Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Cancer Immunol Immunother ; 73(2): 27, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38280019

ABSTRACT

Chronic lymphocytic leukemia (CLL) is a disease of the elderly, often presenting comorbidities like osteoporosis and requiring, in a relevant proportion of cases, treatment with bisphosphonates (BPs). This class of drugs was shown in preclinical investigations to also possess anticancer properties. We started an in vitro study of the effects of BPs on CLL B cells activated by microenvironment-mimicking stimuli and observed that, depending on drug concentration, hormetic effects were induced on the leukemic cells. Higher doses induced cytotoxicity whereas at lower concentrations, more likely occurring in vivo, the drugs generated a protective effect from spontaneous and chemotherapy-induced apoptosis, and augmented CLL B cell activation/proliferation. This CLL-activation effect promoted by the BPs was associated with markers of poor CLL prognosis and required the presence of bystander stromal cells. Functional experiments suggested that this phenomenon involves the release of soluble factors and is increased by cellular contact between stroma and CLL B cells. Since CLL patients often present comorbidities such as osteoporosis and considering the diverse outcomes in both CLL disease progression and CLL response to treatment among patients, illustrating this phenomenon holds potential significance in driving additional investigations.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Osteoporosis , Humans , Aged , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Diphosphonates/pharmacology , Diphosphonates/therapeutic use , B-Lymphocytes , Apoptosis , Osteoporosis/drug therapy , Tumor Microenvironment
2.
Proc Natl Acad Sci U S A ; 116(51): 25982-25990, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31792184

ABSTRACT

Retrotransposons compose a staggering 40% of the mammalian genome. Among them, endogenous retroviruses (ERV) represent sequences that closely resemble the proviruses created from exogenous retroviral infection. ERVs make up 8 to 10% of human and mouse genomes and range from evolutionarily ancient sequences to recent acquisitions. Studies in Drosophila have provided a causal link between genomic retroviral elements and cognitive decline; however, in mammals, the role of ERVs in learning and memory remains unclear. Here we studied 2 independent murine models for ERV activation: muMT strain (lacking B cells and antibody production) and intracerebroventricular injection of streptozotocin (ICVI-STZ). We conducted behavioral assessments (contextual fear memory and spatial learning), as well as gene and protein analysis (RNA sequencing, PCR, immunohistochemistry, and western blot assays). Mice lacking mitochondrial antiviral-signaling protein (MAVS) and mice lacking stimulator of IFN genes protein (STING), 2 downstream sensors of ERV activation, provided confirmation of ERV impact. We found that muMT mice and ICVI-STZ mice induced hippocampal ERV activation, as shown by increased gene and protein expression of the Gag sequence of the transposable element intracisternal A-particle. ERV activation was accompanied by significant hippocampus-related memory impairment in both models. Notably, the deficiency of the MAVS pathway was protective against ICVI-STZ-induced cognitive pathology. Overall, our results demonstrate that ERV activation is associated with cognitive impairment in mice. Moreover, they provide a molecular target for strategies aimed at attenuating retroviral element sensing, via MAVS, to treat dementia and neuropsychiatric disorders.


Subject(s)
Endogenous Retroviruses/genetics , Hippocampus/virology , Memory Disorders/genetics , Memory Disorders/metabolism , Memory Disorders/virology , Adaptor Proteins, Signal Transducing/genetics , Animals , Behavior, Animal , Brain/pathology , Cognitive Dysfunction , DNA Transposable Elements , Disease Models, Animal , Endogenous Retroviruses/physiology , Gene Expression Regulation , Gene Products, gag , Hippocampus/drug effects , Learning , Male , Membrane Proteins/metabolism , Memory , Memory Disorders/psychology , Mice , Mice, Inbred C57BL , Mice, Knockout , Streptozocin/pharmacology
3.
J Immunol ; 190(11): 5771-8, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23636053

ABSTRACT

Ag selection has been suggested to play a role in chronic lymphocytic leukemia (CLL) pathogenesis, but no large-scale analysis has been performed so far on the structure of the Ag-binding sites (ABSs) of leukemic cell Igs. We sequenced both H and L chain V(D)J rearrangements from 366 CLL patients and modeled their three-dimensional structures. The resulting ABS structures were clustered into a small number of discrete sets, each containing ABSs with similar shapes and physicochemical properties. This structural classification correlates well with other known prognostic factors such as Ig mutation status and recurrent (stereotyped) receptors, but it shows a better prognostic value, at least in the case of one structural cluster for which clinical data were available. These findings suggest, for the first time, to our knowledge, on the basis of a structural analysis of the Ab-binding sites, that selection by a finite quota of antigenic structures operates on most CLL cases, whether mutated or unmutated.


Subject(s)
Immunoglobulins/chemistry , Immunoglobulins/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Antigens/chemistry , Antigens/immunology , Binding Sites , Cluster Analysis , Gene Expression , Humans , Hydrophobic and Hydrophilic Interactions , Immunoglobulin Heavy Chains/chemistry , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Variable Region/chemistry , Immunoglobulin Variable Region/genetics , Immunoglobulins/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/mortality , Models, Molecular , Protein Binding , Protein Conformation , Receptors, Antigen, B-Cell/immunology
5.
Cancers (Basel) ; 15(19)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37835400

ABSTRACT

Chronic lymphocytic leukemia (CLL) clones contain subpopulations differing in time since the last cell division ("age"): recently born, proliferative (PF; CXCR4DimCD5Bright), intermediate (IF; CXCR4IntCD5Int), and resting (RF; CXCR4BrightCD5Dim) fractions. Herein, we used deuterium (2H) incorporation into newly synthesized DNA in patients to refine the kinetics of CLL subpopulations by characterizing two additional CXCR4/CD5 fractions, i.e., double dim (DDF; CXCR4DimCD5Dim) and double bright (DBF; CXCR4BrightCD5Bright); and intraclonal fractions differing in surface membrane (sm) IgM and IgD densities. Although DDF was enriched in recently divided cells and DBF in older cells, PF and RF remained the most enriched in youngest and oldest cells, respectively. Similarly, smIgMHigh and smIgDHigh cells were the youngest, and smIgMLow and smIgDLow were the oldest, when using smIG levels as discriminator. Surprisingly, the cells closest to the last stimulatory event bore high levels of smIG, and stimulating via TLR9 and smIG yielded a phenotype more consistent with the in vivo setting. Finally, older cells were less sensitive to in vivo inhibition by ibrutinib. Collectively, these data define additional intraclonal subpopulations with divergent ages and phenotypes and suggest that BCR engagement alone is not responsible for the smIG levels found in vivo, and the differential sensitivity of distinct fractions to ibrutinib might account, in part, for therapeutic relapse.

6.
Front Oncol ; 13: 1112879, 2023.
Article in English | MEDLINE | ID: mdl-37007084

ABSTRACT

Introduction: The leukemic cells of patients with chronic lymphocytic leukemia (CLL) are often unique, expressing remarkably similar IGHV-IGHD-IGHJ gene rearrangements, "stereotyped BCRs". The B-cell receptors (BCRs) on CLL cells are also distinctive in often deriving from autoreactive B lymphocytes, leading to the assumption of a defect in immune tolerance. Results: Using bulk and single-cell immunoglobulin heavy and light chain variable domain sequencing, we enumerated CLL stereotype-like IGHV-IGHD-IGHJ sequences (CLL-SLS) in B cells from cord blood (CB) and adult peripheral blood (PBMC) and bone marrow (BM of healthy donors. CLL-SLS were found at similar frequencies among CB, BM, and PBMC, suggesting that age does not influence CLL-SLS levels. Moreover, the frequencies of CLL-SLS did not differ among B lymphocytes in the BM at early stages of development, and only re-circulating marginal zone B cells contained significantly higher CLL-SLS frequencies than other mature B-cell subpopulations. Although we identified CLL-SLS corresponding to most of the CLL major stereotyped subsets, CLL-SLS frequencies did not correlate with those found in patients. Interestingly, in CB samples, half of the CLL-SLS identified were attributed to two IGHV-mutated subsets. We also found satellite CLL-SLS among the same normal samples, and they were also enriched in naïve B cells but unexpectedly, these were ~10-fold higher than standard CLL-SLS. In general, IGHV-mutated CLL-SLS subsets were enriched among antigen-experienced B-cell subpopulations, and IGHV-unmutated CLL-SLS were found mostly in antigen-inexperienced B cells. Nevertheless, CLL-SLS with an IGHV-mutation status matching that of CLL clones varied among the normal B-cell subpopulations, suggesting that specific CLL-SLS could originate from distinct subpopulations of normal B cells. Lastly, using single-cell DNA sequencing, we identified paired IGH and IGL rearrangements in normal B lymphocytes resembling those of stereotyped BCRs in CLL, although some differed from those in patients based on IG isotype or somatic mutation. Discussion: CLL-SLS are present in normal B-lymphocyte populations at all stages of development. Thus, despite their autoreactive profile they are not deleted by central tolerance mechanisms, possibly because the level of autoreactivity is not registered as dangerous by deletion mechanisms or because editing of L-chain variable genes occurred which our experimental approach could not identify.

7.
J Clin Invest ; 132(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-34813501

ABSTRACT

In chronic lymphocytic leukemia (CLL), the B cell receptor (BCR) plays a critical role in disease development and progression, as indicated by the therapeutic efficacy of drugs blocking BCR signaling. However, the mechanism(s) underlying BCR responsiveness are not completely defined. Selective engagement of membrane IgM or IgD on CLL cells, each coexpressed by more than 90% of cases, leads to distinct signaling events. Since both IgM and IgD carry the same antigen-binding domains, the divergent actions of the receptors are attributed to differences in immunoglobulin (Ig) structure or the outcome of signal transduction. We showed that IgM, not IgD, level and organization associated with CLL-cell birth rate and the type and consequences of BCR signaling in humans and mice. The latter IgM-driven effects were abrogated when BCR signaling was inhibited. Collectively, these studies demonstrated a critical, selective role for IgM in BCR signaling and B cell fate decisions, possibly opening new avenues for CLL therapy.


Subject(s)
B-Lymphocytes/immunology , Immunoglobulin D/immunology , Immunoglobulin M/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Receptors, Antigen, B-Cell/immunology , Signal Transduction/immunology , Animals , Female , Humans , Immunoglobulin D/genetics , Immunoglobulin M/genetics , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Male , Mice , Mice, Knockout , Receptors, Antigen, B-Cell/genetics , Signal Transduction/genetics
8.
BMC Mol Cell Biol ; 22(1): 41, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34380438

ABSTRACT

BACKGROUND: The human SH3 domain Binding Glutamic acid Rich Like 3 (SH3BGRL3) gene is highly conserved in phylogeny and widely expressed in human tissues. However, its function is largely undetermined. The protein was found to be overexpressed in several tumors, and recent work suggested a possible relationship with EGFR family members. We aimed at further highlighting on these issues and investigated SH3BGRL3 molecular interactions and its role in cellular migration ability. RESULTS: We first engineered the ErbB2-overexpressing SKBR3 cells to express exogenous SH3BGRL3, as well as wild type Myo1c or different deletion mutants. Confocal microscopy analysis indicated that SH3BGRL3 co-localized with Myo1c and ErbB2 at plasma membranes. However, co-immunoprecipitation assays and mass spectrometry demonstrated that SH3BGRL3 did not directly bind ErbB2, but specifically recognized Myo1c, on its IQ-bearing neck region. Importantly, the interaction with Myo1c was Ca2+-dependent. A role for SH3BGRL3 in cell migration was also assessed, as RNA interference of SH3BGRL3 in MDA-MB-231 cells, used as a classical migration model, remarkably impaired the migration ability of these cells. On the other side, its over-expression increased cell motility. CONCLUSION: The results of this study provide insights for the formulation of novel hypotheses on the putative role of SH3BGRL3 protein in the regulation of myosin-cytoskeleton dialog and in cell migration. It could be envisaged the SH3BGRL3-Myo1c interaction as a regulation mechanism for cytoskeleton dynamics. It is well known that, at low Ca2+ concentrations, the IQ domains of Myo1c are bound by calmodulin. Here we found that binding of Myo1c to SH3BGRL3 requires instead the presence of Ca2+. Thus, it could be hypothesized that Myo1c conformation may be modulated by Ca2+-driven mechanisms that involve alternative binding by calmodulin or SH3BGRL3, for the regulation of cytoskeletal activity.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Calcium/metabolism , Calmodulin/metabolism , Myosin Type I/metabolism , Adaptor Proteins, Signal Transducing/genetics , Calmodulin/genetics , Cell Line, Tumor , Cell Membrane/metabolism , Cell Movement , Cytoskeletal Proteins/genetics , Cytoskeletal Proteins/metabolism , Humans , Myosin Type I/genetics , Protein Binding/genetics
9.
Front Oncol ; 11: 640731, 2021.
Article in English | MEDLINE | ID: mdl-34113563

ABSTRACT

Analyses of IGHV gene mutations in chronic lymphocytic leukemia (CLL) have had a major impact on the prognostication and treatment of this disease. A hallmark of IGHV-mutation status is that it very rarely changes clonally over time. Nevertheless, targeted and deep DNA sequencing of IGHV-IGHD-IGHJ regions has revealed intraclonal heterogeneity. We used a DNA sequencing approach that achieves considerable depth and minimizes artefacts and amplification bias to identify IGHV-IGHD-IGHJ subclones in patients with prolonged temporal follow-up. Our findings extend previous studies, revealing intraclonal IGHV-IGHD-IGHJ diversification in almost all CLL clones. Also, they indicate that some subclones with additional IGHV-IGHD-IGHJ mutations can become a large fraction of the leukemic burden, reaching numerical criteria for monoclonal B-cell lymphocytosis. Notably, the occurrence and complexity of post-transformation IGHV-IGHD-IGHJ heterogeneity and the expansion of diversified subclones are similar among U-CLL and M-CLL patients. The molecular characteristics of the mutations present in the parental, clinically dominant CLL clone (CDC) differed from those developing post-transformation (post-CDC). Post-CDC mutations exhibit significantly lower fractions of mutations bearing signatures of activation induced deaminase (AID) and of error-prone repair by Polη, and most of the mutations were not ascribable to those enzymes. Additionally, post-CDC mutations displayed a lower percentage of nucleotide transitions compared with transversions that was also not like the action of AID. Finally, the post-CDC mutations led to significantly lower ratios of replacement to silent mutations in VH CDRs and higher ratios in VH FRs, distributions different from mutations found in normal B-cell subsets undergoing an AID-mediated process. Based on these findings, we propose that post-transformation mutations in CLL cells either reflect a dysfunctional standard somatic mutational process or point to the action of another mutational process not previously associated with IG V gene loci. If the former option is the case, post-CDC mutations could lead to a lesser dependence on antigen dependent BCR signaling and potentially a greater influence of off-target, non-IG genomic mutations. Alternatively, the latter activity could add a new stimulatory survival/growth advantage mediated by the BCR through structurally altered FRs, such as that occurring by superantigen binding and stimulation.

10.
Sci Rep ; 10(1): 16519, 2020 10 05.
Article in English | MEDLINE | ID: mdl-33020573

ABSTRACT

B-cell chronic lymphocytic leukemia (CLL) results from accumulation of leukemic cells that are subject to iterative re-activation cycles and clonal expansion in lymphoid tissues. The effects of the well-tolerated alkaloid Berberine (BRB), used for treating metabolic disorders, were studied on ex-vivo leukemic cells activated in vitro by microenvironment stimuli. BRB decreased expression of survival/proliferation-associated molecules (e.g. Mcl-1/Bcl-xL) and inhibited stimulation-induced cell cycle entry, irrespective of TP53 alterations or chromosomal abnormalities. CLL cells rely on oxidative phosphorylation for their bioenergetics, particularly during the activation process. In this context, BRB triggered mitochondrial dysfunction and aberrant cellular energetic metabolism. Decreased ATP production and NADH recycling, associated with mitochondrial uncoupling, were not compensated by increased lactic fermentation. Antioxidant defenses were affected and could not correct the altered intracellular redox homeostasis. The data thus indicated that the cytotoxic/cytostatic action of BRB at 10-30 µM might be mediated, at least in part, by BRB-induced impairment of oxidative phosphorylation and the associated increment of oxidative damage, with consequent inhibition of cell activation and eventual cell death. Bioenergetics and cell survival were instead unaffected in normal B lymphocytes at the same BRB concentrations. Interestingly, BRB lowered the apoptotic threshold of ABT-199/Venetoclax, a promising BH3-mimetic whose cytotoxic activity is counteracted by high Mcl-1/Bcl-xL expression and increased mitochondrial oxidative phosphorylation. Our results indicate that, while CLL cells are in the process of building their survival and cycling armamentarium, the presence of BRB affects this process.


Subject(s)
Berberine/pharmacology , Leukemia, Lymphocytic, Chronic, B-Cell/metabolism , Mitochondria/drug effects , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , B-Lymphocytes/immunology , Berberine/metabolism , Biphenyl Compounds/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Cell Cycle/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Resistance, Neoplasm/drug effects , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/physiopathology , Mitochondria/metabolism , Oxidative Phosphorylation/drug effects , Patients , Primary Cell Culture , Proto-Oncogene Proteins c-bcl-2/metabolism , Sulfonamides/pharmacology
11.
Methods Mol Biol ; 1881: 129-151, 2019.
Article in English | MEDLINE | ID: mdl-30350203

ABSTRACT

Cell proliferation plays a central role in the pathogenesis of every neoplastic disease as well as many other types of illness. Labeling of newly replicated DNA with deuterium (2H), a nonradioactive isotope of hydrogen, administered to the patients in drinking water (2H2O) is a safe and reliable method to measure the in vivo birth rates of cells. Here, we describe a protocol to measure chronic lymphocytic leukemia B-cell birth/proliferation and death rates over time using this approach.


Subject(s)
B-Lymphocytes/pathology , Deoxyribose/analysis , Deuterium Oxide/administration & dosage , Gas Chromatography-Mass Spectrometry/methods , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Apoptosis , B-Lymphocytes/metabolism , Cell Proliferation , DNA/chemistry , DNA/isolation & purification , DNA Replication , Deoxyribose/chemistry , Deuterium Oxide/chemistry , Gas Chromatography-Mass Spectrometry/instrumentation , Humans , Kinetics , Leukemia, Lymphocytic, Chronic, B-Cell/blood
12.
Mol Biotechnol ; 52(1): 16-25, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22076571

ABSTRACT

Recombinant-tagged proteins have a widespread use in experimental research as well as in clinical diagnostic and therapeutic approaches. Well-stocked sets of differently tagged variants of a same protein would be of great help. However, the construction of differently tagging vectors is a demanding task since cloning procedures need several tailored DNA inserts. In this study, we describe a novel vector system that allows a cost- and time-effective production of differently tagged variants of a same protein by using the same DNA fragment and a set of vectors each carrying a different tag. The design of these expression vectors is based on an intronic region that becomes functional upon cloning the insert sequence, splicing of which attaches a certain tag to the protein termini. This strategy allows for the cloning of the fragment that codes for the protein of interest, without any further modification, into different vectors, previously built and ready-to-use, each carrying a tag that will be joined to the protein. Proof of principle for our expression system, presented here, is shown through the production of a functional anti-GD2 Fab fragment tagged with biotin or polyhistidine, or a combination of both, followed by the demonstration of the functional competencies of both the protein and the tags.


Subject(s)
Cloning, Molecular/methods , Genetic Vectors/genetics , Recombinant Fusion Proteins/biosynthesis , Biotin/metabolism , Biotinylation , Cell Line , Histidine/metabolism , Humans , Immunoglobulin Fab Fragments/metabolism , Intracellular Space/enzymology , Reproducibility of Results , Staining and Labeling
SELECTION OF CITATIONS
SEARCH DETAIL