ABSTRACT
BACKGROUND: Canine (Canis lupus familiaris) atopic dermatitis (AD) shares similar clinical signs to human AD. The abnormal immune response of AD is orchestrated by T lymphocytes, and may include variable involvement of cytokines, regulatory T (Treg) cells, eosinophils, mast cells and other immune components. Helper T (Th)2 cytokines often predominate initially, followed by Th1 cytokines in more chronic phases. HYPOTHESIS/OBJECTIVES: Pro-inflammatory and Treg cytokines have been shown to play a role in human AD, yet their importance is not clear in canine AD. Hence, this study aimed to measure the concentrations of cytokines/chemokines not traditionally associated with Th1/Th2 response. ANIMALS: Canine AD patients (n = 27), compared to control dogs (n = 11). METHODS AND MATERIALS: A total of 19 plasma cytokines were assayed using canine specific multiplex immuno-assays. RESULTS: The plasma concentrations of CXC Motif Chemokine Ligand 8 (CXCL8), interleukin (IL)-7 and IL-15 cytokines were elevated in canine AD patients, compared to control dogs. In addition, stem-cell factor (SCF) concentrations were reduced in the plasma of canine AD patients compared to control dogs. Distinct cytokine profiles were found in dogs belonging to the Staffordshire breeds, a group with increased risk of AD. In particular, granulocyte-macrophage colony-stimulating factor (GM-CSF) had significantly elevated concentrations. CONCLUSIONS AND CLINICAL RELEVANCE: Some of the plasma cytokine alterations in canine AD described here, particularly of IL-7, have not been reported previously. Monitoring these distinctive cytokine alterations could be useful for diagnosis and monitoring of canine AD in dogs.
Subject(s)
Dermatitis, Atopic , Dog Diseases , Animals , Chemokines , Cytokines , Dermatitis, Atopic/veterinary , Dogs , Humans , T-Lymphocytes, RegulatoryABSTRACT
BACKGROUND: While recent advances in genomics has enabled vast improvements in the quantification of genome-wide diversity and the identification of adaptive and deleterious alleles in model species, wildlife and non-model species have largely not reaped the same benefits. This has been attributed to the resources and infrastructure required to develop essential genomic datasets such as reference genomes. In the absence of a high-quality reference genome, cross-species alignments can provide reliable, cost-effective methods for single nucleotide variant (SNV) discovery. Here, we demonstrated the utility of cross-species genome alignment methods in gaining insights into population structure and functional genomic features in cheetah (Acinonyx jubatas), snow leopard (Panthera uncia) and Sumatran tiger (Panthera tigris sumatrae), relative to the domestic cat (Felis catus). RESULTS: Alignment of big cats to the domestic cat reference assembly yielded nearly complete sequence coverage of the reference genome. From this, 38,839,061 variants in cheetah, 15,504,143 in snow leopard and 13,414,953 in Sumatran tiger were discovered and annotated. This method was able to delineate population structure but limited in its ability to adequately detect rare variants. Enrichment analysis of fixed and species-specific SNVs revealed insights into adaptive traits, evolutionary history and the pathogenesis of heritable diseases. CONCLUSIONS: The high degree of synteny among felid genomes enabled the successful application of the domestic cat reference in high-quality SNV detection. The datasets presented here provide a useful resource for future studies into population dynamics, evolutionary history and genetic and disease management of big cats. This cross-species method of variant discovery provides genomic context for identifying annotated gene regions essential to understanding adaptive and deleterious variants that can improve conservation outcomes.
Subject(s)
Felidae , Alleles , Animals , Biological Evolution , Cats , Felidae/genetics , Genomics , SyntenyABSTRACT
BACKGROUND: Mucolipidosis II (ML II; I-cell disease) is caused by a deficiency of N-acetylglucosamine-1-phosphotransferase (GNPTAB; EC 2.7.8.17), which leads to a failure to internalize acid hydrolases into lysosomes for proper catabolism of various substances. This is an autosomal recessive lysosomal storage disease and causes severe progressive neuropathy and oculoskeletal dysfunction in humans (OMIM 252500). A naturally occurring disease model has been reported in juvenile domestic cats (OMIA 001248-9685) with clinical signs similar to human patients. We investigated the molecular genetic basis of ML II in a colony of affected cats by sequencing the coding and regulatory regions of GNPTAB from affected and clinically healthy related and unrelated domestic cats and compared the sequences to the published feline genome sequence (NCBI-RefSeq accession no. XM_003989173.4, Gene ID: 101100231). RESULTS: All affected cats were homozygous for a single base substitution (c.2644C > T) in exon 13 of GNPTAB. This variant results in a premature stop codon (p.Gln882*) which predicts severe truncation and complete dysfunction of the GNPTAB enzyme. About 140 GNPTAB variants have been described in human ML II patients, with 41.3% nonsense/missense mutations, nine occurring in the same gene region as in this feline model. Restriction fragment length polymorphism and allelic discrimination real-time polymerase chain reaction assays accurately differentiated between clear, asymptomatic carriers and homozygous affected cats. CONCLUSION: Molecular genetic characterization advances this large animal model of ML II for use to further define the pathophysiology of the disease and evaluate novel therapeutic approaches for this fatal lysosomal storage disease in humans.
Subject(s)
Cat Diseases/enzymology , Cat Diseases/genetics , Genetic Variation , Mucolipidoses/veterinary , Transferases (Other Substituted Phosphate Groups)/genetics , Animals , Cats , Codon, Terminator/genetics , Disease Models, Animal , Mucolipidoses/genetics , Mutation , Transferases (Other Substituted Phosphate Groups)/chemistryABSTRACT
BACKGROUND: Genetic studies on canine atopic dermatitis (CAD) indicate that large populations from one geographical location are preferred for the identification of relevant susceptibility genes. Australian dogs are relatively isolated; studies on CAD in this population are limited. HYPOTHESIS/OBJECTIVES: To identify breeds at risk in the Australian dog population and to compare with worldwide breed predisposition. ANIMALS: Case records (nĀ =Ā 23,000) from University Veterinary Teaching Hospital (UVTH) dogs, including 722 with CAD. METHODS: The breed proportion of CAD and odds risk (OR) were calculated. A systematic review of 13 previous studies (1971-2010) was performed and compared to the study results by implementing an atopic dermatitis (AD)-to-reference population ratio (ADRPR). RESULTS: Eleven dog breeds with significant increased OR (≥1.0) were identified; all with breed CAD cases proportionally higher than their base hospital population. Gender risk in males from the pug dog breed (PĀ =Ā 0.007) was detected and the bichon frise breed had a similar trend (PĀ =Ā 0.05). Sixteen predisposed dog breeds were identified by systematic review. All breeds with significant increased OR in UVTH had ADRPRĀ >Ā 1.4; five (boxer, bulldog, Labrador retriever, pug, West Highland white terrier) were recognized as predisposed worldwide. One clade of breeds with common ancestry was highly represented in CAD cases worldwide and in Australia (81% of the significant OR cases). CONCLUSION AND CLINICAL IMPORTANCE: The use of a large population from one geographical location and ADRPR provided an objective comparison between worldwide AD studies; it identified one common clade of susceptible breeds. Breed genetics and related clinical presentation may help CAD diagnosis and treatment.
Subject(s)
Dermatitis, Atopic/veterinary , Dog Diseases/genetics , Genetic Predisposition to Disease , Animals , Australia/epidemiology , Dermatitis, Atopic/epidemiology , Dermatitis, Atopic/genetics , Dog Diseases/epidemiology , Dogs , Odds Ratio , Risk FactorsABSTRACT
Developmental anomalies are an important cause of stillbirth and early perinatal death in companion animals. Many of these disorders remain poorly understood and provide an opportunity as a spontaneous animal model for human disease. Pentalogy of Cantrell is a rare congenital syndrome described in human neonates. It is a ventral midline closure defect with a proposed familial inheritance in humans. This syndrome involves five defects, including the thoracoabdominal wall, sternal, diaphragmatic, pericardial and cardiac malformations. Diverse expressions of these defects have been described in humans and sporadically in domestic animals. This severe syndrome commonly harbors a poor prognosis, posing an ethical and surgical dilemma. To better understand this syndrome and its presentation in dogs, we describe two rare cases of Pentalogy of Cantrell in a litter of papillon dogs. The affected puppies had anomalies compatible with the Pentalogy of Cantrell, including thoracoabdominal schisis, ectopia cordis, sternal cleft, pericardial agenesis, and diaphragmatic defects. The diagnosis was confirmed by advanced imaging (computed tomography) and postmortem examinations. The family history of this litter was explored and other cases in domestic animals were reviewed. This is the first report of the complete Pentalogy of Cantrell with ectopia cordis in the dog and the only report on papillons. Similar to human cases, possible familial inheritance and suspected male gender bias were observed. Further research on this novel animal model, its pathogenesis and its hereditary basis, may be helpful in better understanding this rare developmental disorder.
ABSTRACT
Chronic superficial keratitis (CSK) is a progressive inflammatory condition of the eye (cornea) that can cause discomfort and blindness. Differential disease risk across dog breeds strongly suggests that CSK has a genetic basis. In addition to genetic risk, the occurrence of CSK is exacerbated by exposure to ultraviolet light. Genome-wide association analysis considered 109 greyhounds, 70 with CSK and the remainder with normal phenotype at an age over four years. Three co-located variants on CFA18 near the 5' region of the Epidermal Growth Factor Receptor (EGFR) gene were associated with genome-wide significance after multiple-test correction (BICF2P579527, CFA18: 6,068,508, praw = 1.77 Ć 10-7, pgenome = 0.017; BICF2P1310662, CFA18: 6,077,388, praw = 4.09 Ć 10-7, pgenome = 0.040; BICF2P160719, CFA18: 6,087,347, praw = 4.09 Ć 10-7, pgenome = 0.040) (canFam4)). Of the top 10 associated markers, eight were co-located with the significantly associated markers on CFA18. The associated haplotype on CFA18 is protective for the CSK condition. EGFR is known to play a role in corneal healing, where it initiates differentiation and proliferation of epithelial cells that in turn signal the involvement of stromal keratocytes to commence apoptosis. Further validation of the putative functional variants is required prior to their use in genetic testing for breeding programs.
Subject(s)
Dog Diseases , Keratitis , Animals , Australia , Dog Diseases/epidemiology , Dog Diseases/genetics , Dogs , ErbB Receptors/genetics , Genome-Wide Association Study , Keratitis/epidemiology , Keratitis/genetics , Keratitis/veterinaryABSTRACT
Neural tube defects (NTDs) are congenital malformations resulting from the improper or incomplete closure of the neural tube during embryonic development. A number of similar malformations of the protective coverings surrounding the central nervous system are also often included under this umbrella term, which may not strictly fit this definition. A range of NTD phenotypes exist and have been reported in humans and a wide range of domestic and livestock species. In the veterinary literature, these include cases of anencephaly, encephalocele, dermoid sinus, spina bifida, and craniorachischisis. While environmental factors have a role, genetic predisposition may account for a significant part of the risk of NTDs in these animal cases. Studies of laboratory model species (fish, birds, amphibians, and rodents) have been instrumental in improving our understanding of the neurulation process. In mice, over 200 genes that may be involved in this process have been identified and variant phenotypes investigated. Like laboratory mouse models, domestic animals and livestock species display a wide range of NTD phenotypes. They remain, however, a largely underutilized population and could complement already established laboratory models. Here we review reports of NTDs in companion animals and livestock, and compare these to other animal species and human cases. We aim to highlight the potential of nonlaboratory animal models for mutation discovery as well as general insights into the mechanisms of neurulation and the development of NTDs.
Subject(s)
Anencephaly , Neural Tube Defects , Spinal Dysraphism , Animals , Female , Livestock , Mice , Neural Tube Defects/genetics , Pets , Pregnancy , Spinal Dysraphism/genetics , Spinal Dysraphism/veterinaryABSTRACT
The efficacy of the pedometer to predict lameness earlier than the appearance of the clinical signs in a herd of dairy cows was investigated by correlating pedometric activity (PA) with clinical cases of lameness. The computer program was set to identify cows with a reduction of 5% or more in PA compared with their own previous 10 days average; these animals were then examined for clinical lameness. At the same time, every lame cow was checked to see if and when its PA was reduced. Forty-six cows showed a reduced PA; 38 cases of lameness were identified by either a reduction in PA or clinical observation; of these, 21 lame cows (45.7%) showed a reduction in PA of 5% or more, 7 to 10 days prior to the appearance of clinical signs. This cohort comprised 55.3% of the lame cows. In 92% of the lame cows identified by PA, the decrease was above 15%.
Subject(s)
Cattle Diseases/diagnosis , Lameness, Animal/diagnosis , Veterinary Medicine/instrumentation , Veterinary Medicine/methods , Walking , Animals , Cattle , Cattle Diseases/pathology , Cattle Diseases/physiopathology , Cohort Studies , Diagnosis, Differential , Female , Lactation/physiology , Lameness, Animal/pathology , Lameness, Animal/physiopathology , Time FactorsABSTRACT
Gene mapping projects for many traits in both dogs and cats have yielded new knowledge. Both researchers and the public alike have been fascinated by the inheritance of breed characteristic phenotypes and sporadic disorders. It has been proposed that selective breeding practices have on occasion generated alterations in structure that might be harmful. In this review, simply inherited disorders and characteristics affecting bone and cartilage for which a putative mutation is known are collected. A better understanding of the known inherited basis of skeletal conditions and disorders will assist veterinarians to improve their diagnoses and increase their effectiveness on advising clients on the prevention, management, prognosis and possible treatment of the conditions.
Subject(s)
Bone Diseases/veterinary , Cartilage Diseases/veterinary , Cat Diseases/genetics , Dog Diseases/genetics , Animals , Bone Diseases/genetics , Cartilage Diseases/genetics , Cats , DogsABSTRACT
A loss of genetic diversity may lead to increased disease risks in subpopulations of dogs. The canine breed structure has contributed to relatively small effective population size in many breeds and can limit the options for selective breeding strategies to maintain diversity. With the completion of the canine genome sequencing project, and the subsequent reduction in the cost of genotyping on a genomic scale, evaluating diversity in dogs has become much more accurate and accessible. This provides a potential tool for advising dog breeders and developing breeding programs within a breed. A challenge in doing this is to present complex relationship data in a form that can be readily utilized. Here, we demonstrate the use of a pipeline, known as NetView, to visualize the network of relationships in a subpopulation of German Shepherd Dogs.
ABSTRACT
The use of Moloney murine leukemia virus (MLV)-based retroviral vectors (RV) can result in stable in vivo expression in the liver, but these vectors only transduce replicating hepatocytes. As newborn animals exhibit rapid growth, we evaluated the ability of MLV-based RV to transduce hepatocytes in neonatal dogs. I.v. injection of a beta-galactosidase-expressing RV at 3 days after birth resulted in transduction of 9% of hepatocytes. Prior treatment with human hepatocyte growth factor at 2.5 mg/kg did not increase transduction. Although cells from the spleen were also transduced with moderate efficiency, cells from other organs were not. Neonatal dogs with mucopolysaccharidosis VII (MPS VII) received an i.v.injection of an RV containing the canine beta-glucuronidase (cGUSB) cDNA. At several months after transduction, clusters of hepatocytes that expressed high levels of cGUSB were present in the liver, which probably derived from replication of transduced hepatocytes. At 6 months after transduction, serum GUSB levels were 73% that of homozygous normal dogs and were 34% of the peak values observed at 1 week. We conclude that neonatal delivery of an MLV-based RV results in stable transduction of hepatocytes in dogs. This approach could result in immediate correction in patients with an otherwise-lethal genetic deficiency.
Subject(s)
Gene Transfer Techniques , Hepatocytes/metabolism , Moloney murine leukemia virus/physiology , Mucopolysaccharidosis VII/metabolism , Transduction, Genetic , Animals , Animals, Newborn , Bromodeoxyuridine , Cell Division , Dogs , Genetic Therapy , Glucuronidase/genetics , Hepatocyte Growth Factor , Hepatocytes/cytology , Humans , Mucopolysaccharidosis VII/pathology , Mucopolysaccharidosis VII/therapy , Spleen/cytologyABSTRACT
Dogs with mucopolysaccharidosis VII (MPS VII) were injected intravenously at 2-3 days of age with a retroviral vector (RV) expressing canine beta-glucuronidase (cGUSB). Five animals received RV alone, and two dogs received hepatocyte growth factor (HGF) before RV in an attempt to increase transduction efficiency. Transduced hepatocytes expanded clonally during normal liver growth and secreted enzyme with mannose 6-phosphate. Serum GUSB activity was stable for up to 14 months at normal levels for the RV-treated dogs, and for 17 months at 67-fold normal for the HGF/RV-treated dog. GUSB activity in other organs was 1.5-60% of normal at 6 months for two RV-treated dogs, which was likely because of uptake of enzyme from blood by the mannose 6-phosphate receptor. The body weights of untreated MPS VII dogs are 50% of normal at 6 months. MPS VII dogs cannot walk or stand after 6 months, and progressively develop eye and heart disease. RV- and HGF/RV-treated MPS VII dogs achieved 87% and 84% of normal body weight, respectively. Treated animals could run at all times of evaluation for 6-17 months because of improvements in bone and joint abnormalities, and had little or no corneal clouding and no mitral valve thickening. Despite higher GUSB expression, the clinical improvements in the HGF/RV-treated dog were similar to those in the RV-treated animals. This is the first successful application of gene therapy in preventing the clinical manifestations of a lysosomal storage disease in a large animal.