To compare 14 site-specific parametric fitting implementations applied to the same dataset of whole-mount pathologically validated DWI to test the hypothesis that cancer differentiation varies with different fitting algorithms. STUDY TYPE: Prospective. POPULATION: Thirty-three patients prospectively imaged prior to prostatectomy. FIELD STRENGTH/SEQUENCE: 3 T, field-of-view optimized and constrained undistorted single-shot DWI sequence. ASSESSMENT: Datasets, including a noise-free digital reference object (DRO), were distributed to the 14 teams, where locally implemented DWI parameter maps were calculated, including mono-exponential apparent diffusion coefficient (MEADC), kurtosis (K), diffusion kurtosis (DK), bi-exponential diffusion (BID), pseudo-diffusion (BID*), and perfusion fraction (F). The resulting parametric maps were centrally analyzed, where differentiation of benign from cancerous tissue was compared between DWI parameters and the fitting algorithms with a receiver operating characteristic area under the curve (ROC AUC). STATISTICAL TEST: Levene's test, P < 0.05 corrected for multiple comparisons was considered statistically significant. RESULTS: The DRO results indicated minimal discordance between sites. Comparison across sites indicated that K, DK, and MEADC had significantly higher prostate cancer detection capability (AUC range = 0.72-0.76, 0.76-0.81, and 0.76-0.80 respectively) as compared to bi-exponential parameters (BID, BID*, F) which had lower AUC and greater between site variation (AUC range = 0.53-0.80, 0.51-0.81, and 0.52-0.80 respectively). Post-processing parameters also affected the resulting AUC, moving from, for example, 0.75 to 0.87 for MEADC varying cluster size. DATA CONCLUSION: We found that conventional diffusion models had consistent performance at differentiating prostate cancer from benign tissue. Our results also indicated that post-processing decisions on DWI data can affect sensitivity and specificity when applied to radiological-pathological studies in prostate cancer. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 3.


Subject(s)
Diffusion Magnetic Resonance Imaging , Prostatic Neoplasms , Diffusion Magnetic Resonance Imaging/methods , Humans , Male , Prospective Studies , Prostatic Neoplasms/diagnostic imaging , ROC Curve , Retrospective Studies , Sensitivity and Specificity
7.
N Engl J Med ; 379(25): 2417-2428, 2018 12 20.
Article in English | MEDLINE | ID: mdl-30575484

ABSTRACT

BACKGROUND: Desmoid tumors (also referred to as aggressive fibromatosis) are connective tissue neoplasms that can arise in any anatomical location and infiltrate the mesentery, neurovascular structures, and visceral organs. There is no standard of care. METHODS: In this double-blind, phase 3 trial, we randomly assigned 87 patients with progressive, symptomatic, or recurrent desmoid tumors to receive either sorafenib (400-mg tablet once daily) or matching placebo. Crossover to the sorafenib group was permitted for patients in the placebo group who had disease progression. The primary end point was investigator-assessed progression-free survival; rates of objective response and adverse events were also evaluated. RESULTS: With a median follow-up of 27.2 months, the 2-year progression-free survival rate was 81% (95% confidence interval [CI], 69 to 96) in the sorafenib group and 36% (95% CI, 22 to 57) in the placebo group (hazard ratio for progression or death, 0.13; 95% CI, 0.05 to 0.31; P<0.001). Before crossover, the objective response rate was 33% (95% CI, 20 to 48) in the sorafenib group and 20% (95% CI, 8 to 38) in the placebo group. The median time to an objective response among patients who had a response was 9.6 months (interquartile range, 6.6 to 16.7) in the sorafenib group and 13.3 months (interquartile range, 11.2 to 31.1) in the placebo group. The objective responses are ongoing. Among patients who received sorafenib, the most frequently reported adverse events were grade 1 or 2 events of rash (73%), fatigue (67%), hypertension (55%), and diarrhea (51%). CONCLUSIONS: Among patients with progressive, refractory, or symptomatic desmoid tumors, sorafenib significantly prolonged progression-free survival and induced durable responses. (Funded by the National Cancer Institute and others; ClinicalTrials.gov number, NCT02066181 .).


Subject(s)
Antineoplastic Agents/therapeutic use , Fibromatosis, Aggressive/drug therapy , Sorafenib/therapeutic use , Adolescent , Adult , Aged , Antineoplastic Agents/adverse effects , Double-Blind Method , Female , Fibromatosis, Aggressive/mortality , Follow-Up Studies , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Progression-Free Survival , Sorafenib/adverse effects , Survival Rate , Young Adult
8.
NMR Biomed ; 33(1): e4166, 2020 01.
Article in English | MEDLINE | ID: mdl-31680360

ABSTRACT

The purpose of this study was to identify the optimal tracer kinetic model from T1 -weighted dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) data and evaluate whether parameters estimated from the optimal model predict tumor aggressiveness determined from histopathology in patients with papillary thyroid carcinoma (PTC) prior to surgery. In this prospective study, 18 PTC patients underwent pretreatment DCE-MRI on a 3 T MR scanner prior to thyroidectomy. This study was approved by the institutional review board and informed consent was obtained from all patients. The two-compartment exchange model, compartmental tissue uptake model, extended Tofts model (ETM) and standard Tofts model were compared on a voxel-wise basis to determine the optimal model using the corrected Akaike information criterion (AICc) for PTC. The optimal model is the one with the lowest AICc. Statistical analysis included paired and unpaired t-tests and a one-way analysis of variance. Bonferroni correction was applied for multiple comparisons. Receiver operating characteristic (ROC) curves were generated from the optimal model parameters to differentiate PTC with and without aggressive features, and AUCs were compared. ETM performed best with the lowest AICc and the highest Akaike weight (0.44) among the four models. ETM was preferred in 44% of all 3419 voxels. The ETM estimates of Ktrans in PTCs with the aggressive feature extrathyroidal extension (ETE) were significantly higher than those without ETE (0.78 ± 0.29 vs. 0.34 ± 0.18 min-1 , P = 0.005). From ROC analysis, cut-off values of Ktrans , ve and vp , which discriminated between PTCs with and without ETE, were determined at 0.45 min-1 , 0.28 and 0.014 respectively. The sensitivities and specificities were 86 and 82% (Ktrans ), 71 and 82% (ve ), and 86 and 55% (vp ), respectively. Their respective AUCs were 0.90, 0.71 and 0.71. We conclude that ETM Ktrans has shown potential to classify tumors with and without aggressive ETE in patients with PTC.


Subject(s)
Contrast Media/chemistry , Magnetic Resonance Imaging , Thyroid Cancer, Papillary/diagnostic imaging , Thyroid Cancer, Papillary/pathology , Thyroid Neoplasms/diagnostic imaging , Thyroid Neoplasms/pathology , Adult , Aged , Female , Humans , Kinetics , Male , Middle Aged , Neoplasm Invasiveness , Time Factors
9.
AJR Am J Roentgenol ; 212(4): 823-829, 2019 04.
Article in English | MEDLINE | ID: mdl-30714830

ABSTRACT

OBJECTIVE: The objective of this study was to develop a scoring system for background signal intensity changes or prostate homogeneity on prostate MRI and to assess these changes' influence on cancer detection. MATERIALS AND METHODS: This institutional review board-approved, HIPAA-compliant, retrospective study included 418 prostate MRI examinations in 385 men who subsequently underwent MRI-guided biopsy. The Likert score for suspicion of cancer assigned by the primary radiologist was extracted from the original report, and histopathologic work-up of the biopsy cores served as the reference standard. Two readers assessed the amount of changes on T2-weighted sequences and assigned a predefined prostate signal-intensity homogeneity score of 1-5 (1 = poor, extensive changes; 5 = excellent, no changes). The sensitivity and specificity of Likert scores for detection of prostate cancer and clinically significant cancer (Gleason score ≥ 3+4) were estimated in and compared between subgroups of patients with different signal-intensity homogeneity scores (≤ 2, 3, and ≥ 4). RESULTS: Interreader agreement on signal-intensity homogeneity scores was substantial (κ = 0.783). Sensitivity for prostate cancer detection increased when scores were better (i.e., higher) (reader 1, from 0.41 to 0.71; reader 2, from 0.53 to 0.73; p ≤ 0.007, both readers). In the detection of significant cancer (Gleason score ≥ 3+4), sensitivity also increased with higher signal-intensity scores (reader 1, from 0.50 to 0.82; reader 2, from 0.63 to 0.86; p ≤ 0.028), though specificity decreased significantly for one reader (from 0.67 to 0.38; p = 0.009). CONCLUSION: Background signal-intensity changes on T2-weighted images significantly limit prostate cancer detection. The proposed scoring system could improve the standardization of prostate MRI reporting and provide guidance for applying prostate MRI results appropriately in clinical decision-making.


Subject(s)
Magnetic Resonance Imaging/methods , Prostatic Neoplasms/diagnostic imaging , Adult , Aged , Humans , Image-Guided Biopsy , Male , Middle Aged , Prostatic Neoplasms/pathology , Retrospective Studies , Sensitivity and Specificity
10.
AJR Am J Roentgenol ; 208(3): W85-W91, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28095036

ABSTRACT

OBJECTIVE: The purpose of this study was to develop a quantitative multiparametric MRI approach to differentiating clear cell renal cell carcinoma (RCC) from other renal cortical tumors. MATERIALS AND METHODS: This retrospective study included 119 patients with 124 histopathologically confirmed renal cortical tumors who underwent preoperative MRI including DWI, contrast-enhanced, and chemical-shift sequences before nephrectomy. Two radiologists independently assessed each tumor volumetrically, and apparent diffusion coefficient values, parameters from multiphasic contrast-enhanced MRI (peak enhancement, upslope, downslope, AUC), and chemical-shift indexes were calculated. Univariate and multivariable logistic regression analyses were performed to identify parameters associated with clear cell RCC. RESULTS: Interreader agreement was excellent (intraclass correlation coefficient, 0.815-0.994). The parameters apparent diffusion coefficient (reader 1 AUC, 0.804; reader 2, 0.807), peak enhancement (reader 1 AUC, 0.629; reader 2, 0.606), and downslope (reader 1 AUC, 0.575; reader 2, 0.561) were significantly associated with discriminating clear cell RCC from other renal cortical tumors. The combination of all three parameters further increased diagnostic accuracy (reader 1 AUC, 0.889; reader 2, 0.907; both p ≤ 0.001), yielding sensitivities of 0.897 for reader 1 and 0.897 for reader 2, and specificities of 0.762 for reader 1 and 0.738 for reader 2 in the identification of clear cell RCC. With maximized sensitivity, specificities of 0.429 and 0.262 were reached for readers 1 and 2, respectively. CONCLUSION: A quantitative multiparametric approach statistically significantly improves diagnostic performance in differentiating clear cell RCC from other renal cortical tumors.


Subject(s)
Algorithms , Carcinoma, Renal Cell/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Kidney Neoplasms/diagnostic imaging , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Adult , Aged , Aged, 80 and over , Diagnosis, Differential , Female , Humans , Image Enhancement/methods , Male , Middle Aged , Reproducibility of Results , Sensitivity and Specificity
11.
Eur Radiol ; 26(12): 4303-4312, 2016 Dec.
Article in English | MEDLINE | ID: mdl-26945761

ABSTRACT

PURPOSE: To compare morphological and functional MRI metrics and determine which ones perform best in assessing response to neoadjuvant chemoradiotherapy (CRT) in rectal cancer. MATERIALS AND METHODS: This retrospective study included 24 uniformly-treated patients with biopsy-proven rectal adenocarcinoma who underwent MRI, including diffusion-weighted (DW) and dynamic contrast-enhanced (DCE) sequences, before and after completion of CRT. On all MRI exams, two experienced readers independently measured longest and perpendicular tumour diameters, tumour volume, tumour regression grade (TRG) and tumour signal intensity ratio on T2-weighted imaging, as well as tumour volume and apparent diffusion coefficient on DW-MRI and tumour volume and transfer constant Ktrans on DCE-MRI. These metrics were correlated with histopathological percent tumour regression in the resected specimen (%TR). Inter-reader agreement was assessed using the concordance correlation coefficient (CCC). RESULTS: For both readers, post-treatment DW-MRI and DCE-MRI volumetric tumour assessments were significantly associated with %TR; DCE-MRI volumetry showed better inter-reader agreement (CCC=0.700) than DW-MRI volumetry (CCC=0.292). For one reader, mrTRG, post-treatment T2 tumour volumetry and assessments of volume change made with T2, DW-MRI and DCE-MRI were also significantly associated with %TR. CONCLUSION: Tumour volumetry on post-treatment DCE-MRI and DW-MRI correlated well with %TR, with DCE-MRI volumetry demonstrating better inter-reader agreement. KEY POINTS: • Volumetry on post-treatment DCE-/DW-MRI sequences correlated well with histopathological tumour regression. • DCE-MRI volumetry demonstrated good inter-reader agreement. • Inter-reader agreement was higher for DCE-MRI volumetry than for DW-MRI volumetry. • DCE-MRI volumetry merits further investigation as a metric for evaluating treatment response.


Subject(s)
Chemoradiotherapy, Adjuvant/methods , Magnetic Resonance Imaging/methods , Neoadjuvant Therapy/methods , Rectal Neoplasms/diagnostic imaging , Rectal Neoplasms/therapy , Adult , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Rectal Neoplasms/pathology , Rectum/diagnostic imaging , Rectum/pathology , Retrospective Studies , Treatment Outcome , Tumor Burden
12.
AJR Am J Roentgenol ; 206(4): 756-63, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26900904

ABSTRACT

OBJECTIVE: The objective of this study was to investigate whether the apparent diffusion coefficient (ADC) value from DWI and the forward volume transfer constant (K(trans)) value from dynamic contrast-enhanced MRI independently predict prostate cancer aggressiveness, and to determine whether the combination of both parameters performs better than either parameter alone in assessing tumor aggressiveness before treatment. MATERIALS AND METHODS: This retrospective study included 158 men with histopathologically confirmed prostate cancer who underwent 3-T MRI before undergoing prostatectomy in 2011. Whole-mount step-section pathologic maps identified 195 prostate cancer foci that were 0.5 mL or larger; these foci were then volumetrically assessed to calculate the per-tumor ADC and K(trans) values. Associations between MRI and histopathologic parameters were assessed using Spearman correlation coefficients, univariate and multivariable logistic regression, and AUCs. RESULTS: The median ADC and K(trans) values showed moderate correlation only for tumors for which the Gleason score (GS) was 4 + 4 or higher (ρ = 0.547; p = 0.042). The tumor ADC value was statistically significantly associated with all dichotomized GSs (p < 0.005), including a GS of 3 + 3 versus a GS of 3 + 4 or higher (AUC, 0.693; p = 0.001). The tumor K(trans) value differed statistically significantly only between tumors with a GS of 3 + 3 and those with a primary Gleason grade of 4 (p ≤ 0.015), and it made a statistically significant contribution only in differentiating tumors with a GS of 4 + 3 or higher (AUC, 0.711; p < 0.001) and those with a GS of 4 + 4 or higher (AUC, 0.788; p < 0.001) from lower-grade tumors. Combining ADC and K(trans) values improved diagnostic performance in characterizing tumors with a GS of 4 + 3 or higher and those with a GS of 4 + 4 or higher (AUC, 0.739 and 0.856, respectively; p < 0.01). CONCLUSION: Although the ADC value helped to differentiate between all GSs, the K(trans) value was only a benefit in characterizing more aggressive tumors. Combining these parameters improves their performance in identifying patients with aggressive tumors who may require radical treatment.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Magnetic Resonance Imaging/methods , Prostatic Neoplasms/pathology , Adult , Aged , Contrast Media , Gadolinium DTPA , Humans , Male , Middle Aged , Neoplasm Grading , Retrospective Studies
13.
AJR Am J Roentgenol ; 206(1): 100-5, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26700340

ABSTRACT

OBJECTIVE: The purpose of this study was to differentiate clear cell renal cell carcinoma (RCC) from other common renal cortical tumors by use of DWI. MATERIALS AND METHODS: The study included 117 patients (mean age, 60 years) with 122 histopathologically confirmed renal cortical tumors who underwent 1.5-T MRI that included DWI before they underwent nephrectomy between 2006 and 2013. For each tumor, two radiologists independently evaluated apparent diffusion coefficient (ADC) values on the basis of a single ROI in a nonnecrotic area of the tumor and also by assessment of the whole tumor. The concordance correlation coefficient (CCC) was calculated to assess interreader agreement. The mean ADC values of clear cell RCC and every other tumor subtype were compared using an exact Wilcoxon rank sum test. RESULTS: Interreader agreement was excellent and higher in whole-tumor assessment (CCC, 0.982) than in single-ROI analysis (CCC, 0.756). For both readers, ADC values for clear cell RCC found on single-ROI assessment (2.19 and 2.08 × 10(-3) mm(2)/s) and whole-tumor assessment (2.30 and 2.32 × 10(-3) mm(2)/s) were statistically significantly higher than those for chromophobe, papillary, or unclassified RCC (p < 0.05) but were similar to those for oncocytoma found on single-ROI assessment (2.14 and 2.32 × 10(-3) mm(2)/s) and whole-tumor assessment (2.38 and 2.24 × 10(-3) mm(2)/s). ADC values were also higher for clear cell RCC than for angiomyolipoma, but the difference was statistically significant only in whole-tumor assessment (p < 0.03). CONCLUSION: ADC values were statistically significantly higher for clear cell RCC than for chromophobe, papillary, or unclassified RCC subtypes; however, differentiating clear cell RCC from oncocytoma by use of DWI remains especially challenging, because similar ADC values have been shown for these two tumor types.


Subject(s)
Carcinoma, Renal Cell/diagnosis , Diffusion Magnetic Resonance Imaging/methods , Kidney Neoplasms/diagnosis , Carcinoma, Renal Cell/surgery , Diagnosis, Differential , Female , Humans , Image Enhancement , Image Interpretation, Computer-Assisted , Kidney Neoplasms/surgery , Male , Middle Aged , Nephrectomy , Preoperative Care , Retrospective Studies
14.
Eur Radiol ; 25(9): 2665-72, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25820537

ABSTRACT

PURPOSE: To investigate the effects of androgen-deprivation therapy (ADT) on MRI parameters and evaluate their associations with treatment response measures. MATERIALS AND METHODS: The study included 30 men with histopathologically confirmed prostate cancer who underwent MRI before and after initiation of ADT. Thirty-four tumours were volumetrically assessed on DW-MRI (n = 32) and DCE-MRI (n = 18), along with regions of interest in benign prostatic tissue, to calculate apparent diffusion coefficient (ADC) and transfer constant (K(trans)) values. Changes in MRI parameters and correlations with clinical parameters (change in prostate-specific antigen [PSA], treatment duration, PSA nadir) were assessed. RESULTS: Prostate volume and PSA values decreased significantly with therapy (p < 0.001). ADC values increased significantly in tumours and decreased in benign prostatic tissue (p < 0.05). Relative changes in ADC and absolute post-therapeutic ADC values differed significantly between tumour and benign tissue (p < 0.001). K(trans) decreased significantly only in tumours (p < 0.001); relative K(trans) changes and post-therapeutic values were not significantly different between tumour and benign tissue. The relative change in tumour ADC correlated significantly with PSA decrease. No changes were associated with treatment duration or PSA nadir. CONCLUSIONS: Multi-parametric MRI shows significant measurable changes in tumour and benign prostate caused by ADT and may help in monitoring treatment response. KEY POINTS: • Androgen-deprivation therapy caused changes of ADC, K (trans) in tumour and benign prostate. • Prostate volume and PSA values decreased significantly with therapy. • ADC values may be helpful for monitoring treatment response.


Subject(s)
Androgen Receptor Antagonists/therapeutic use , Contrast Media , Image Enhancement , Magnetic Resonance Imaging , Prostatic Neoplasms/pathology , Prostatic Neoplasms/therapy , Aged , Diffusion Magnetic Resonance Imaging , Humans , Male , Middle Aged , Prostate-Specific Antigen , Retrospective Studies , Time Factors , Treatment Outcome
15.
J Comput Assist Tomogr ; 39(3): 334-9, 2015.
Article in English | MEDLINE | ID: mdl-25700226

ABSTRACT

OBJECTIVE: To investigate the repeatability of the quantitative magnetic resonance imaging (MRI) metric (apparent diffusion coefficient [ADC]) derived from reduced field-of-view diffusion-weighted (rFOV DWI) on thyroid glands in a clinical setting. MATERIALS AND METHODS: Ten healthy human volunteers were enrolled in MRI studies performed on a 3-T MRI scanner. Each volunteer was designed to undergo 3 longitudinal examinations (2 weeks apart) with 2 repetitive sessions within each examination, which included rFOV and conventional full field-of-view (fFOV) DWI scans. Diffusion-weighted images were assessed and scored based on image characteristics. Apparent diffusion coefficient values of thyroid glands from all participants were calculated based on regions of interest. Repeatability analysis was performed based on the framework proposed by the Quantitative Imaging Biomarker Alliance, generating 4 repeatability metrics: within-participant variance ((Equation is included in full-text article.)), repeatability coefficients, intraclass correlation coefficient, and within-participant coefficient of variation. Student t test was used to compare the performance difference between rFOV and fFOV DWI. RESULTS: The overall image quality from rFOV DWI was significantly higher than that from fFOV DWI (P = 0.04). The ADC values calculated from rFOV DWI were significantly lower than corresponding values from fFOV DWI (P < 0.001). There was no significant difference in ADC values across sessions and examinations in either rFOV or fFOV DWI (P > 0.05). Reduced field-of-view DWI had lower values of (Equation is included in full-text article.), repeatability coefficient, and within-participant coefficient of variation and had a higher value of intraclass correlation coefficient compared with fFOV DWI across either sessions or examinations. CONCLUSIONS: This study demonstrated that rFOV DWI produced more superior-quality DWI images and more repeatable ADC measurements compared with fFOV DWI, thus providing a feasible quantitative imaging tool for investigating thyroid glands in clinical settings.


Subject(s)
Algorithms , Diffusion Magnetic Resonance Imaging/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Thyroid Gland/anatomy & histology , Adult , Humans , Middle Aged , Reference Values , Reproducibility of Results , Sensitivity and Specificity , Young Adult
16.
Radiology ; 271(1): 143-52, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24475824

ABSTRACT

PURPOSE: To evaluate the relationship between prostate cancer aggressiveness and histogram-derived apparent diffusion coefficient (ADC) parameters obtained from whole-lesion assessment of diffusion-weighted magnetic resonance (MR) imaging of the prostate and to determine which ADC metric may help best differentiate low-grade from intermediate- or high-grade prostate cancer lesions. MATERIALS AND METHODS: The institutional review board approved this retrospective HIPAA-compliant study of 131 men (median age, 60 years) who underwent diffusion-weighted MR imaging before prostatectomy for prostate cancer. Clinically significant tumors (tumor volume > 0.5 mL) were identified at whole-mount step-section histopathologic examination, and Gleason scores of the tumors were recorded. A volume of interest was drawn around each significant tumor on ADC maps. The mean, median, and 10th and 25th percentile ADCs were determined from the whole-lesion histogram and correlated with the Gleason score by using the Spearman correlation coefficient (ρ). The ability of each parameter to help differentiate tumors with a Gleason score of 6 from those with a Gleason score of at least 7 was assessed by using the area under the receiver operating characteristic curve (Az). RESULTS: In total, 116 clinically significant lesions (89 in the peripheral zone, 27 in the transition zone) were identified in 85 of the 131 patients (65%). Forty-six patients did not have a clinically significant lesion. For mean ADC, median ADC, 10th percentile ADC, and 25th percentile ADC, the Spearman ρ values for correlation with Gleason score were -0.31, -0.30, -0.36, and -0.35, respectively, whereas the Az values for differentiating lesions with a Gleason score of 6 from those with a Gleason score of at least 7 were 0.704, 0.692, 0.758, and 0.723, respectively. The Az of 10th percentile ADC was significantly higher than that of the mean ADC for all lesions and peripheral zone lesions (P = .0001). CONCLUSION: When whole-lesion histograms were used to derive ADC parameters, 10th percentile ADC correlated with Gleason score better than did other ADC parameters, suggesting that 10th percentile ADC may prove to be optimal for differentiating low-grade from intermediate- or high-grade prostate cancer with diffusion-weighted MR imaging.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Image Interpretation, Computer-Assisted/methods , Prostatic Neoplasms/pathology , Adult , Aged , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prostate-Specific Antigen/blood , Retrospective Studies
17.
Quant Imaging Med Surg ; 14(6): 4110-4122, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846296

ABSTRACT

Background: In mucinous rectal cancer, it can be difficult to differentiate between cellular and acellular mucin. The purpose of this study was to evaluate, in patients with mucinous rectal cancer, the value of static enhancement (enh) and pharmacokinetic parameters of dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) in predicting pathologic complete response. Methods: This retrospective cross-sectional study performed at Memorial Sloan Kettering Cancer Center included 43 patients (24 males and 19 females; mean age, 57 years) with mucinous rectal cancer who underwent MRI at baseline as well as after neoadjuvant chemoradiotherapy but before surgical resection between 2008 and 2019. Two radiologists independently segmented tumors on contrast-enhanced axial 3D T1-weighted images and sagittal DCE magnetic resonance images. On contrast-enhanced axial T1-weighted images, the static parameters enh and relative enhancement (renh) were estimated. On DCE images, the pharmacokinetic parameters Ktrans, kep, relative Ktrans (rKtrans), and relative kep (rkep) were estimated. Associations between all parameters with pathologic complete response were tested using Wilcoxon signed-rank tests. Receiver operating characteristic (ROC) analysis was performed to assess the area under the curve (AUC) for each parameter. Results: Of the 43 patients who were included in the study, 42/43 (98%) had evaluable contrast-enhanced axial T1-weighted images and 35/43 (81%) had evaluable DCE images. Of the patients with evaluable contrast-enhanced axial T1-weighted images, 9/42 (21%) had pathologic complete response and 33/42 (79%) did not have pathologic complete response. For reader 1, enh(pre-neoadjuvant chemotherapy), enh(post-neoadjuvant chemotherapy), and renh were significant predictors of pathologic complete response [P=0.045 (AUC =0.73), 0.039 (AUC =0.74), and 0.0042, respectively]. For reader 2, enh(pre-neoadjuvant chemotherapy) and renh were significant predictors [P=0.021 (AUC =0.77) and 0.002, respectively]. For renh, the AUC was 0.83 for reader 1, and 0.82 for reader 2. Meanwhile, of those patients with evaluable DCE images, 9/35 (26%) had pathologic complete response and 26/35 (74%) did not have pathologic complete response. Ktrans(pre-neoadjuvant chemotherapy), kep(pre-neoadjuvant chemotherapy), and rkep were significant predictors [P=0.016 (AUC =0.73), 0.00057 (AUC =0.81), and 0.0096 (AUC =0.74), respectively]. Conclusions: Static and pharmacokinetic parameters of contrast-enhanced MRI show promise to predict neoadjuvant treatment response. Static enh parameters, which are simpler to assess, showed the strongest prediction.

18.
Magn Reson Imaging ; 105: 108-113, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37820978

ABSTRACT

Multi-shot echo planar imaging is a promising technique to reduce geometric distortions and increase spatial resolution in diffusion-weighted MRI (DWI), at the expense of increased scan time. Moreover, performing DWI in the body requires multiple repetitions to obtain sufficient signal-to-noise ratio, which further increases the scan time. This work proposes to reduce the number of repetitions and perform denoising of high b-value images using a convolutional network denoising trained on single-shot DWI to accelerate the acquisition of multi-shot DWI. Convolutional network denoising is demonstrated to accelerate the acquisition of 2-shot DWI by a factor of 4 compared to the clinical standard on patients with rectal cancer. Image quality was evaluated using qualitative scores from expert body radiologists between accelerated and non-accelerated acquisition. Additionally, the effect of convolutional network denoising on each image quality score was analyzed using a Wilcoxon signed-rank test. Convolutional network denoising would enable to increase the number of shots without increasing scan time for significant geometric artifact reduction and spatial resolution increase.


Subject(s)
Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Humans , Diffusion Magnetic Resonance Imaging/methods , Signal-To-Noise Ratio , Echo-Planar Imaging/methods , Artifacts , Acceleration
19.
J Comput Assist Tomogr ; 37(3): 346-52, 2013.
Article in English | MEDLINE | ID: mdl-23674004

ABSTRACT

OBJECTIVE: This study aimed to use intravoxel incoherent motion (IVIM) imaging for investigating differences between primary head and neck tumors and nodal metastases and to evaluate IVIM efficacy in predicting outcome. METHODS: Sixteen patients with head and neck cancer underwent IVIM diffusion-weighted imaging on a 1.5-T magnetic resonance imaging scanner. The significance of parametric difference between primary tumors and metastatic nodes were tested. Probabilities of progression-free survival and overall survival were estimated using the Kaplan-Meier method. RESULTS: In comparison with metastatic nodes, the primary tumors had significantly higher vascular volume fraction (f) (P < 0.0009) and lower diffusion coefficient (D) (P < 0.0002). Patients with lower SD for D had prolonged progression-free survival and overall survival (P < 0.05). CONCLUSIONS: Pretreatment IVIM measures were feasible in investigating the physiologic differences between the 2 tumor tissues. After appropriate validation, these findings might be useful in optimizing treatment planning and improving patient care.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Head and Neck Neoplasms/pathology , Lymphatic Metastasis/pathology , Adult , Biopsy , Data Interpretation, Statistical , Echo-Planar Imaging , Female , Head and Neck Neoplasms/therapy , Humans , Male , Middle Aged , Retrospective Studies , Survival Analysis
20.
Abdom Radiol (NY) ; 48(2): 448-457, 2023 02.
Article in English | MEDLINE | ID: mdl-36307596

ABSTRACT

PURPOSE: To compare four diffusion-weighted imaging (DWI) sequences for image quality, rectal contour, and lesion conspicuity, and to assess the difference in their signal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR), and apparent diffusion coefficient (ADC). METHODS: In this retrospective study of 36 consecutive patients who underwent 3.0 T rectal MRI from January-June 2020, DWI was performed with single-shot echo planar imaging (ss-EPI) (b800 s/mm2), multiplexed sensitivity encoding (MUSE) (b800 s/mm2), MUSE (b1500 s/mm2), and field-of-view optimized and constrained undistorted single-shot (FOCUS) (b1500 s/mm2). Two radiologists independently scored image quality using a 5-point Likert scale. Inter-reader agreement was assessed using the weighted Cohen's к. SNR, CNR, and ADC measurements were compared using the paired t-test. RESULTS: For both readers, MUSE b800 scored significantly higher for image quality, rectal contour, and lesion conspicuity compared to ss-EPI; MUSE b800 also scored significantly higher for image quality and rectal contour compared to all other sequences. Lesion conspicuity was equally superior for MUSE b800 and MUSE b1500 compared to the other two sequences. There was good to excellent inter-reader agreement for all qualitative features (к = 0.72-0.88). MUSE b800 had the highest SNR; MUSE b1500 had the highest CNR. A significant difference in ADC was observed between ss-EPI compared to the other sequences (p < 0.001) and between MUSE b800 and FOCUS. No significant difference in ADC was found between MUSE b1500 and FOCUS b1500. CONCLUSION: MUSE b800 improved image quality over ss-EPI and both MUSE b800 and b1500 showed better tumor conspicuity compared to conventional ss-EPI.


Subject(s)
Alprostadil , Diffusion Magnetic Resonance Imaging , Humans , Retrospective Studies , Reproducibility of Results , Diffusion Magnetic Resonance Imaging/methods , Rectum/diagnostic imaging , Echo-Planar Imaging/methods
SELECTION OF CITATIONS
SEARCH DETAIL