Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 153
Filter
Add more filters

Country/Region as subject
Publication year range
1.
Cell Commun Signal ; 22(1): 319, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38858728

ABSTRACT

Several different signaling pathways that regulate cell proliferation and differentiation are initiated by binding of ligands to cell-surface and membrane-bound enzyme-linked receptors, such as receptor tyrosine kinases and serine-threonine kinases. They prompt phosphorylation of tyrosine and serine-threonine residues and initiate downstream signaling pathways and priming of intracellular molecules that convey the signal in the cytoplasm and nucleus, with transcriptional activation of specific genes enriching cell growth and survival-related cascades. These cell processes are rhythmically driven by molecular clockworks endowed in every cell type and when deregulated play a crucial role in cancer onset and progression. Growth factors and their matching receptor-dependent signaling are frequently overexpressed and/or dysregulated in many cancer types. In this review we focus on the interplay between biological clocks and Growth Factor Receptor-dependent signaling in the context of carcinogenesis.


Subject(s)
Carcinogenesis , Signal Transduction , Humans , Carcinogenesis/metabolism , Carcinogenesis/genetics , Carcinogenesis/pathology , Animals , Receptors, Growth Factor/metabolism , Circadian Rhythm/genetics , Circadian Rhythm/physiology , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/genetics
2.
Medicina (Kaunas) ; 59(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-38004071

ABSTRACT

Background and Objectives: Cutaneous lupus erythematosus (CLE) presents clinically heterogeneous manifestations, partially explained by the different expression of Toll-like receptors (TLRs) type 8 and 9, located to endosomal compartments where they are poised to recognize microbial nucleic acids. This disease is empirically treated with hydroxychloroquine (HCQ), which is hallmarked with a safe and effective profile, but induces a slow and sometimes clinically insufficient therapeutic response. Currently, no biomarkers predictive of response are validated or even proposed in the scientific literature. We aimed to evaluate endosomal TLR type 7, 8 and 9 as predictive biomarkers of HCQ efficacy. Materials and Methods: We conducted a case-control study comparing CLE patients retrospectively assigned to three subgroups based on 3-6-month Cutaneous LE Disease Area and Severity Index (CLASI) reduction upon treatment with HCQ (I = <40% vs. II = 40-80% vs. III = >80%). Before HCQ, lesional skin specimens were collected in untreated CLE and through immunohistochemistry; TLR-7, -8 and -9 expression was evaluated in the epidermis and the lymphocytic infiltrate was evaluated in the dermis. Results: Sixty-six lesional skin biopsies were compared with healthy controls. CLE patients displayed lower epidermal expression of total TLR 8 and 9 as well as infiltrating TLR-8, TLR9 + lymphocytes compared to controls. High HCQ responders differed from low responders for TLR-9 positivity (high vs. low) and for the lymphocytic dermal infiltrate (high vs. low). Conclusions: TLR9 could be envisaged as a possible biomarker to predict HCQ response level and dosage in CLE patients.


Subject(s)
Lupus Erythematosus, Cutaneous , Lupus Erythematosus, Systemic , Humans , Hydroxychloroquine/therapeutic use , Toll-Like Receptor 9/therapeutic use , Case-Control Studies , Retrospective Studies , Lupus Erythematosus, Cutaneous/drug therapy , Lupus Erythematosus, Cutaneous/pathology
3.
Genet Med ; 24(2): 439-453, 2022 02.
Article in English | MEDLINE | ID: mdl-34906501

ABSTRACT

PURPOSE: This study aimed to describe a multisystemic disorder featuring cardiovascular, facial, musculoskeletal, and cutaneous anomalies caused by heterozygous loss-of-function variants in TAB2. METHODS: Affected individuals were analyzed by next-generation technologies and genomic array. The presumed loss-of-function effect of identified variants was assessed by luciferase assay in cells transiently expressing TAB2 deleterious alleles. In available patients' fibroblasts, variant pathogenicity was further explored by immunoblot and osteoblast differentiation assays. The transcriptomic profile of fibroblasts was investigated by RNA sequencing. RESULTS: A total of 11 individuals from 8 families were heterozygotes for a novel TAB2 variant. In total, 7 variants were predicted to be null alleles and 1 was a missense change. An additional subject was heterozygous for a 52 kb microdeletion involving TAB2 exons 1 to 3. Luciferase assay indicated a decreased transcriptional activation mediated by NF-κB signaling for all point variants. Immunoblot analysis showed a reduction of TAK1 phosphorylation while osteoblast differentiation was impaired. Transcriptomic analysis identified deregulation of multiple pleiotropic pathways, such as TGFß-, Ras-MAPK-, and Wnt-signaling networks. CONCLUSION: Our data defined a novel disorder associated with loss-of-function or, more rarely, hypomorphic alleles in a restricted linker region of TAB2. The pleiotropic manifestations in this disorder partly recapitulate the 6q25.1 (TAB2) microdeletion syndrome and deserve the definition of cardio-facial-cutaneous-articular syndrome.


Subject(s)
Adaptor Proteins, Signal Transducing , NF-kappa B , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Exons/genetics , Humans , NF-kappa B/genetics , NF-kappa B/metabolism , Phosphorylation , Signal Transduction
4.
Int J Mol Sci ; 22(4)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562472

ABSTRACT

The metabolism of tryptophan is intimately associated with the differential regulation of diverse physiological processes, including in the regulation of responses to severe acute respiratory syndrome, coronavirus-2 (SARS-CoV-2) infection that underpins the COVID-19 pandemic. Two important products of tryptophan metabolism, viz kynurenine and interleukin (IL)4-inducible1 (IL41)-driven indole 3 pyruvate (I3P), activate the aryl hydrocarbon receptor (AhR), thereby altering the nature of immune responses to SARS-CoV-2 infection. AhR activation dysregulates the initial pro-inflammatory cytokines production driven by neutrophils, macrophages, and mast cells, whilst AhR activation suppresses the endogenous antiviral responses of natural killer cells and CD8+ T cells. Such immune responses become further dysregulated by the increased and prolonged pro-inflammatory cytokine suppression of pineal melatonin production coupled to increased gut dysbiosis and gut permeability. The suppression of pineal melatonin and gut microbiome-derived butyrate, coupled to an increase in circulating lipopolysaccharide (LPS) further dysregulates the immune response. The AhR mediates its effects via alterations in the regulation of mitochondrial function in immune cells. The increased risk of severe/fatal SARS-CoV-2 infection by high risk conditions, such as elderly age, obesity, and diabetes are mediated by these conditions having expression levels of melatonin, AhR, butyrate, and LPS that are closer to those driven by SARS-CoV-2 infection. This has a number of future research and treatment implications, including the utilization of melatonin and nutraceuticals that inhibit the AhR, including the polyphenols, epigallocatechin gallate (EGCG), and resveratrol.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/metabolism , COVID-19/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Respiratory Distress Syndrome/metabolism , SARS-CoV-2/physiology , Tryptophan/metabolism , Animals , COVID-19/complications , COVID-19/physiopathology , Humans , Inflammation/complications , Inflammation/metabolism , Inflammation/physiopathology , Respiratory Distress Syndrome/complications , Respiratory Distress Syndrome/physiopathology
5.
Int J Mol Sci ; 22(11)2021 May 30.
Article in English | MEDLINE | ID: mdl-34070944

ABSTRACT

Embryogenesis is a complex multi-stage process regulated by various signaling molecules including pineal and extrapineal melatonin (MT). Extrapineal MT is found in the placenta and ovaries, where it carries out local hormonal regulation. MT is necessary for normal development of oocytes, fertilization and subsequent development of human, animal and avian embryos. This review discusses the role of MT as a regulator of preimplantation development of the embryo and its implantation into endometrial tissue, followed by histo-, morpho- and organogenesis. MT possesses pronounced antioxidant properties and helps to protect the embryo from oxidative stress by regulating the expression of the NFE2L2, SOD1, and GPX1 genes. MT activates the expression of the ErbB1, ErbB4, GJA1, POU5F1, and Nanog genes which are necessary for embryo implantation and blastocyst growth. MT induces the expression of vascular endothelial growth factor (VEGF) and its type 1 receptor (VEGF-R1) in the ovaries, activating angiogenesis. Given the increased difficulties in successful fertilization and embryogenesis with age, it is of note that MT slows down ovarian aging by increasing the transcription of sirtuins. MT administration to patients suffering from infertility demonstrates an increase in the effectiveness of in vitro fertilization. Thus, MT may be viewed as a key factor in embryogenesis regulation, including having utility in the management of infertility.


Subject(s)
Embryo Implantation/drug effects , Embryonic Development/drug effects , Gene Expression Regulation, Developmental/drug effects , Melatonin/therapeutic use , Ovary/metabolism , Placenta/metabolism , Animals , Embryo, Mammalian , Embryonic Development/genetics , Female , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Humans , Infertility, Female/genetics , Infertility, Female/metabolism , Infertility, Female/pathology , Infertility, Female/prevention & control , Melatonin/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Ovary/growth & development , Pineal Gland/growth & development , Pineal Gland/metabolism , Pregnancy , Receptor, ErbB-4/genetics , Receptor, ErbB-4/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Glutathione Peroxidase GPX1
7.
Br J Cancer ; 122(9): 1354-1366, 2020 04.
Article in English | MEDLINE | ID: mdl-32132656

ABSTRACT

BACKGROUND: Metabolic reprogramming towards aerobic glycolysis in cancer supports unrestricted cell proliferation, survival and chemoresistance. The molecular bases of these processes are still undefined. Recent reports suggest crucial roles for microRNAs. Here, we provide new evidence of the implication of miR-27a in modulating colorectal cancer (CRC) metabolism and chemoresistance. METHODS: A survey of miR-27a expression profile in TCGA-COAD dataset revealed that miR-27a-overexpressing CRCs are enriched in gene signatures of mitochondrial dysfunction, deregulated oxidative phosphorylation, mTOR activation and reduced chemosensitivity. The same pathways were analysed in cell lines in which we modified miR-27a levels. The response to chemotherapy was investigated in an independent cohort and cell lines. RESULTS: miR-27a upregulation in vitro associated with impaired oxidative phosphorylation, overall mitochondrial activities and slight influence on glycolysis. miR-27a hampered AMPK, enhanced mTOR signalling and acted in concert with oncogenes and tumour cell metabolic regulators to force an aerobic glycolytic metabolism supporting biomass production, unrestricted growth and chemoresistance. This latter association was confirmed in our cohort of patients and cell lines. CONCLUSIONS: We disclose an unprecedented role for miR-27a as a master regulator of cancer metabolism reprogramming that impinges on CRC response to chemotherapy, underscoring its theragnostic properties.


Subject(s)
Colorectal Neoplasms/drug therapy , MicroRNAs/genetics , Protein Kinases/genetics , TOR Serine-Threonine Kinases/genetics , AMP-Activated Protein Kinase Kinases , Adult , Aged , Aged, 80 and over , Cell Proliferation/drug effects , Cellular Reprogramming/drug effects , Cellular Reprogramming/genetics , Cisplatin/pharmacology , Colorectal Neoplasms/genetics , Colorectal Neoplasms/pathology , Colorectal Neoplasms/radiotherapy , Drug Resistance, Neoplasm/drug effects , Female , Gene Expression Regulation, Neoplastic/drug effects , HCT116 Cells , Humans , Male , Middle Aged , Signal Transduction/drug effects
8.
Brief Bioinform ; 19(5): 853-862, 2018 09 28.
Article in English | MEDLINE | ID: mdl-28334084

ABSTRACT

Molecular dynamics (MD) simulation allows one to predict the time evolution of a system of interacting particles. It is widely used in physics, chemistry and biology to address specific questions about the structural properties and dynamical mechanisms of model systems. MD earned a great success in genome research, as it proved to be beneficial in sorting pathogenic from neutral genomic mutations. Considering their computational requirements, simulations are commonly performed on HPC computing devices, which are generally expensive and hard to administer. However, variables like the software tool used for modeling and simulation or the size of the molecule under investigation might make one hardware type or configuration more advantageous than another or even make the commodity hardware definitely suitable for MD studies. This work aims to shed lights on this aspect.


Subject(s)
Genomics/statistics & numerical data , Molecular Dynamics Simulation/statistics & numerical data , Algorithms , Computational Biology/methods , Databases, Genetic/statistics & numerical data , Humans , Polymorphism, Single Nucleotide , Protein Conformation , Proteins/chemistry , Proteins/genetics , Software , Software Design
9.
Biochim Biophys Acta Rev Cancer ; 1867(1): 1-18, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27864070

ABSTRACT

The network of bidirectional homotypic and heterotypic interactions established among parenchymal tumour cells and surrounding mesenchymal stromal cells generates the tumour microenvironment (TME). These intricate crosstalks elicit both beneficial and adverse effects on tumour initiation and progression unbalancing the signals and responses from the neighbouring cells. Here, we highlight the structure, activities and evolution of TME cells considering a novel colorectal cancer (CRC) classification based on differential stromal composition and gene expression profiles. In this scenario, we scrutinise the molecular pathways that either change or become corrupted during CRC development and their relative prognostic value. Finally, we survey the therapeutic molecules directed against TME components currently available in clinical trials as well as those with stronger potential in preclinical studies. Elucidation of dynamic variations in the CRC TME cell composition and their relative contribution could provide novel diagnostic or prognostic biomarkers and allow more personalised therapeutic strategies.


Subject(s)
Colorectal Neoplasms/pathology , Tumor Microenvironment/physiology , Animals , Disease Progression , Humans , Mesenchymal Stem Cells/pathology , Prognosis , Transcriptome/physiology
10.
Int J Mol Sci ; 21(21)2020 Oct 30.
Article in English | MEDLINE | ID: mdl-33143333

ABSTRACT

Melatonin (MT) and sirtuins (SIRT) are geroprotective molecules that hold back the aging process and the development of age-related diseases, including cardiovascular pathologies. Buccal epithelium (BE) sampling is a non-invasive procedure, yielding highly informative material for evaluating the expression of genes and proteins as well as the synthesis of molecules. Among these, MT and SIRTs are valuable markers of the aging process and age-related pathologies. The purpose of this study was to examine age-related expression patterns of these signaling molecules, in particular MT, SIRT1, SIRT3, and SIRT6 in BE of subjects of different ages with and without arterial hypertension (AH). We used real-time polymerase chain reaction (RT-PCR) and immunofluorescence analysis by confocal microscopy. We found that MT immunofluorescence intensity in BE decreases with aging, more evidently in AH patients. SIRT3 and SIRT6 genes expression and immunofluorescence intensity in BE was decreased in aging controls. In AH patients, SIRT1, SIRT3, and SIRT6 gene expression and immunofluorescence intensity in BE was decreased in relation to age and in comparison with age-matched controls. In conclusion, the evaluation of MT and sirtuins in BE could provide a non-invasive method for appraising the aging process, also when accompanied by AH.


Subject(s)
Aging/pathology , Biomarkers/metabolism , Melatonin/metabolism , Pulmonary Arterial Hypertension/pathology , Sirtuin 1/metabolism , Sirtuin 3/metabolism , Sirtuins/metabolism , Adult , Aged , Aged, 80 and over , Aging/metabolism , Case-Control Studies , Epithelium/metabolism , Epithelium/pathology , Female , Follow-Up Studies , Humans , Male , Middle Aged , Mouth Mucosa/metabolism , Mouth Mucosa/pathology , Prognosis , Pulmonary Arterial Hypertension/metabolism
11.
Int J Mol Sci ; 21(22)2020 Nov 10.
Article in English | MEDLINE | ID: mdl-33182805

ABSTRACT

Lipid catabolism and anabolism changes play a role in stemness acquisition by cancer cells, and cancer stem cells (CSCs) are particularly dependent on the activity of the enzymes involved in these processes. Lipidomic changes could play a role in CSCs' ability to cause disease relapse and chemoresistance. The exploration of lipid composition and metabolism changes in CSCs in the context of hepatocellular cancer (HCC) is still incomplete and their lipidomic scenario continues to be elusive. We aimed to evaluate through high-throughput mass spectrometry (MS)-based lipidomics the levels of the members of the six major classes of sphingolipids and phospholipids in two HCC cell lines (HepG2 and Huh-7) silenced for the expression of histone variant macroH2A1 (favoring stemness acquisition), or silenced for the expression of focal adhesion tyrosine kinase (FAK) (hindering aggressiveness and stemness). Transcriptomic changes were evaluated by RNA sequencing as well. We found definite lipidomic and transcriptomic changes in the HCC lines upon knockdown (KD) of macroH2A1 or FAK, in line with the acquisition or loss of stemness features. In particular, macroH2A1 KD increased total sphingomyelin (SM) levels and decreased total lysophosphatidylcholine (LPC) levels, while FAK KD decreased total phosphatidylcholine (PC) levels. In conclusion, in HCC cell lines knocked down for specific signaling/epigenetic processes driving opposite stemness potential, we defined a lipidomic signature that hallmarks hepatic CSCs to be exploited for therapeutic strategies.


Subject(s)
Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Lipid Metabolism , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Focal Adhesion Kinase 1/antagonists & inhibitors , Focal Adhesion Kinase 1/deficiency , Focal Adhesion Kinase 1/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Hep G2 Cells , Histones/antagonists & inhibitors , Histones/deficiency , Histones/genetics , Humans , Lipid Metabolism/genetics , Lipidomics , Liver Neoplasms/genetics , Lysophosphatidylcholines/metabolism , Phosphatidylcholines/metabolism , RNA-Seq , Sphingomyelins/metabolism
12.
Hum Mutat ; 40(10): 1886-1898, 2019 10.
Article in English | MEDLINE | ID: mdl-31250519

ABSTRACT

Transforming growth factor ß-activated kinase 1 (TAK1) mediates multiple biological processes through the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and the mitogen-activated protein kinase (MAPK) signaling pathways. TAK1 activation is tightly regulated by its binding partners (TABs). In particular, binding with TAB2 is crucial for cardiovascular development and extracellular matrix (ECM) homeostasis. In our previous work, we reported a novel multisystem disorder associated with the heterozygous TAB2 c.1398dup variant. Here, we dissect the functional effects of this variant in order to understand its molecular pathogenesis. We demonstrate that TAB2 c.1398dup considerably undergoes to nonsense-mediated messenger RNA decay and encodes a truncated protein that loses its ability to bind TAK1. We also show an alteration of the TAK1 autophosphorylation status and of selected downstream signaling pathways in patients' fibroblasts. Immunofluorescence analyses and ECM-related polymerase chain reaction-array panels highlight that patient fibroblasts display ECM disorganization and altered expression of selected ECM components and collagen-related pathways. In conclusion, we deeply dissect the molecular pathogenesis of the TAB2 c.1398dup variant and show that the resulting phenotype is well explained by TAB2 loss-of-function. Our data also offer initial insights on the ECM homeostasis impairment as a molecular mechanism probably underlying a multisystem disorder linked to TAB2.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Extracellular Matrix/metabolism , Genetic Variation , Haploinsufficiency , Homeostasis , Adaptor Proteins, Signal Transducing/chemistry , Amino Acid Sequence , Cell Line , Cell Proliferation , DNA Mutational Analysis , Fibroblasts/metabolism , Humans , MAP Kinase Kinase Kinases/metabolism , Mutation , Nonsense Mediated mRNA Decay , Phosphorylation , Protein Binding , Signal Transduction
13.
Int J Mol Sci ; 20(16)2019 Aug 20.
Article in English | MEDLINE | ID: mdl-31434333

ABSTRACT

Left ventricular hypertrophy (LVH) can be adaptive, as arising from exercise, or pathological, most commonly when driven by hypertension. The pathophysiology of LVH is consistently associated with an increase in cytochrome P450 (CYP)1B1 and mitogen-activated protein kinases (MAPKs) and a decrease in sirtuins and mitochondria functioning. Treatment is usually targeted to hypertension management, although it is widely accepted that treatment outcomes could be improved with cardiomyocyte hypertrophy targeted interventions. The current article reviews the wide, but disparate, bodies of data pertaining to LVH pathoetiology and pathophysiology, proposing a significant role for variations in the N-acetylserotonin (NAS)/melatonin ratio within mitochondria in driving the biological underpinnings of LVH. Heightened levels of mitochondria CYP1B1 drive the 'backward' conversion of melatonin to NAS, resulting in a loss of the co-operative interactions of melatonin and sirtuin-3 within mitochondria. NAS activates the brain-derived neurotrophic factor receptor, TrkB, leading to raised trophic signalling via cyclic adenosine 3',5'-monophosphate (cAMP)-response element binding protein (CREB) and the MAPKs, which are significantly increased in LVH. The gut microbiome may be intimately linked to how stress and depression associate with LVH and hypertension, with gut microbiome derived butyrate, and other histone deacetylase inhibitors, significant modulators of the melatonergic pathways and LVH more generally. This provides a model of LVH that has significant treatment and research implications.


Subject(s)
Cytochrome P-450 CYP1B1/metabolism , Hypertrophy, Left Ventricular/metabolism , Animals , Cytochrome P-450 CYP1B1/genetics , Gastrointestinal Microbiome/physiology , Humans , Hypertrophy, Left Ventricular/physiopathology , Melatonin/metabolism , Mitochondria/metabolism , Mitogen-Activated Protein Kinases/metabolism , Sirtuins/metabolism
14.
Int J Mol Sci ; 20(11)2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31195749

ABSTRACT

Growing evidence highlights a tight connection between circadian rhythms, molecular clockworks, and mitochondrial function. In particular, mitochondrial quality control and bioenergetics have been proven to undergo circadian oscillations driven by core clock genes. Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by a selective loss of dopaminergic neurons. Almost half of the autosomal recessive forms of juvenile parkinsonism have been associated with mutations in the PARK2 gene coding for parkin, shown to be involved in mitophagy-mediated mitochondrial quality control. The aim of this study was to investigate, in fibroblasts from genetic PD patients carrying parkin mutations, the interplay between mitochondrial bioenergetics and the cell autonomous circadian clock. Using two different in vitro synchronization protocols, we demonstrated that normal fibroblasts displayed rhythmic oscillations of both mitochondrial respiration and glycolytic activity. Conversely, in fibroblasts obtained from PD patients, a severe damping of the bioenergetic oscillatory patterns was observed. Analysis of the core clock genes showed deregulation of their expression patterns in PD fibroblasts, which was confirmed in induced pluripotent stem cells (iPSCs) and induced neural stem cells (iNSCs) derived thereof. The results from this study support a reciprocal interplay between the clockwork machinery and mitochondrial energy metabolism, point to a parkin-dependent mechanism of regulation, and unveil a hitherto unappreciated level of complexity in the pathophysiology of PD and eventually other neurodegenerative diseases.


Subject(s)
CLOCK Proteins/genetics , Energy Metabolism/genetics , Mutation/genetics , Ubiquitin-Protein Ligases/genetics , Animals , CLOCK Proteins/metabolism , Cell Respiration , Circadian Rhythm/genetics , Fibroblasts/metabolism , Gene Expression Regulation , Glycolysis , Humans , Mice, Nude , Mitochondria/metabolism , Parkinson Disease/genetics , Parkinson Disease/pathology , Transcription, Genetic
15.
Int J Mol Sci ; 20(18)2019 Sep 17.
Article in English | MEDLINE | ID: mdl-31533246

ABSTRACT

Cellular, organ, and whole animal physiology show temporal variation predominantly featuring 24-h (circadian) periodicity. Time-course mRNA gene expression profiling in mouse liver showed two subsets of genes oscillating at the second (12-h) and third (8-h) harmonic of the prime (24-h) frequency. The aim of our study was to identify specific genomic, proteomic, and functional properties of ultradian and circadian subsets. We found hallmarks of the three oscillating gene subsets, including different (i) functional annotation, (ii) proteomic and electrochemical features, and (iii) transcription factor binding motifs in upstream regions of 8-h and 12-h oscillating genes that seemingly allow the link of the ultradian gene sets to a known circadian network. Our multifaceted bioinformatics analysis of circadian and ultradian genes suggests that the different rhythmicity of gene expression impacts physiological outcomes and may be related to transcriptional, translational and post-translational dynamics, as well as to phylogenetic and evolutionary components.


Subject(s)
Genomics , Mammals/genetics , Mammals/metabolism , Proteomics , Animals , Binding Sites , Biomarkers , Chromosome Mapping , Computational Biology/methods , Epigenesis, Genetic , Gene Expression Profiling , Genomics/methods , Humans , Molecular Sequence Annotation , Phylogeny , Promoter Regions, Genetic , Proteome , Proteomics/methods , Time Factors , Transcription Factors
16.
PLoS Comput Biol ; 13(6): e1005628, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28640805

ABSTRACT

24,189 are all the possible non-synonymous amino acid changes potentially affecting the human mitochondrial DNA. Only a tiny subset was functionally evaluated with certainty so far, while the pathogenicity of the vast majority was only assessed in-silico by software predictors. Since these tools proved to be rather incongruent, we have designed and implemented APOGEE, a machine-learning algorithm that outperforms all existing prediction methods in estimating the harmfulness of mitochondrial non-synonymous genome variations. We provide a detailed description of the underlying algorithm, of the selected and manually curated training and test sets of variants, as well as of its classification ability.


Subject(s)
Algorithms , Chromosome Mapping/methods , DNA Mutational Analysis/methods , Genetic Variation/genetics , Genome, Mitochondrial/genetics , Genome, Human/genetics , Humans , Machine Learning , Pattern Recognition, Automated , Reproducibility of Results , Sensitivity and Specificity , Software
17.
Nucleic Acids Res ; 44(9): 4025-36, 2016 05 19.
Article in English | MEDLINE | ID: mdl-27067546

ABSTRACT

Alterations in the balance of mRNA and microRNA (miRNA) expression profiles contribute to the onset and development of colorectal cancer. The regulatory functions of individual miRNA-gene pairs are widely acknowledged, but group effects are largely unexplored. We performed an integrative analysis of mRNA-miRNA and miRNA-miRNA interactions using high-throughput mRNA and miRNA expression profiles obtained from matched specimens of human colorectal cancer tissue and adjacent non-tumorous mucosa. This investigation resulted in a hypernetwork-based model, whose functional backbone was fulfilled by tight micro-societies of miRNAs. These proved to modulate several genes that are known to control a set of significantly enriched cancer-enhancer and cancer-protection biological processes, and that an array of upstream regulatory analyses demonstrated to be dependent on miR-145, a cell cycle and MAPK signaling cascade master regulator. In conclusion, we reveal miRNA-gene clusters and gene families with close functional relationships and highlight the role of miR-145 as potent upstream regulator of a complex RNA-RNA crosstalk, which mechanistically modulates several signaling pathways and regulatory circuits that when deranged are relevant to the changes occurring in colorectal carcinogenesis.


Subject(s)
Colorectal Neoplasms/genetics , Gene Regulatory Networks/genetics , MicroRNAs/metabolism , Multigene Family/genetics , RNA, Messenger/metabolism , Cell Line, Tumor , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic , HCT116 Cells , HT29 Cells , Humans , MAP Kinase Signaling System/genetics , MicroRNAs/biosynthesis , MicroRNAs/genetics , RNA, Messenger/biosynthesis
18.
Biochim Biophys Acta ; 1857(8): 1344-1351, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27060253

ABSTRACT

In the past few years mounting evidences have highlighted the tight correlation between circadian rhythms and metabolism. Although at the organismal level the central timekeeper is constituted by the hypothalamic suprachiasmatic nuclei practically all the peripheral tissues are equipped with autonomous oscillators made up by common molecular clockworks represented by circuits of gene expression that are organized in interconnected positive and negative feed-back loops. In this study we exploited a well-established in vitro synchronization model to investigate specifically the linkage between clock gene expression and the mitochondrial oxidative phosphorylation (OxPhos). Here we show that synchronized cells exhibit an autonomous ultradian mitochondrial respiratory activity which is abrogated by silencing the master clock gene ARNTL/BMAL1. Surprisingly, pharmacological inhibition of the mitochondrial OxPhos system resulted in dramatic deregulation of the rhythmic clock-gene expression and a similar result was attained with mtDNA depleted cells (Rho0). Our findings provide a novel level of complexity in the interlocked feedback loop controlling the interplay between cellular bioenergetics and the molecular clockwork. This article is part of a Special Issue entitled 'EBEC 2016: 19th European Bioenergetics Conference, Riva del Garda, Italy, July 2-6, 2016', edited by Prof. Paolo Bernardi.


Subject(s)
ARNTL Transcription Factors/genetics , Circadian Clocks/genetics , Feedback, Physiological , Fibroblasts/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation , ARNTL Transcription Factors/antagonists & inhibitors , ARNTL Transcription Factors/metabolism , Antimycin A/pharmacology , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacology , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Fibroblasts/cytology , Fibroblasts/drug effects , Gene Expression Regulation , Genes, Reporter , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Hep G2 Cells , Humans , Lentivirus/genetics , Luciferases/genetics , Luciferases/metabolism , Mitochondria/drug effects , Oligomycins/pharmacology , Primary Cell Culture , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rotenone/pharmacology , Signal Transduction
19.
Biochim Biophys Acta ; 1863(4): 596-606, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26732296

ABSTRACT

Physiology of living beings show circadian rhythms entrained by a central timekeeper present in the hypothalamic suprachiasmatic nuclei. Nevertheless, virtually all peripheral tissues hold autonomous molecular oscillators constituted essentially by circuits of gene expression that are organized in negative and positive feed-back loops. Accumulating evidence reveals that cell metabolism is rhythmically controlled by cell-intrinsic molecular clocks and the specific pathways involved are being elucidated. Here, we show that in vitro-synchronized cultured cells exhibit BMAL1-dependent oscillation in mitochondrial respiratory activity, which occurs irrespective of the cell type tested, the protocol of synchronization used and the carbon source in the medium. We demonstrate that the rhythmic respiratory activity is associated to oscillation in cellular NAD content and clock-genes-dependent expression of NAMPT and Sirtuins 1/3 and is traceable back to the reversible acetylation of a single subunit of the mitochondrial respiratory chain Complex I. Our findings provide evidence for a new interlocked transcriptional-enzymatic feedback loop controlling the molecular interplay between cellular bioenergetics and the molecular clockwork.


Subject(s)
Acetyltransferases/metabolism , CLOCK Proteins/metabolism , Electron Transport Complex I/metabolism , Mitochondria/metabolism , Oxidative Phosphorylation , Protein Processing, Post-Translational , Acetylation , HEK293 Cells , Hep G2 Cells , Humans , Periodicity , Time Factors
20.
Heart Fail Clin ; 13(4): 645-655, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28865774

ABSTRACT

The molecular clockwork drives rhythmic oscillations of signaling pathways managing intermediate metabolism; the circadian timing system synchronizes behavioral cycles and anabolic/catabolic processes with environmental cues, mainly represented by light/darkness alternation. Metabolic pathways, bile acid synthesis, and autophagic and immune/inflammatory processes are driven by the biological clock. Proper timing of hormone secretion, metabolism, bile acid turnover, autophagy, and inflammation with behavioral cycles is necessary to avoid dysmetabolism. Disruption of the biological clock and mistiming of body rhythmicity with respect to environmental cues provoke loss of internal synchronization and metabolic derangements, causing liver steatosis, obesity, metabolic syndrome, and diabetes mellitus.


Subject(s)
Cardiovascular Diseases , Circadian Clocks/genetics , Energy Metabolism/genetics , Receptors, Cytoplasmic and Nuclear/genetics , Animals , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Cardiovascular Diseases/metabolism , Humans , Receptors, Cytoplasmic and Nuclear/metabolism , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL