Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
Cell ; 158(3): 633-46, 2014 Jul 31.
Article in English | MEDLINE | ID: mdl-25083873

ABSTRACT

ATR controls chromosome integrity and chromatin dynamics. We have previously shown that yeast Mec1/ATR promotes chromatin detachment from the nuclear envelope to counteract aberrant topological transitions during DNA replication. Here, we provide evidence that ATR activity at the nuclear envelope responds to mechanical stress. Human ATR associates with the nuclear envelope during S phase and prophase, and both osmotic stress and mechanical stretching relocalize ATR to nuclear membranes throughout the cell cycle. The ATR-mediated mechanical response occurs within the range of physiological forces, is reversible, and is independent of DNA damage signaling. ATR-defective cells exhibit aberrant chromatin condensation and nuclear envelope breakdown. We propose that mechanical forces derived from chromosome dynamics and torsional stress on nuclear membranes activate ATR to modulate nuclear envelope plasticity and chromatin association to the nuclear envelope, thus enabling cells to cope with the mechanical strain imposed by these molecular processes.


Subject(s)
Nuclear Envelope/metabolism , Stress, Mechanical , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Cell Cycle Checkpoints , Cell Line, Tumor , Checkpoint Kinase 1 , Chromatin/metabolism , Fibroblasts/cytology , Fibroblasts/metabolism , HeLa Cells , Humans , Mice , NIH 3T3 Cells , Osmosis , Protein Kinases/metabolism
2.
Mol Psychiatry ; 27(11): 4790-4799, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36138130

ABSTRACT

As a prime mover in Alzheimer's disease (AD), microglial activation requires membrane translocation, integration, and activation of the metamorphic protein chloride intracellular channel 1 (CLIC1), which is primarily cytoplasmic under physiological conditions. However, the formation and activation mechanisms of functional CLIC1 are unknown. Here, we found that the human antimicrobial peptide (AMP) LL-37 promoted CLIC1 membrane translocation and integration. It also activates CLIC1 to cause microglial hyperactivation, neuroinflammation, and excitotoxicity. In mouse and monkey models, LL-37 caused significant pathological phenotypes linked to AD, including elevated amyloid-ß, increased neurofibrillary tangles, enhanced neuronal death and brain atrophy, enlargement of lateral ventricles, and impairment of synaptic plasticity and cognition, while Clic1 knockout and blockade of LL-37-CLIC1 interactions inhibited these phenotypes. Given AD's association with infection and that overloading AMP may exacerbate AD, this study suggests that LL-37, which is up-regulated upon infection, may be a driving force behind AD by acting as an endogenous agonist of CLIC1.


Subject(s)
Alzheimer Disease , Cathelicidins , Chloride Channels , Animals , Humans , Mice , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Cathelicidins/metabolism , Cathelicidins/pharmacology , Chloride Channels/metabolism , Microglia/metabolism
3.
Int J Mol Sci ; 23(10)2022 May 21.
Article in English | MEDLINE | ID: mdl-35628602

ABSTRACT

Soluble amyloid ß (Aß) oligomers have been shown to be highly toxic to neurons and are considered to be a major cause of the neurodegeneration underlying Alzheimer's disease (AD). That makes soluble Aß oligomers a promising drug target. In addition to eliminating these toxic species from the patients' brain with antibody-based drugs, a new class of drugs is emerging, namely Aß aggregation inhibitors or modulators, which aim to stop the formation of toxic Aß oligomers at the source. Here, pharmacological data of the novel Aß aggregation modulator GAL-201 are presented. This small molecule (288.34 g/mol) exhibits high binding affinity to misfolded Aß1-42 monomers (KD = 2.5 ± 0.6 nM). Pharmacokinetic studies in rats using brain microdialysis are supportive of its oral bioavailability. The Aß oligomer detoxifying potential of GAL-201 has been demonstrated by means of single cell recordings in isolated hippocampal neurons (perforated patch experiments) as well as in vitro and in vivo extracellular monitoring of long-term potentiation (LTP, in rat transverse hippocampal slices), a cellular correlate for synaptic plasticity. Upon preincubation, GAL-201 efficiently prevented the detrimental effect on LTP mediated by Aß1-42 oligomers. Furthermore, the potential to completely reverse an already established neurotoxic process could also be demonstrated. Of particular note in this context is the self-propagating detoxification potential of GAL-201, leading to a neutralization of Aß oligomer toxicity even if GAL-201 has been stepwise removed from the medium (serial dilution), likely due to prion-like conformational changes in Aß1-42 monomer aggregates (trigger effect). The authors conclude that the data presented strongly support the further development of GAL-201 as a novel, orally available AD treatment with potentially superior clinical profile.


Subject(s)
Alzheimer Disease , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Hippocampus/metabolism , Humans , Long-Term Potentiation , Neuronal Plasticity , Rats
4.
Molecules ; 27(9)2022 May 04.
Article in English | MEDLINE | ID: mdl-35566275

ABSTRACT

New composite photocatalysts have been obtained by chemical bath deposition of CdS on top of either nanostructured crystalline ZrO2 or TiO2 films previously deposited on conductive glass FTO. Their morphological, photoelectrochemical and photochemical properties have been investigated and compared. Time resolved spectroscopic, techniques show that in FTO/TiO2/CdS films the radiative recombination of charges, separated by visible illumination of CdS, is faster than in FTO/ZrO2/CdS, evidencing that carrier dynamics in the two systems is different. Photoelectrochemical investigation evidence a suppression of electron collection in ZrO2/CdS network, whereas electron injection from CdS to TiO2 is very efficient since trap states of TiO2 act as a reservoir for long lived electrons storage. This ability of FTO/TiO2/CdS films is used in the reductive cleavage of N=N bonds of some azo-dyes by visible light irradiation, with formation and accumulation of reduced aminic intermediates, identified by ESI-MS analysis. Needed protons are provided by sodium formate, a good hole scavenger that leaves no residue upon oxidation. FTO/TiO2/CdS has an approximately 100 meV driving force larger than FTO/ZrO2/CdS under illumination for azo-dye reduction and it is always about 10% more active than the seconds. The films showed very high stability and recyclability, ease of handling and recovering.


Subject(s)
Azo Compounds , Titanium , Catalysis , Coloring Agents , Light , Titanium/chemistry
5.
Hum Mol Genet ; 27(6): 1027-1038, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29360992

ABSTRACT

The PCDH19 gene (Xp22.1) encodes the cell-adhesion protein protocadherin-19 (PCDH19) and is responsible for a neurodevelopmental pathology characterized by female-limited epilepsy, cognitive impairment and autistic features, the pathogenic mechanisms of which remain to be elucidated. Here, we identified a new interaction between PCDH19 and GABAA receptor (GABAAR) alpha subunits in the rat brain. PCDH19 shRNA-mediated downregulation reduces GABAAR surface expression and affects the frequency and kinetics of miniature inhibitory postsynaptic currents (mIPSCs) in cultured hippocampal neurons. In vivo, PCDH19 downregulation impairs migration, orientation and dendritic arborization of CA1 hippocampal neurons and increases rat seizure susceptibility. In sum, these data indicate a role for PCDH19 in GABAergic transmission as well as migration and morphological maturation of neurons.


Subject(s)
Cadherins/metabolism , GABA Modulators/metabolism , Hippocampus/metabolism , Neurons/metabolism , Receptors, GABA-A/metabolism , Animals , COS Cells , Chlorocebus aethiops , Epilepsy/genetics , Female , HEK293 Cells , Hippocampus/cytology , Humans , Inhibitory Postsynaptic Potentials , Neuronal Plasticity , Protocadherins , Rats , Rats, Sprague-Dawley , Seizures/metabolism
6.
Int J Mol Sci ; 21(4)2020 Feb 21.
Article in English | MEDLINE | ID: mdl-32098256

ABSTRACT

Pathologies that lead to neurodegeneration in the central nervous system (CNS) represent a major contemporary medical challenge. Neurodegenerative processes, like those that occur in Alzheimer's disease (AD) are progressive, and at the moment, they are unstoppable. Not only is an adequate therapy missing but diagnosis is also extremely complicated. The most reliable method is the measurement of beta amyloid and tau peptides concentration in the cerebrospinal fluid (CSF). However, collecting liquid samples from the CNS is an invasive procedure, thus it is not suitable for a large-scale prevention program. Ideally, blood testing is the most manageable and appropriate diagnostic procedure for a massive population screening. Recently, a few candidates, including proteins or microRNAs present in plasma/serum have been identified. The aim of the present work is to propose the chloride intracellular channel 1 (CLIC1) protein as a potential marker of neurodegenerative processes. CLIC1 protein accumulates in peripheral blood mononuclear cells (PBMCs), and increases drastically when the CNS is in a chronic inflammatory state. In AD patients, both immunolocalization and mRNA quantification are able to show the behavior of CLIC1 during a persistent inflammatory state of the CNS. In particular, confocal microscopy analysis and electrophysiological measurements highlight the significant presence of transmembrane CLIC1 (tmCLIC1) in PBMCs from AD patients. Recent investigations suggest that tmCLIC1 has a very specific role. This provides an opportunity to use blood tests and conventional technologies to discriminate between healthy individuals and patients with ongoing neurodegenerative processes.


Subject(s)
Alzheimer Disease/blood , Cell Membrane/metabolism , Chloride Channels/blood , Monocytes/metabolism , Aged , Alzheimer Disease/pathology , Biomarkers/blood , Cell Membrane/pathology , Female , Humans , Male , Middle Aged , Monocytes/pathology
8.
Respir Res ; 19(1): 198, 2018 Oct 05.
Article in English | MEDLINE | ID: mdl-30290809

ABSTRACT

BACKGROUND: Although pharmacological treatment has increased the average life expectancy of patients with cystic fibrosis, the median survival of females is shorter than that of males. In vitro and in vivo studies have shown that estrogens play a relevant role in the disease progression. The aim of this study was to investigate the effects of 17ß-estradiol and tamoxifen citrate (TMX) on calcium-activated chloride channel (CaCC) currents in human bronchial epithelial cells carrying the ΔPhe508-CFTR mutation both in homozygosis and in heterozygosis. METHODS: Perforated patch clamp experiments were performed on single cells of the immortalized cell lines CFBE and IB3-1. Gramicidin (10 or 20 µM) was added to the electrode solution to reach the whole cell configuration. The electrical stimulation protocol consisted of square voltages ranging from - 80 to + 80 mV, in steps of 20 mV and with a duration of 800 msec. RESULTS: The presence of 17ß-estradiol significantly reduced the CaCC currents, both in basal conditions and in the presence of ATP (100 µM). The addition of TMX (10 µM) completely restored the currents abolished by 17ß-estradiol, in basal conditions and after stimulation with ATP in both CFBE and IB3-1 cells. TMX had a strong, direct action on membrane current density, which significantly increased more than 4-fold in both cases. The membrane current stimulation produced by TMX was further enhanced by the addition of ATP. CFBE cells incubated for 24 h with 3 µM VX-809 (a CFTR corrector) and then acutely stimulated with VX-770 (a CFTR potentiator) in the presence of forskolin, showed an increase of chloride currents which were abolished by Inh-172. The chloride current density induced by TMX + ATP was, on average, greater than that obtained with VX-809 + VX-770 + forskolin. The currents elicited by TMX + ATP were abolished by the addition of NPPB, a CaCC inhibitor. The combined administration of TMX/ATP and VXs/FSK had an additional effect on chloride currents. CONCLUSIONS: Our results show that TMX restores CaCC currents inhibited by 17ß-estradiol and directly activates the transmembrane chloride currents potentiated by ATP, an effect which is mutation independent. The combined effect of TMX with current used treatments for cystic fibrosis could be of benefit to patients.


Subject(s)
Chloride Channels/antagonists & inhibitors , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Estrogen Receptor Modulators/pharmacology , Point Mutation/genetics , Respiratory Mucosa/drug effects , Tamoxifen/pharmacology , Cell Line, Transformed , Chloride Channels/physiology , Estradiol/pharmacology , Humans , Respiratory Mucosa/physiology
9.
Biochim Biophys Acta ; 1848(10 Pt B): 2523-31, 2015 Oct.
Article in English | MEDLINE | ID: mdl-25546839

ABSTRACT

In recent decades, growing scientific evidence supports the role of ion channels in the development of different cancers. Both potassium selective pores and chloride permeabilities are considered the most active channels during tumorigenesis. High rate of proliferation, active migration, and invasiveness into non-neoplastic tissues are specific properties of neoplastic transformation. All these actions require partial or total involvement of chloride channel activity. In this context, this class of membrane proteins could represent valuable therapeutic targets for the treatment of resistant tumors. However, this encouraging premise has not so far produced any valid new channel-targeted antitumoral molecule for cancer treatment. Problematic for drug design targeting ion channels is their vital role in normal cells for essential physiological functions. By targeting these membrane proteins involved in pathological conditions, it is inevitable to cause relevant side effects in healthy organs. In light of this, a new protein family, the chloride intracellular channels (CLICs), could be a promising class of therapeutic targets for its intrinsic individualities: CLIC1 and CLIC4, in particular, not only are overexpressed in specific tumor types or their corresponding stroma but also change localization and function from hydrophilic cytosolic to integral transmembrane proteins as active ionic channels or signal transducers during cell cycle progression in certain cases. These changes in intracellular localization, tissue compartments, and channel function, uniquely associated with malignant transformation, may offer a unique target for cancer therapy, likely able to spare normal cells. This article is part of a special issue itled "Membrane Channels and Transporters in Cancers."


Subject(s)
Antineoplastic Agents/therapeutic use , Chloride Channels/metabolism , Gene Expression Regulation, Neoplastic , Membrane Transport Modulators/therapeutic use , Neoplasms/drug therapy , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Chloride Channels/antagonists & inhibitors , Chloride Channels/genetics , Disease Progression , Humans , Hydrophobic and Hydrophilic Interactions , Neoplasm Invasiveness , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Organ Specificity , Tumor Microenvironment/drug effects , Tumor Microenvironment/genetics
10.
FASEB J ; 28(9): 3906-18, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24858279

ABSTRACT

The architecture and structural mechanics of the cell nucleus are defined by the nuclear lamina, which is formed by A- and B-type lamins. Recently, gene duplication and protein overexpression of lamin B1 (LB1) have been reported in pedigrees with autosomal dominant leukodystrophy (ADLD). However, how the overexpression of LB1 affects nuclear mechanics and function and how it may result in pathology remain unexplored. Here, we report that in primary human skin fibroblasts derived from ADLD patients, LB1, but not other lamins, is overexpressed at the nuclear lamina and specifically enhances nuclear stiffness. Transient transfection of LB1 in HEK293 and neuronal N2a cells mimics the mechanical phenotype of ADLD nuclei. Notably, in ADLD fibroblasts, reducing LB1 protein levels by shRNA knockdown restores elasticity values to those indistinguishable from control fibroblasts. Moreover, isolated nuclei from ADLD fibroblasts display a reduced nuclear ion channel open probability on voltage-step application, suggesting that biophysical changes induced by LB1 overexpression may alter nuclear signaling cascades in somatic cells. Overall, the overexpression of LB1 in ADLD cells alters nuclear mechanics and is linked to changes in nuclear signaling, which could help explain the pathogenesis of this disease.


Subject(s)
Cell Nucleus/pathology , Embryo, Mammalian/cytology , Fibroblasts/pathology , Lamin Type B/metabolism , Pelizaeus-Merzbacher Disease/pathology , Skin/cytology , Adult , Animals , Blotting, Western , Case-Control Studies , Cell Membrane Permeability , Cell Nucleus/genetics , Cell Nucleus/metabolism , Cell Proliferation , Cells, Cultured , Embryo, Mammalian/metabolism , Female , Fibroblasts/metabolism , Flow Cytometry , Fluorescent Antibody Technique , Humans , Lamin Type B/antagonists & inhibitors , Lamin Type B/genetics , Male , Mice , Middle Aged , Patch-Clamp Techniques , Pelizaeus-Merzbacher Disease/genetics , Pelizaeus-Merzbacher Disease/metabolism , Phenotype , RNA, Small Interfering/genetics , Skin/metabolism
11.
J Neurochem ; 131(4): 444-56, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25060644

ABSTRACT

During neuronal differentiation, axonal elongation is regulated by both external and intrinsic stimuli, including neurotropic factors, cytoskeleton dynamics, second messengers such as cyclic adenosine monophosphate (cAMP), and neuronal excitability. Chloride intracellular channel 1 (CLIC1) is a cytoplasmic hydrophilic protein that, upon stimulation, dimerizes and translocates to the plasma membrane, where it contributes to increase the membrane chloride conductance. Here, we investigated the expression of CLIC1 in primary hippocampal neurons and retinal ganglion cells (RGCs) and examined how the functional expression of CLIC1 specifically modulates neurite outgrowth of neonatal murine RGCs. Using a combination of electrophysiology and immunohistochemistry, we found that CLIC1 is expressed in hippocampal neurons and RGCs and that the chloride current mediated by CLIC1 is required for maintaining growth cone morphology and sustaining cAMP-stimulated neurite elongation in dissociated immunopurified RGCs. In cultured RGCs, inhibition of CLIC1 ionic current through the pharmacological blocker IAA94 or a specific anti-CLIC1 antibody directed against its extracellular domain prevents the neurite outgrowth induced by cAMP. CLIC1-mediated chloride current, which results from an increased open probability of the channel, is detected only when cAMP is elevated. Inhibition of protein kinase A prevents such current. These results indicate that CLIC1 functional expression is regulated by cAMP via protein kinase A and is required for neurite outgrowth modulation during neuronal differentiation. Using a combination of electrophysiology and immunohistochemistry, we found that the chloride intracellular channel 1 (CLIC1) protein modulates the speed of neurite growth. The chloride current mediated by CLIC1 is essential for maintaining growth cone morphology and is required for sustaining cAMP-stimulated neurite elongation in dissociated immunopurified neurons. The presence of either the CLIC1 current blocker IAA94 or the anti-CLIC1 antibody inhibits neurite growth of Retina Ganglion Cells cultured in the presence of 10 micromolar forskolin for 24 h.


Subject(s)
Chloride Channels/metabolism , Cyclic AMP/pharmacology , Neurites/drug effects , Retinal Ganglion Cells/cytology , Retinal Ganglion Cells/drug effects , 8-Bromo Cyclic Adenosine Monophosphate/pharmacology , Animals , Animals, Newborn , Antibodies/pharmacology , Cell Survival/drug effects , Cells, Cultured , Chloride Channels/immunology , Colforsin/pharmacology , Enzyme Inhibitors/pharmacology , Glycolates/pharmacology , Hippocampus/drug effects , Membrane Potentials/drug effects , Mice , Mice, Inbred C57BL , Microscopy, Video , Patch-Clamp Techniques , Retina/cytology
12.
Nanomaterials (Basel) ; 14(7)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38607114

ABSTRACT

Cadmium sulfide (CdS)-based photocatalysts are prepared following a hydrothermal procedure (with CdCl2 and thiourea as precursors). The HydroThermal material annealed (CdS-HTa) is crystalline with a band gap of 2.31 eV. Photoelectrochemical investigation indicates a very reducing photo-potential of -0.9 V, which is very similar to that of commercial CdS. CdS-HTa, albeit having similar reducing properties, is more active than commercial CdS in the reductive dehalogenation of 2,2-dichloropropionic acid (dalapon) to propionic acid. Spectroscopic, electro-, and photoelectrochemical investigation show that photocatalytic properties of CdS are correlated to its electronic structure. The reductive dehalogenation of dalapon has a double significance: on one hand, it represents a demanding reductive process for a photocatalyst, and on the other hand, it has a peculiar interest in water treatment because dalapon can be considered a representative molecule of persistent organic pollutants and is one of the most important disinfection by products, whose removal from the water is the final obstacle to its complete reuse. HPLC-MS investigation points out that complete disappearance of dalapon passes through 2-monochloropropionic acid and leads to propionic acid as the final product. CdS-HTa requires very mild working conditions (room temperature, atmospheric pressure, natural pH), and it is stable and recyclable without significant loss of activity.

13.
J Biol Chem ; 287(33): 27796-805, 2012 Aug 10.
Article in English | MEDLINE | ID: mdl-22736768

ABSTRACT

Soluble oligomers of the amyloid-ß (Aß) peptide play a key role in the pathogenesis of Alzheimer's disease, but their elusive nature makes their detection challenging. Here we describe a novel immunoassay based on surface plasmon resonance (SPR) that specifically recognizes biologically active Aß oligomers. As a capturing agent, we immobilized on the sensor chip the monoclonal antibody 4G8, which targets a central hydrophobic region of Aß. This SPR assay allows specific recognition of oligomeric intermediates that rapidly appear and disappear during the incubation of synthetic Aß(1-42), discriminating them from monomers and higher order aggregates. The species recognized by SPR generate ionic currents in artificial lipid bilayers and inhibit the physiological pharyngeal contractions in Caenorhabditis elegans, a new method for testing the toxic potential of Aß oligomers. With these assays we found that the formation of biologically relevant Aß oligomers is inhibited by epigallocatechin gallate and increased by the A2V mutation, previously reported to induce early onset dementia. The SPR-based immunoassay provides new opportunities for detection of toxic Aß oligomers in biological samples and could be adapted to study misfolding proteins in other neurodegenerative disorders.


Subject(s)
Amyloid beta-Peptides/chemistry , Amyloid/chemistry , Caenorhabditis elegans Proteins/chemistry , Caenorhabditis elegans/chemistry , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid/genetics , Amyloid/metabolism , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/metabolism , Animals , Antibodies, Monoclonal, Murine-Derived/chemistry , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Surface Plasmon Resonance
14.
Biochim Biophys Acta ; 1822(6): 906-17, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22330095

ABSTRACT

Ataxin 1 (ATXN1) is the protein involved in spinocerebellar ataxia type 1, one of nine dominantly inherited neurodegenerative diseases triggered by polyglutamine expansion. One of the isolated polyglutamine tracts properties is to interact with lipid bilayers. Here we used a multidisciplinary approach to test whether one of the mechanisms responsible for neuronal degeneration involves the destabilization of the nuclear membrane. We thus analyzed the interaction between ATXN1 and lipid membranes, both on cellular models and on artificial lipid bilayers, comparing pathological expanded polyglutamine and histidine interrupted non-harmful polyglutamine tracts of the same length. The toxicity of the different constructs was tested in transiently transfected COS1 cells. Cells expressing pathological ATXN1 presented a significantly higher frequency of anomalous nuclei with respect to those expressing non-harmful ATXN1. Immunofluorescence and electron microscopy showed severe damage in the nuclear membrane of cells expressing the pathological protein. Atomic force microscopy on artificial membranes containing interrupted and non-interrupted partial ATXN1 peptides revealed a different arrangement of the peptides within the lipid bilayer. Force-distance measurements indicated that membrane fragility increases with the lengthening of the uninterrupted glutamine. Transmembrane electrical measurements were performed on artificial bilayers and on the inner nuclear membrane of ATXN1 full length transfected cells. Both artificial lipid bilayers and cellular models demonstrated the dynamic appearance of ionic pathways. Uninterrupted polyglutamines showed not only a larger ionic flow, but also an increase in the single event conductance. Collectively, our results suggest that expanded ATXN1 may induce unregulated ionic pathways in the nuclear membrane, causing severe damage to the cell.


Subject(s)
Cell Nucleus/ultrastructure , Lipid Bilayers/analysis , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/metabolism , Nuclear Envelope/physiology , Nuclear Proteins/chemistry , Nuclear Proteins/metabolism , Animals , Ataxins , COS Cells , Chlorocebus aethiops , Histidine/metabolism , Microscopy, Atomic Force , Peptides/chemistry , Spinocerebellar Ataxias/pathology
15.
Nanomaterials (Basel) ; 13(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36770375

ABSTRACT

A good photocatalyst maximizes the absorption of excitation light while reducing the recombination of photogenerated carriers. Among visible light responsive materials, CdS has good carrier transport capacity; however, its photostability is poor and limits its use. Here, the synthesis of a new hydrothermal CdS is reported, and post-synthesis annealing determines crystal properties and spectroscopic characteristics. The introduction of sulfur vacancies as intra band gap states is the key factor for the enhancement of photocatalytic activity. In fact, by spectroscopic and photo-electrochemical experiments, we demonstrate that sulfur vacancies act as an electron sink, favoring the charge transfer process to methyl orange. In addition, the studied hydrothermal CdS is characterized by very high stability, thus enabling a visible-light active photocatalyst that is overall recyclable, stable and more efficient than the commercial benchmark.

16.
J Pharm Biomed Anal ; 234: 115503, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37295189

ABSTRACT

Metformin hydrochloride (MH) has recently been repurposed as an anticancer agent, showing antiproliferative activity in vitro and in vivo. In particular, experimental evidence has suggested its potential clinical efficacy in glioblastoma (GBM), a very aggressive tumor frequently characterized by gloomy prognosis. Unfortunately, the published literature concerning experimental applications of MH in glioblastoma animal models report no data on metformin levels reached in the brain, which, considering the high hydrophilicity of the drug, are likely very low. Therefore, new sensitive analytical methods to be applied on biological tissues are necessary to improve our knowledge of MH in vivo biodistribution and biological effects on tumors. In this research work, a GC-MS method for MH quantification in brain tissues is proposed. MH has been derivatized using N-methyl-bis(trifluoroacetamide), as already described in the literature, but the derivatization conditions have been optimized; moreover, deuterated MH has been selected as the best internal standard, after a comparative evaluation including other internal standards employed in published methods. After ascertaining method linearity, its accuracy, precision, specificity, repeatability, LOD and LOQ (0.373 µM and 1.242 µM, respectively, corresponding to 0.887 and 2.958 pmol/mg of wet tissue) have been evaluated on mouse brain tissue samples, obtained through a straightforward preparation procedure involving methanolic extraction from lyophilized brain homogenates and solid phase purification. The method has been validated on brain samples obtained from mice, either healthy or xenografted with GBM cells, receiving metformin dissolved in the drinking water. This analytical method can be usefully applied in preclinical studies aiming at clarifying MH mechanism of action in brain tumors.


Subject(s)
Glioblastoma , Metformin , Animals , Mice , Gas Chromatography-Mass Spectrometry/methods , Metformin/analysis , Glioblastoma/drug therapy , Tissue Distribution , Brain
17.
Proteomics ; 12(1): 124-34, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22065591

ABSTRACT

Microglia-mediated inflammation in the central nervous system is a hallmark of the pathogenesis of several neurodegenerative diseases including Alzheimer's disease. Microglial cells activation follows the deposition of amyloid ß fibrils and it is generally considered a triggering factor in the early steps of the onset of Alzheimer's disease. Although the initial engagement of microglia seems to play a neuroprotective role, many lines of evidence indicate that a persistent activation with the production of proinflammatory molecules contributes to dismantle neuronal activity and to induce neuronal loss occurring in neurodegenerative diseases. To date, limited proteomic data are available on activated microglial cells in response to extracellular amyloidogenic peptides. In this study, murine microglial cells have been employed to investigate the effects of amyloid ß peptides in triggering microglial activation. The response was monitored at the proteome level through a two-dimensional gel electrophoresis-based approach. Results show only a limited number of differentially expressed proteins, among these a more acidic species of the cytosolic actin, and the 14-3-3ε protein, found significantly upregulated in Aß-activated cells. 14-3-3ε belongs to a regulatory protein family involved in important cellular processes, including those leading to neurodegenerative diseases, and thus its increased expression suggests a role of this protein in tuning microglia activation.


Subject(s)
14-3-3 Proteins/metabolism , Inflammation/metabolism , Microglia/pathology , 14-3-3 Proteins/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides , Amyloidogenic Proteins , Animals , Biomarkers/metabolism , Cell Line, Transformed , Inflammation/chemically induced , Mice , Microglia/drug effects , Microglia/metabolism , Proteome/genetics , Proteome/metabolism , Up-Regulation
18.
Prog Neurobiol ; 216: 102313, 2022 09.
Article in English | MEDLINE | ID: mdl-35760142

ABSTRACT

We have uncovered a novel role for astrocytes-derived extracellular vesicles (EVs) in controlling intraneuronal Ca2+ concentration ([Ca2+]i) and identified transglutaminase-2 (TG2) as a surface-cargo of astrocytes-derived EVs. Incubation of hippocampal neurons with primed astrocyte-derived EVs have led to an increase in [Ca2+]i, unlike EVs from TG2-knockout astrocytes. Exposure of neurons or brain slices to extracellular TG2 promoted a [Ca2+]i rise, which was reversible upon TG2 removal and was dependent on Ca2+ influx through the plasma membrane. Patch-clamp and calcium imaging recordings revealed TG2-dependent neuronal membrane depolarization and activation of inward currents, due to the Na+/Ca2+-exchanger (NCX) operating in the reverse mode and indirect activation of L-type VOCCs, as indicated by VOCCs/NCX pharmacological inhibitors. A subunit of Na+/K+-ATPase was selected by comparative proteomics and identified as being functionally inhibited by extracellular TG2, implicating Na+/K+-ATPase inhibition in NCX reverse mode-switching leading to Ca2+ influx and higher basal [Ca2+]i. These data suggest that reactive astrocytes control intraneuronal [Ca2+]i through release of EVs with TG2 as responsible cargo, which could have a significant impact on synaptic activity in brain inflammation.


Subject(s)
Astrocytes , Extracellular Vesicles , Adenosine Triphosphatases , Astrocytes/metabolism , Calcium/metabolism , Extracellular Vesicles/metabolism , Homeostasis , Humans , Neurons/metabolism , Protein Glutamine gamma Glutamyltransferase 2 , Sodium-Calcium Exchanger/metabolism
19.
J Exp Clin Cancer Res ; 41(1): 53, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35135603

ABSTRACT

BACKGROUND: Chloride intracellular channel-1 (CLIC1) activity controls glioblastoma proliferation. Metformin exerts antitumor effects in glioblastoma stem cells (GSCs) inhibiting CLIC1 activity, but its low potency hampers its translation in clinical settings. METHODS: We synthesized a small library of novel biguanide-based compounds that were tested as antiproliferative agents for GSCs derived from human glioblastomas, in vitro using 2D and 3D cultures and in vivo in the zebrafish model. Compounds were compared to metformin for both potency and efficacy in the inhibition of GSC proliferation in vitro (MTT, Trypan blue exclusion assays, and EdU labeling) and in vivo (zebrafish model), migration (Boyden chamber assay), invasiveness (Matrigel invasion assay), self-renewal (spherogenesis assay), and CLIC1 activity (electrophysiology recordings), as well as for the absence of off-target toxicity (effects on normal stem cells and toxicity for zebrafish and chick embryos). RESULTS: We identified Q48 and Q54 as two novel CLIC1 blockers, characterized by higher antiproliferative potency than metformin in vitro, in both GSC 2D cultures and 3D spheroids. Q48 and Q54 also impaired GSC self-renewal, migration and invasion, and displayed low systemic in vivo toxicity. Q54 reduced in vivo proliferation of GSCs xenotransplanted in zebrafish hindbrain. Target specificity was confirmed by recombinant CLIC1 binding experiments using microscale thermophoresis approach. Finally, we characterized GSCs from GBMs spontaneously expressing low CLIC1 protein, demonstrating their ability to grow in vivo and to retain stem-like phenotype and functional features in vitro. In these GSCs, Q48 and Q54 displayed reduced potency and efficacy as antiproliferative agents as compared to high CLIC1-expressing tumors. However, in 3D cultures, metformin and Q48 (but not Q54) inhibited proliferation, which was dependent on the inhibition dihydrofolate reductase activity. CONCLUSIONS: These data highlight that, while CLIC1 is dispensable for the development of a subset of glioblastomas, it acts as a booster of proliferation in the majority of these tumors and its functional expression is required for biguanide antitumor class-effects. In particular, the biguanide-based derivatives Q48 and Q54, represent the leads to develop novel compounds endowed with better pharmacological profiles than metformin, to act as CLIC1-blockers for the treatment of CLIC1-expressing glioblastomas, in a precision medicine approach.


Subject(s)
Biguanides/therapeutic use , Chloride Channels/metabolism , Glioblastoma/genetics , Glioma/genetics , Neoplastic Stem Cells/metabolism , Biguanides/pharmacology , Cell Line, Tumor , Glioblastoma/pathology , Glioma/pathology , Humans
20.
Biochemistry ; 49(25): 5278-89, 2010 Jun 29.
Article in English | MEDLINE | ID: mdl-20507120

ABSTRACT

A striking feature of the CLIC (chloride intracellular channel) protein family is the ability of its members to convert between a soluble state and an integral membrane channel form. Direct evidence of the structural transition required for the CLIC protein to autonomously insert into the membrane is lacking, largely because of the challenge of probing the conformation of the membrane-bound protein. However, insights into the CLIC transmembrane form can be gained by biophysical methods such as fluorescence resonance energy transfer (FRET) spectroscopy. This approach was used to measure distances from tryptophan 35, located within the CLIC1 putative N-domain transmembrane region, to three native cysteine residues within the C-terminal domain. These distances were computed both in aqueous solution and upon the addition of membrane vesicles. The FRET distances were used as constraints for modeling of a structure for the CLIC1 integral membrane form. The data are suggestive of a large conformational unfolding occurring between the N- and C-domains of CLIC1 upon interaction with the membrane. Consistent with previous findings, the N-terminal domain of CLIC1 is likely to insert into the lipid bilayer, while the C-domain remains in solution on the extravesicular side of the membrane.


Subject(s)
Chloride Channels/metabolism , Membrane Proteins/metabolism , Chloride Channels/chemistry , Electron Spin Resonance Spectroscopy , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Humans , Models, Molecular , Protein Binding , Spectrometry, Fluorescence , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL