ABSTRACT
Most patients diagnosed with resected pancreatic adenocarcinoma (PDAC) survive less than 5 years, but a minor subset survives longer. Here, we dissect the role of the tumor microbiota and the immune system in influencing long-term survival. Using 16S rRNA gene sequencing, we analyzed the tumor microbiome composition in PDAC patients with short-term survival (STS) and long-term survival (LTS). We found higher alpha-diversity in the tumor microbiome of LTS patients and identified an intra-tumoral microbiome signature (Pseudoxanthomonas-Streptomyces-Saccharopolyspora-Bacillus clausii) highly predictive of long-term survivorship in both discovery and validation cohorts. Through human-into-mice fecal microbiota transplantation (FMT) experiments from STS, LTS, or control donors, we were able to differentially modulate the tumor microbiome and affect tumor growth as well as tumor immune infiltration. Our study demonstrates that PDAC microbiome composition, which cross-talks to the gut microbiome, influences the host immune response and natural history of the disease.
Subject(s)
Carcinoma, Pancreatic Ductal/microbiology , Carcinoma, Pancreatic Ductal/mortality , Gastrointestinal Microbiome , Pancreatic Neoplasms/microbiology , Pancreatic Neoplasms/mortality , Adult , Aged , Animals , Bacteria/classification , Cell Line, Tumor , Cohort Studies , Fecal Microbiota Transplantation , Feces/microbiology , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA , Survival RateABSTRACT
The immune system has a vital, albeit complex, relationship with the microbes residing within us, one that we are only beginning to understand. We asked investigators what they felt were the fundamental challenges we currently face in unraveling the impacts of microbes and their metabolites on host immunity and to discuss key opportunities toward achieving future insights and innovation.
Subject(s)
Immunity , Animals , Humans , Bacteria/immunology , Bacteria/metabolism , Host-Pathogen Interactions/immunology , Immune System/immunology , Immune System/metabolism , Microbiota/immunologyABSTRACT
Metastasis is the leading cause of cancer-associated death but has been difficult to study because it involves a series of rare, stochastic events. To capture these events, we developed a sensitive method to tag and track pancreatic epithelial cells in a mouse model of pancreatic cancer. Tagged cells invaded and entered the bloodstream unexpectedly early, before frank malignancy could be detected by rigorous histologic analysis; this behavior was widely associated with epithelial-to-mesenchymal transition (EMT). Circulating pancreatic cells maintainedĀ a mesenchymal phenotype, exhibited stem cell properties, and seeded the liver. EMT and invasiveness were most abundant at inflammatory foci, and induction of pancreatitis increased the number of circulating pancreatic cells. Conversely, treatment with the immunosuppressive agent dexamethasone abolished dissemination. These results provide insight into the earliest events of cellular invasion inĀ situ and suggest that inflammation enhances cancer progression in part by facilitating EMT and entry into the circulation.
Subject(s)
Carcinoma, Pancreatic Ductal/pathology , Epithelial-Mesenchymal Transition , Neoplasm Invasiveness , Pancreatic Neoplasms/pathology , Animals , Carcinoma, Pancreatic Ductal/immunology , Disease Models, Animal , Humans , Mice , Neoplastic Stem Cells/pathology , Pancreatic Neoplasms/immunology , Pancreatitis/pathologyABSTRACT
Adenosine deaminase acting on RNA 1 (ADAR1) is an RNA-binding protein that deaminates adenosine (A) to inosine (I). A-to-I editing alters post-transcriptional RNA processing, making ADAR1 a crucial regulator of gene expression. Consequently, Adar1 has been implicated in organogenesis. To determine the role of Adar1 in pancreatic development and homeostasis, we conditionally deleted Adar1 from the murine pancreas (Ptf1aCre/+; Adar1Fl/Fl). The resulting mice had stunted growth, likely due to malabsorption associated with exocrine pancreatic insufficiency. Analyses of pancreata revealed ductal cell expansion, heightened interferon-stimulated gene expression and an increased influx of immune cells. Concurrent deletion of Adar1 and Mavs, a signaling protein implicated in the innate immune pathway, rescued the degenerative phenotype and resulted in normal pancreatic development. Taken together, our work suggests that the primary function of Adar1 in the pancreas is to prevent aberrant activation of the Mavs-mediated innate immune pathway, thereby maintaining pancreatic homeostasis.
Subject(s)
Pancreas, Exocrine , Animals , Mice , Pancreas, Exocrine/metabolism , Interferons/genetics , Interferons/metabolism , Phenotype , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolismABSTRACT
BACKGROUND & AIMS: Genetic testing uptake for cancer susceptibility in family members of patients with cancer is suboptimal. Among relatives of patients with pancreatic ductal adenocarcinoma (PDAC), The GENetic Education, Risk Assessment, and TEsting (GENERATE) study evaluated 2 online genetic education/testing delivery models and their impact on patient-reported psychological outcomes. METHODS: Eligible participants had ≥1 first-degree relative with PDAC, or ≥1 first-/second-degree relative with PDAC with a known pathogenic germline variant in 1 of 13 PDAC predisposition genes. Participants were randomized by family, between May 8, 2019, and June 1, 2021. Arm 1 participants underwent a remote interactive telemedicine session and online genetic education. Arm 2 participants were offered online genetic education only. All participants were offered germline testing. The primary outcome was genetic testing uptake, compared by permutation tests and mixed-effects logistic regression models. We hypothesized that Arm 1 participants would have a higher genetic testing uptake than Arm 2. Validated surveys were administered to assess patient-reported anxiety, depression, and cancer worry at baseline and 3 months postintervention. RESULTS: A total of 424 families were randomized, including 601 participants (nĀ = 296 Arm 1; nĀ = 305 Arm 2), 90% of whom completed genetic testing (Arm 1 [87%]; Arm 2 [93%], PĀ = .014). Arm 1 participants were significantly less likely to complete genetic testing compared with Arm 2 participants (adjusted ratio [Arm1/Arm2] 0.90, 95% confidence interval 0.78-0.98). Among participants who completed patient-reported psychological outcomes questionnaires (Arm 1 [nĀ = 194]; Arm 2 [nĀ = 206]), the intervention did not affect mean anxiety, depression, or cancer worry scores. CONCLUSIONS: Remote genetic education and testing can be a successful and complementary option for delivering genetics care. (Clinicaltrials.gov, number NCT03762590).
Subject(s)
Carcinoma, Pancreatic Ductal , Genetic Predisposition to Disease , Genetic Testing , Pancreatic Neoplasms , Patient Reported Outcome Measures , Telemedicine , Humans , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/psychology , Pancreatic Neoplasms/diagnosis , Male , Female , Middle Aged , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/psychology , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/therapy , Genetic Predisposition to Disease/psychology , Risk Assessment , Aged , Anxiety/psychology , Anxiety/diagnosis , Anxiety/etiology , Adult , Depression/diagnosis , Depression/genetics , Depression/psychology , Genetic Counseling/psychology , Germ-Line Mutation , Family/psychologyABSTRACT
Rationale: Early pathogenesis of lung adenocarcinoma (LUAD) remains largely unknown. We found that, relative to wild-type littermates, the innate immunomodulator Lcn2 (lipocalin-2) was increased in normal airways from mice with knockout of the airway lineage gene Gprc5a (Gprc5a-/-) and that are prone to developing inflammation and LUAD. Yet, the role of LCN2 in lung inflammation and LUAD is poorly understood.Objectives: Delineate the role of Lcn2 induction in LUAD pathogenesis.Methods: Normal airway brushings, uninvolved lung tissues, and tumors from Gprc5a-/- mice before and after tobacco carcinogen exposure were analyzed by RNA sequencing. LCN2 mRNA was analyzed in public and in-house data sets of LUAD, lung squamous cancer (LUSC), chronic obstructive pulmonary disease (COPD), and LUAD/LUSC with COPD. LCN2 protein was immunohistochemically analyzed in a tissue microarray of 510 tumors. Temporal lung tumor development, gene expression programs, and host immune responses were compared between Gprc5a-/- and Gprc5a-/-/Lcn2-/- littermates.Measurements and Main Results:Lcn2 was progressively elevated during LUAD development and positively correlated with proinflammatory cytokines and inflammation gene sets. LCN2 was distinctively elevated in human LUADs, but not in LUSCs, relative to normal lungs and was associated with COPD among smokers and patients with LUAD. Relative to Gprc5a-/- mice, Gprc5a-/-/Lcn2-/- littermates exhibited significantly increased lung tumor development concomitant with reduced T-cell abundance (CD4+) and richness, attenuated antitumor immune gene programs, and increased immune cell expression of protumor inflammatory cytokines.Conclusions: Augmented LCN2 expression is a molecular feature of COPD-associated LUAD and counteracts LUAD development in vivo by maintaining antitumor immunity.
Subject(s)
Adenocarcinoma of Lung/immunology , Antineoplastic Agents/immunology , Lipocalin-2/genetics , Lipocalin-2/immunology , Lung Neoplasms/immunology , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/physiopathology , Animals , Biomarkers/blood , Female , Gene Expression Regulation , Humans , Lipocalin-2/blood , Male , Mice , RNA, MessengerABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer-related death in the United States. Despite the high prevalence of Kras mutations in pancreatic cancer patients, murine models expressing the oncogenic mutant Kras (Krasmut) in mature pancreatic cells develop PDAC at a low frequency. Independent of cell of origin, a second genetic hit (loss of tumor suppressor TP53 or PTEN) is important for development of PDAC in mice. We hypothesized ectopic expression and elevated levels of oncogenic mutant Kras would promote PanIN arising in pancreatic ducts. To test our hypothesis, the significance of elevating levels of K-Ras and Ras activity has been explored by expression of a CAG driven LGSL-KrasG12V allele (cKras) in pancreatic ducts, which promotes ectopic Kras expression. We predicted expression of cKras in pancreatic ducts would generate neoplasia and PDAC. To test our hypothesis, we employed tamoxifen dependent CreERT2 mediated recombination. Hnf1b:CreERT2;KrasG12V (cKrasHnf1b/+) mice received 1 (Low), 5 (Mod) or 10 (High) mg per 20 g body weight to recombine cKras in low (cKrasLow), moderate (cKrasMod), and high (cKrasHigh) percentages of pancreatic ducts. Our histologic analysis revealed poorly differentiated aggressive tumors in cKrasHigh mice. cKrasMod mice had grades of Pancreatic Intraepithelial Neoplasia (PanIN), recapitulating early and advanced PanIN observed in human PDAC. Proteomics analysis revealed significant differences in PTEN/AKT and MAPK pathways between wild type, cKrasLow, cKrasMod, and cKrasHigh mice. In conclusion, in this study, we provide evidence that ectopic expression of oncogenic mutant K-Ras in pancreatic ducts generates early and late PanIN as well as PDAC. This Ras rheostat model provides evidenceĀ that AKT signaling is an important early driver of invasive ductal derived PDAC.
Subject(s)
Carcinoma, Pancreatic Ductal , Mutation Rate , Pancreatic Neoplasms , Proto-Oncogene Proteins p21(ras) , Animals , Carcinoma, Pancreatic Ductal/genetics , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/pathology , Disease Models, Animal , Gene Expression Regulation, Neoplastic , Mice , Mice, Transgenic , Pancreatic Ducts/cytology , Pancreatic Ducts/metabolism , Pancreatic Ducts/pathology , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Precancerous Conditions/genetics , Precancerous Conditions/metabolism , Precancerous Conditions/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Proto-Oncogene Proteins p21(ras)/metabolism , Recombination, GeneticABSTRACT
Recent pieces of evidence have emerged on the relevance of microorganisms in modulating responses to anticancer treatments and reshaping the tumor-immune microenvironment. On the one hand, many studies have addressed the role of the gut microbiota, providing interesting correlative findings with respect to etiopathogenesis and treatment responses. On the other hand, intra-tumoral bacteria are being recognized as intrinsic and essential components of the cancer microenvironment, able to promote a plethora of tumor-related aspects from cancer growth to resistance to chemotherapy. These elements will be probably more and more valuable in the coming years in early diagnosis and risk stratification. Furthermore, microbial-targeted intervention strategies may be used as adjuvants to current therapies to improve therapeutic responses and overall survival. This review focuses on new insights and therapeutic approaches that are dawning against pancreatic cancer: a neoplasm that arises in a central metabolic "hub" interfaced between the gut and the host.
Subject(s)
Microbiota , Pancreatic Neoplasms/microbiology , Diet , Gastrointestinal Microbiome , Homeostasis , Humans , Probiotics/therapeutic useABSTRACT
The lack of tools for early detection of pancreatic ductal adenocarcinoma (PDAC) is directly correlated with the abysmal survival rates in patients. In addition to several potential detection tools under active investigation, we tested the gut microbiome and its metabolic complement as one of the earliest detection tools that could be useful in patients at high risk for PDAC. We used a combination of 16s rRNA pyrosequencing and whole-genome sequencing of gut fecal microbiota in a genetically engineered PDAC murine model (KRASG12DTP53R172HPdxCre or KPC). Metabolic reconstruction of microbiome was done using the HUMAnN2 pipeline. Serum polyamine levels were measured from murine and patient samples using chromogenic assay. Our results showed a Proteobacterial and Firmicutes dominance in gut microbiota in early stages of PDAC development. Upon in silico reconstruction of active metabolic pathways within the altered microbial flora, polyamine and nucleotide biosynthetic pathways were significantly elevated. These metabolic products are known to be actively assimilated by the host and eventually utilized by rapidly dividing cells for proliferation validating their importance in the context of tumorigenesis. In KPC mice, as well as PDAC patients, we show significantly elevated serum polyamine concentrations. Therefore, at the early stages of tumorigenesis, there is a strong correlation between microbial changes and release of metabolites that foster host tumorigenesis, thereby fulfilling the 'vicious cycle hypothesis' of the role of microbiome in health and disease states. Our results provide a potential, precise, noninvasive tool for early detection of PDAC, which may result in improved outcomes.
Subject(s)
Carcinoma, Pancreatic Ductal/diagnosis , Dysbiosis/complications , Early Detection of Cancer , Gastrointestinal Microbiome , Pancreatic Neoplasms/diagnosis , Polyamines/metabolism , Animals , Carcinogenesis , Carcinoma, Pancreatic Ductal/metabolism , Carcinoma, Pancreatic Ductal/microbiology , Carcinoma, Pancreatic Ductal/pathology , Dysbiosis/microbiology , Feces/microbiology , Female , Humans , Male , Mice , Mice, Transgenic , Mutation , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/microbiology , Pancreatic Neoplasms/pathology , Proto-Oncogene Proteins p21(ras)/genetics , Tumor Suppressor Protein p53/geneticsABSTRACT
BACKGROUND: The Hedgehog (Hh) signalling pathway is overexpressed in pancreatic ductal adenocarcinoma (PDA). Preclinical studies have shown that Hh inhibitors reduce pancreatic cancer stem cells (pCSC), stroma and Hh signalling. METHODS: Patients with previously untreated metastatic PDA were treated with gemcitabine and nab-paclitaxel. Vismodegib was added starting on the second cycle. The primary endpoint was progression-free survival (PFS) as compared with historical controls. Tumour biopsies to assess pCSC, stroma and Hh signalling were obtained before treatment and after cycle 1 (gemcitabine and nab-paclitaxel) or after cycle 2 (gemcitabine and nab-paclitaxel plus vismodegib). RESULTS: Seventy-one patients were enrolled. Median PFS and overall survival (OS) were 5.42 months (95% confidence interval [CI]: 4.37-6.97) and 9.79 months (95% CI: 7.85-10.97), respectively. Of the 67 patients evaluable for response, 27 (40%) had a response: 26 (38.8%) partial responses and 1 complete response. In the tumour samples, there were no significant changes in ALDH + pCSC following treatment. CONCLUSIONS: Adding vismodegib to chemotherapy did not improve efficacy as compared with historical rates observed with chemotherapy alone in patients with newly diagnosed metastatic pancreatic cancer. This study does not support the further evaluation of Hh inhibitors in this patient population. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT01088815.
Subject(s)
Anilides/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Carcinoma, Pancreatic Ductal/drug therapy , Pancreatic Neoplasms/drug therapy , Pyridines/administration & dosage , Aged , Albumins/administration & dosage , Albumins/adverse effects , Anilides/adverse effects , Carcinoma, Pancreatic Ductal/mortality , Carcinoma, Pancreatic Ductal/secondary , Deoxycytidine/administration & dosage , Deoxycytidine/adverse effects , Deoxycytidine/analogs & derivatives , Female , Humans , Male , Middle Aged , Paclitaxel/administration & dosage , Paclitaxel/adverse effects , Pancreatic Neoplasms/mortality , Progression-Free Survival , Pyridines/adverse effects , Treatment Outcome , Gemcitabine , Pancreatic NeoplasmsABSTRACT
While pancreatic cancer (PC) survival rates have recently shown modest improvement, the disease remains largely incurable. Early detection of pancreatic cancer may result in improved outcomes and therefore, methods for early detection of cancer, even premalignant lesions, may provide more favorable outcomes. Pancreatic intraepithelial neoplasias (PanINs) have been identified as premalignant precursor lesions to pancreatic cancer. However, conventional imaging methods used for screening high-risk populations do not have the sensitivity to detect PanINs. Here, we have employed hyperpolarized metabolic imaging in vivo and nuclear magnetic resonance (1H-NMR) metabolomics ex vivo to identify and understand metabolic changes, towards enabling detection of early PanINs and progression to advanced PanINs lesions that precede pancreatic cancer formation. Progression of disease from tissue containing predominantly low-grade PanINs to tissue with high-grade PanINs showed a decreasing alanine/lactate ratio from high-resolution NMR metabolomics ex vivo. Hyperpolarized magnetic resonance spectroscopy (HP-MRS) allows over 10,000-fold sensitivity enhancement relative to conventional magnetic resonance. Real-time HP-MRS was employed to measure non-invasively changes of alanine and lactate metabolites with disease progression and in control mice in vivo, following injection of hyperpolarized [1-13C] pyruvate. The alanine-to-lactate signal intensity ratio was found to decrease as the disease progressed from low-grade PanINs to high-grade PanINs. The biochemical changes of alanine transaminase (ALT) and lactate dehydrogenase (LDH) enzyme activity were assessed. These results demonstrate that there are significant alterations of ALT and LDH activities during the transformation from early to advanced PanINs lesions. Furthermore, we demonstrate that real-time conversion kinetic rate constants (kPA and kPL) can be used as metabolic imaging biomarkers of pancreatic premalignant lesions. Findings from this emerging HP-MRS technique can be translated to the clinic for detection of pancreatic premalignant lesion in high-risk populations.
Subject(s)
Carcinoma in Situ/diagnostic imaging , Magnetic Resonance Spectroscopy/methods , Pancreatic Neoplasms/diagnostic imaging , Alanine Transaminase/blood , Animals , Carbon Isotopes , Carcinoma in Situ/blood , Carcinoma in Situ/genetics , L-Lactate Dehydrogenase/metabolism , Magnetic Resonance Spectroscopy/standards , Mice , Mice, Inbred C57BL , Pancreatic Neoplasms/blood , Pancreatic Neoplasms/genetics , Sensitivity and SpecificityABSTRACT
Pancreatic ductal adenocarcinoma (PDAC) is a deadly cancer that progresses without any symptom, and oftentimes, it is detected at an advanced stage. The lack of prior symptoms and effective treatments have created a knowledge gap in the management of this lethal disease. This issue can be addressed by developing novel noninvasive imaging-based biomarkers in PDAC. We explored in vivo hyperpolarized (HP) 13C MRS of pyruvate to lactate conversion and ex vivo 1H NMR spectroscopy in a panel of well-annotated patient-derived PDAC xenograft (PDXs) model and investigated the correlation between aberrant glycolytic metabolism and aggressiveness of the tumor. Real-time metabolic imaging data demonstrate the immediate intracellular conversion of HP 13C pyruvate to lactate after intravenous injection interrogating upregulated lactate dehydrogenase (LDH) activity in aggressive PDXs. Total ex vivo lactate measurement by 1H NMR spectroscopy showed a direct correlation with in vivo dynamic pyruvate-to-lactate conversion and demonstrated the potential of dynamic metabolic flux as a biomarker of total lactate concentration and aggressiveness of the tumor. Furthermore, the metabolite concentrations were very distinct among all four tumor types analyzed in this study. Overexpression of LDH-A and hypoxia-inducible factor (HIF-1α) plays a significant role in the conversion kinetics of HP pyruvate-to-lactate in tumors. Collectively, these data identified aberrant metabolic characteristics of pancreatic cancer PDXs and could potentially delineate metabolic targets for therapeutic intervention. Metabolic imaging with HP pyruvate and NMR metabolomics may enable identification and classification of aggressive subtypes of patient-derived xenografts. Translation of this real-time metabolic technique to the clinic may have the potential to improve the management of patients at high risk of developing pancreatic diseases.
Subject(s)
Biomarkers, Tumor/metabolism , Magnetic Resonance Imaging/methods , Pancreatic Neoplasms/diagnosis , Animals , Carcinoma, Pancreatic Ductal , Glycolysis , Heterografts , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , L-Lactate Dehydrogenase/metabolism , Lactic Acid/metabolism , Magnetic Resonance Spectroscopy/methods , Pancreatic Neoplasms/metabolism , Pyruvic Acid/metabolismABSTRACT
BACKGROUND & AIMS: Little is known about how the immune system affects stem cell features of pancreatic cancer cells. Immune cells that produce interleukin 17A (IL17A) in the chronically inflamed pancreas (chronic pancreatitis) contribute to pancreatic interepithelial neoplasia (PanIN) initiation and progression. We investigated the effects that IL17A signaling exerts on pancreatic cancer progenitor cells and the clinical relevance of this phenomena. METHODS: We performed studies with Mist1Cre;LSLKras;Rosa26mTmG (KCiMist;G) and Kras(G12D);Trp53(R172H);Pdx1-Cre (KPC) mice (which upon tamoxifen induction spontaneously develop PanINs) and control littermates. Some mice were injected with neutralizing antibodies against IL17A or control antibody. Pancreata were collected, PanIN epithelial cells were isolated by flow cytometry based on lineage tracing, and gene expression profiles were compared. We collected cells from pancreatic tumors of KPC mice, incubated them with IL17 or control media, measured expression of genes regulated by IL17 signaling, injected the cancer cells into immune competent mice, and measured tumor growth. IL17A was overexpressed in pancreata of KCiMist mice from an adenoviral vector. Pancreata were collected from all mice and analyzed by histology and immunohistochemistry. Levels of DCLK1 and other proteins were knocked down in KPC pancreatic cancer cells using small interfering or short hairpin RNAs; cells were analyzed by immunoblotting. We obtained 65 pancreatic tumor specimens from patients, analyzed protein levels by immunohistochemistry, and compared results with patient survival times. We also analyzed gene expression levels and patient outcome using The Cancer Genome Atlas database. RESULTS: PanIN cells from KCiMist;G mice had a gene expression pattern associated with embryonic stem cells. Mice given injections of IL17-neutralizing antibodies, or with immune cells that did not secrete IL17, lost this expression pattern and had significantly decreased expression of DCLK1 and POU2F3, which regulate tuft cell development. KCiMist mice that overexpressed IL17 formed more PanINs, with more DCLK1-positive cells, than control mice. Pancreatic tumor cells from KPC mice and human Capan-2 cells exposed to IL17A had increased activation of NF-κB and mitogen-activated protein kinase signaling and increased expression of DCLK1 and ALDH1A1 (a marker of embryonic stem cells) compared with cells in control media. These cells also formed tumors faster that cells not exposed to IL17 when they were injected into immunocompetent mice. KPC cells with knockdown of DCLK1 expressed lower levels of ALDH1A1 after incubation with IL17 than cells without knockdown. Expression of the IL17 receptor C was higher in DCLK1-positive PanIN cells from mice compared with DCLK1-negative PanIN cells. In human pancreatic tumor tissues, high levels of DCLK1 associated with a shorter median survival time of patients (17.7 months, compared with 26.6 months of patients whose tumors had low levels of DCLK1). Tumor levels of POU2F3 and LAMC2 were also associated with patient survival time. CONCLUSIONS: In studies of mouse and human pancreatic tumors and precursors, we found that immune cell-derived IL17 regulated development of tuft cells and stem cell features of pancreatic cancer cells via increased expression of DCLK1, POU2F3, ALDH1A1, and IL17RC. Strategies to disrupt this pathway might be developed to prevent pancreatic tumor growth and progression.
Subject(s)
Adenocarcinoma in Situ/immunology , Carcinoma, Pancreatic Ductal/immunology , Interleukin-17/immunology , Neoplastic Stem Cells/immunology , Pancreatic Neoplasms/immunology , Adenocarcinoma in Situ/genetics , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase 1 Family , Animals , Antibodies, Neutralizing/pharmacology , Carcinoma, Pancreatic Ductal/genetics , Databases, Factual , Disease Progression , Doublecortin-Like Kinases , Flow Cytometry , Gene Expression Regulation, Neoplastic , Humans , Interleukin-17/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/genetics , Mice , Neoplastic Stem Cells/drug effects , Octamer Transcription Factors/genetics , Pancreatic Neoplasms/genetics , Pancreatitis, Chronic/genetics , Pancreatitis, Chronic/immunology , Protein Serine-Threonine Kinases/genetics , Receptors, Interleukin/genetics , Retinal DehydrogenaseSubject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Carcinoma, Pancreatic Ductal/diagnosis , Carcinoma, Pancreatic Ductal/genetics , Germ Cells/pathology , Germ-Line Mutation , Humans , Pancreatic Neoplasms/diagnosis , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/pathology , Pancreatic NeoplasmsABSTRACT
The ability of some tumors to exclude effector T cells represents a major challenge to immunotherapy. T cell exclusion is particularly evident in pancreatic ductal adenocarcinoma (PDAC), a disease where blockade of the immune checkpoint molecule CTLA-4 has not produced significant clinical activity. In PDAC, effector T cells are often scarce within tumor tissue and confined to peritumoral lymph nodes and lymphoid aggregates. We hypothesized that CTLA-4 blockade, despite a lack of clinical efficacy seen thus far in PDAC, might still alter T cell immunobiology, which would have therapeutic implications. Using clinically relevant genetic models of PDAC, we found that regulatory T cells (Tregs), which constitutively express CTLA-4, accumulate early during tumor development but are largely confined to peritumoral lymph nodes during disease progression. Tregs were observed to regulate CD4+, but not CD8+, T cell infiltration into tumors through a CTLA-4/CD80 dependent mechanism. Disrupting CTLA-4 interaction with CD80 was sufficient to induce CD4 T cell infiltration into tumors. These data have important implications for T cell immunotherapy in PDAC and demonstrate a novel role for CTLA-4/CD80 interactions in regulating T cell exclusion. In addition, our findings suggest distinct mechanisms govern CD4+ and CD8+ T cell infiltration in PDAC.
Subject(s)
B7-1 Antigen/immunology , CTLA-4 Antigen/immunology , Pancreatic Neoplasms/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Antibodies/immunology , Antibodies/pharmacology , CTLA-4 Antigen/antagonists & inhibitors , Humans , Interleukin-2 Receptor alpha Subunit/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Mice , Pancreatic Neoplasms/pathology , Pancreatic Neoplasms/therapy , Signal Transduction , Pancreatic NeoplasmsABSTRACT
Environmental factors clearly affect colorectal cancer (CRC) incidence, but the mechanisms through which these factors function are unknown. One prime candidate is an altered colonic microbiota. Here we show that the mucosal microbiota organization is a critical factor associated with a subset of CRC. We identified invasive polymicrobial bacterial biofilms (bacterial aggregates), structures previously associated with nonmalignant intestinal pathology, nearly universally (89%) on right-sided tumors (13 of 15 CRCs, 4 of 4 adenomas) but on only 12% of left-sided tumors (2 of 15 CRCs, 0 of 2 adenomas). Surprisingly, patients with biofilm-positive tumors, whether cancers or adenomas, all had biofilms on their tumor-free mucosa far distant from their tumors. Bacterial biofilms were associated with diminished colonic epithelial cell E-cadherin and enhanced epithelial cell IL-6 and Stat3 activation, as well as increased crypt epithelial cell proliferation in normal colon mucosa. High-throughput sequencing revealed no consistent bacterial genus associated with tumors, regardless of biofilm status. However, principal coordinates analysis revealed that biofilm communities on paired normal mucosa, distant from the tumor itself, cluster with tumor microbiomes as opposed to biofilm-negative normal mucosa bacterial communities also from the tumor host. Colon mucosal biofilm detection may predict increased risk for development of sporadic CRC.
Subject(s)
Colorectal Neoplasms/microbiology , Microbiota , Bacteria/classification , Bacteria/isolation & purification , Biofilms , Colonoscopy , HumansABSTRACT
T-helper-type 17 cytokines have been implicated in epithelial cancer progression at mucosal sites. In this issue of the European Journal of Immunology, Nardinocchi et al. [Eur. J. Immunol. 2015. 45: 922-931] show that the Th17 cytokines IL-17 and IL-22 can both signal to nonmelanoma skin cancer cells, inducing both cellular proliferation and enhanced migration of human basal cell carcinoma and squamous cell carcinoma cell lines in vitro. These cytokines were also shown to exacerbate tumor growth in mice injected with the squamous cell carcinoma line, CAL27. Thus, IL-17 and IL-22 may be key factors in skin cancer progression and may provide novel prognostic markers in nonmelanoma skin cancer.