Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Biotechnol Lett ; 45(10): 1365-1379, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37606751

ABSTRACT

OBJECTIVE: Thermophilin 110, a bacteriocin produced by Streptococcus thermophilus B59671, inhibited planktonic growth and biofilm formation of Cutibacterium acnes, a commensal skin bacterium associated with the inflammatory disease, acne vulgaris, and more invasive deep tissue infections. RESULTS: Thermophilin 110 prevented planktonic growth of C. acnes at a concentration ≥ 160 AU mL-1; while concentrations ≥ 640 AU mL-1 resulted in a > 5 log reduction in viable planktonic cell counts and inhibited biofilm formation. Arabinoxylan (AX) and sodium alginate (SA) hydrogels were shown to encapsulate thermophilin 110, but as currently formulated, the encapsulated bacteriocin was unable to diffuse out of the gel and inhibit the growth of C. acnes. Hydrogels were also used to encapsulate S. thermophilus B59671, and inhibition zones were observed against C. acnes around intact SA gels, or S. thermophilus colonies that were released from AX gels. CONCLUSIONS: Thermophilin 110 has potential as an antimicrobial for preventing C. acnes infections and further optimization of SA and AX gel formulations could allow them to serve as delivery systems for bacteriocins or bacteriocin-producing probiotics.


Subject(s)
Bacteriocins , Skin , Alginates , Bacteriocins/pharmacology , Cell Aggregation , Hydrogels
2.
J Dairy Sci ; 106(7): 4502-4515, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37164857

ABSTRACT

Consumers' growing interest in fermented dairy foods necessitates research on a wide array of lactic acid bacterial strains to be explored and used. This study aimed to investigate the differences in the proteolytic capacity of Lactobacillus helveticus strains B1929 and ATCC 15009 on the fermentation of commercial ultra-pasteurized (UHT) skim milk and reconstituted nonfat dried milk powder (at a comparable protein concentration, 4%). The antihypertensive properties of the fermented milk, measured by angiotensin-I-converting enzyme inhibitory (ACE-I) activity, were compared. The B1929 strain lowered the pH of the milk to 4.13 ± 0.09 at 37°C after 24 h, whereas ATCC 15009 needed 48 h to drop the pH to 4.70 ± 0.18 at 37°C. Two soluble protein fractions, one (CFS1) obtained after fermentation (acidic conditions) and the other (CFS2) after the neutralization (pH 6.70) of the pellet from CFS1 separation, were analyzed for d-/l-lactic acid production, protein concentration, the degree of protein hydrolysis, and ACE-I activity. The CFS1 fractions, dominated by whey proteins, demonstrated a greater degree of protein hydrolysis (7.9%) than CFS2. On the other hand, CFS2, mainly casein proteins, showed a higher level of ACE-I activity (33.8%) than CFS1. Significant differences were also found in the d- and l-lactic acid produced by the UHT milk between the 2 strains. These results attest that milk casein proteins possessed more detectable ACE-I activity than whey fractions, even without a measurable degree of hydrolysis. Findings from this study suggest that careful consideration must be given when selecting the bacterial strain and milk substrate for fermentation.


Subject(s)
Lactobacillus helveticus , Milk , Animals , Milk/chemistry , Lactobacillus helveticus/chemistry , Hydrolysis , Powders/analysis , Caseins/analysis , Temperature , Angiotensin-Converting Enzyme Inhibitors/analysis , Milk Proteins/analysis , Fermentation , Whey Proteins/analysis , Angiotensins/analysis , Angiotensins/metabolism
3.
Biotechnol Bioeng ; 114(4): 852-861, 2017 04.
Article in English | MEDLINE | ID: mdl-27800599

ABSTRACT

We previously demonstrated anaerobic conversion of the greenhouse gas methane into acetate using an engineered archaeon that produces methyl-coenzyme M reductase (Mcr) from unculturable microorganisms from a microbial mat in the Black Sea to create the first culturable prokaryote that reverses methanogenesis and grows anaerobically on methane. In this work, we further engineered the same host with the goal of converting methane into butanol. Instead, we discovered a process for converting methane to a secreted valuable product, L-lactate, with sufficient optical purity for synthesizing the biodegradable plastic poly-lactic acid. We determined that the 3-hydroxybutyryl-CoA dehydrogenase (Hbd) from Clostridium acetobutylicum is responsible for lactate production. This work demonstrates the first metabolic engineering of a methanogen with a synthetic pathway; in effect, we produce a novel product (lactate) from a novel substrate (methane) by cloning the three genes for Mcr and one for Hbd. We further demonstrate the utility of anaerobic methane conversion with an increased lactate yield compared to aerobic methane conversion to lactate. Biotechnol. Bioeng. 2017;114: 852-861. © 2016 Wiley Periodicals, Inc.


Subject(s)
Lactic Acid/metabolism , Metabolic Engineering/methods , Methane/metabolism , Methanosarcina/metabolism , Butanols/metabolism , Lactic Acid/analysis , Methanosarcina/genetics , Stereoisomerism
4.
Microb Cell Fact ; 15: 11, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26767617

ABSTRACT

BACKGROUND: Energy from remote methane reserves is transformative; however, unintended release of this potent greenhouse gas makes it imperative to convert methane efficiently into more readily transported biofuels. No pure microbial culture that grows on methane anaerobically has been isolated, despite that methane capture through anaerobic processes is more efficient than aerobic ones. RESULTS: Here we engineered the archaeal methanogen Methanosarcina acetivorans to grow anaerobically on methane as a pure culture and to convert methane into the biofuel precursor acetate. To capture methane, we cloned the enzyme methyl-coenzyme M reductase (Mcr) from an unculturable organism, anaerobic methanotrophic archaeal population 1 (ANME-1) from a Black Sea mat, into M. acetivorans to effectively run methanogenesis in reverse. Starting with low-density inocula, M. acetivorans cells producing ANME-1 Mcr consumed up to 9 ± 1 % of methane (corresponding to 109 ± 12 µmol of methane) after 6 weeks of anaerobic growth on methane and utilized 10 mM FeCl3 as an electron acceptor. Accordingly, increases in cell density and total protein were observed as cells grew on methane in a biofilm on solid FeCl3. When incubated on methane for 5 days, high-densities of ANME-1 Mcr-producing M. acetivorans cells consumed 15 ± 2 % methane (corresponding to 143 ± 16 µmol of methane), and produced 10.3 ± 0.8 mM acetate (corresponding to 52 ± 4 µmol of acetate). We further confirmed the growth on methane and acetate production using (13)C isotopic labeling of methane and bicarbonate coupled with nuclear magnetic resonance and gas chromatography/mass spectroscopy, as well as RNA sequencing. CONCLUSIONS: We anticipate that our metabolically-engineered strain will provide insights into how methane is cycled in the environment by Archaea as well as will possibly be utilized to convert remote sources of methane into more easily transported biofuels via acetate.


Subject(s)
Biofuels , Methane/metabolism , Methanosarcina/metabolism , Methanosarcina/enzymology , Oxidoreductases/metabolism
5.
Nucleic Acids Res ; 42(10): 6448-62, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24748661

ABSTRACT

For toxin/antitoxin (TA) systems, no toxin has been identified that functions by cleaving DNA. Here, we demonstrate that RalR and RalA of the cryptic prophage rac form a type I TA pair in which the antitoxin RNA is a trans-encoded small RNA with 16 nucleotides of complementarity to the toxin mRNA. We suggest the newly discovered antitoxin gene be named ralA for RalR antitoxin. Toxin RalR functions as a non-specific endonuclease that cleaves methylated and unmethylated DNA. The RNA chaperone Hfq is required for RalA antitoxin activity and appears to stabilize RalA. Also, RalR/RalA is beneficial to the Escherichia coli host for responding to the antibiotic fosfomycin. Hence, our results indicate that cryptic prophage genes can be functionally divergent from their active phage counterparts after integration into the host genome.


Subject(s)
Bacterial Toxins/metabolism , Endodeoxyribonucleases/metabolism , Escherichia coli Proteins/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , RNA, Small Untranslated/metabolism , Transcription Factors/metabolism , Anti-Bacterial Agents/pharmacology , Bacterial Toxins/biosynthesis , Bacterial Toxins/genetics , Base Pairing , Drug Resistance, Bacterial , Endodeoxyribonucleases/biosynthesis , Endodeoxyribonucleases/genetics , Escherichia coli/drug effects , Escherichia coli Proteins/biosynthesis , Escherichia coli Proteins/genetics , Escherichia coli Proteins/physiology , Fosfomycin/pharmacology , Host Factor 1 Protein/physiology , Protein Biosynthesis , RNA, Messenger/chemistry , RNA, Small Untranslated/chemistry , RNA, Small Untranslated/genetics , Transcription Factors/biosynthesis , Transcription Factors/genetics
6.
Environ Microbiol ; 16(6): 1741-54, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24373067

ABSTRACT

Toxin/antitoxin (TA) systems perhaps enable cells to reduce their metabolism to weather environmental challenges although there is little evidence to support this hypothesis. Escherichia coli GhoT/GhoS is a TA system in which toxin GhoT expression is reduced by cleavage of its messenger RNA (mRNA) by antitoxin GhoS, and TA system MqsR/MqsA controls GhoT/GhoS through differential mRNA decay. However, the physiological role of GhoT has not been determined. We show here through transmission electron microscopy, confocal microscopy and fluorescent stains that GhoT reduces metabolism by damaging the membrane and that toxin MqsR (a 5'-GCU-specific endoribonuclease) causes membrane damage in a GhoT-dependent manner. This membrane damage results in reduced cellular levels of ATP and the disruption of proton motive force (PMF). Normally, GhoT is localized to the pole and does not cause cell lysis under physiological conditions. Introduction of an F38R substitution results in loss of GhoT toxicity, ghost cell production and membrane damage while retaining the pole localization. Also, deletion of ghoST or ghoT results in significantly greater initial growth in the presence of antimicrobials. Collectively, these results demonstrate that GhoT reduces metabolism by reducing ATP and PMF and that this reduction in metabolism is important for growth with various antimicrobials.


Subject(s)
Adenosine Triphosphate/metabolism , Cell Membrane/metabolism , Escherichia coli Proteins/physiology , Escherichia coli/growth & development , Anti-Bacterial Agents/pharmacology , Biphenyl Compounds/pharmacology , Carbenicillin/pharmacology , Cefoxitin/pharmacology , Chloroquinolinols/pharmacology , Escherichia coli/drug effects , Microbial Sensitivity Tests , Protein Transport , Proton-Motive Force , RNA, Messenger/metabolism
7.
Front Microbiol ; 14: 1304136, 2023.
Article in English | MEDLINE | ID: mdl-38293552

ABSTRACT

Bacteriocin production in Streptococcus thermophilus is regulated by cell density-dependent signaling molecules, including BlpC, which regulates transcription from within the bacteriocin-like peptide (blp) gene cluster. In some strains, such as S. thermophilus ST106, this signaling system does not function properly, and BlpC must be supplied exogenously to induce bacteriocin production. In other strains, such as S. thermophilus B59671, bacteriocin (thermophilin 110 in strain B59671) production occurs naturally. Here, transcriptomic analyses were used to compare global gene expression within ST106 in the presence or absence of synthetic BlpC and within B59671 to determine if BlpC regulates the expression of genes outside the blp cluster. Real-time semi-quantitative PCR was used to find genes differentially expressed in the absence of chromosomal blpC in the B59671 background. Growth curve experiments and bacteriocin activity assays were performed with knockout mutants and BlpC supplementation to identify effects on growth and bacteriocin production. In addition to the genes involved in bacteriocin production, BlpC affected the expression of several transcription regulators outside the blp gene cluster, including a putative YtrA-subfamily transcriptional repressor. In strain B59671, BlpC not only regulated the expression of thermophilin 110 but also suppressed the production of another bacteriocin, thermophilin 13, and induced the same YtrA-subfamily transcriptional repressor identified in ST106. Additionally, it was shown that the broad-spectrum antimicrobial activity associated with strain B59671 was due to the production of thermophilin 110, while thermophilin 13 appears to be a redundant system for suppressing intraspecies growth. BlpC production or induction negatively affected the growth of strains B59671 and ST106, revealing selective pressure to not produce bacteriocins that may explain bacteriocin production phenotype differences between S. thermophilus strains. This study identifies additional genes regulated by BlpC and assists in defining conditions to optimize the production of bacteriocins for applications in agriculture or human and animal health.

8.
Fed Pract ; 40(Suppl 3): S24-S34, 2023 Aug.
Article in English | MEDLINE | ID: mdl-38021095

ABSTRACT

Background: Erlotinib and gefitinib are epidermal growth factor receptor-tyrosine kinase inhibitors approved for non-small cell lung cancer treatment by the US Food and Drug Administration. Drug-drug interactions (DDIs) with these agents are vague and poorly understood. Because DDIs can have an effect on clinical outcomes, we aimed to identify drugs that interact with erlotinib or gefitinib and describe their clinical manifestations. Methods: A retrospective analysis was performed on the health records of patients in the US Department of Defense Cancer Registry (retrieved September 2021), Comprehensive Ambulatory/Professional Encounter Records, and Pharmacy Data Transaction Service database (both retrieved May 2022). Patients' medical history, diagnoses, and demographics were extracted and analyzed for differences in adverse effects when these agents were used alone vs concomitantly with other prescription drugs. Patients' diagnoses and prescription drug use were extracted to compare completed vs discontinued treatment groups, identify medications commonly co-administered with erlotinib or gefitinib, and evaluate DDIs with antidepressants. Results: Of 387 patients using erlotinib, 264 completed treatments; 28 of 33 patients using gefitinib completed treatment. The P value for erlotinib discontinuation when used alone vs concomitantly was < .001, and the P value for gefitinib discontinuation was .06. Patients who took erlotinib or gefitinib concomitantly with a greater number of prescription drugs had a higher rate of treatment discontinuation than those who received fewer medications. Patients in the completed group received 1 to 75 prescription drugs, and those in the completed group were prescribed 3 to 103. Those who discontinued treatment had more diagnosed medical issues than those who completed treatment. Conclusions: This review cannot conclude that concomitant use with prescription drug(s) resulted in erlotinib or gefitinib discontinuation. There were no significant DDIs determined between erlotinib or gefitinib and antidepressants.

9.
Curr Res Toxicol ; 2: 217-224, 2021.
Article in English | MEDLINE | ID: mdl-34345864

ABSTRACT

OBJECTIVE: To evaluate drug-drug interactions (DDIs) between gefitinib or erlotinib with fluoxetine, and/or losartan. METHODS: Human pooled microsomes, supersomes, and cryopreserved human hepatocytes were used to monitor DDIs in vitro. RED (Rapid Equilibrium Dialysis) protein binding was employed to investigate other pharmacokinetics. RESULTS: Gefitinib is significantly metabolized by Cytochrome P450 (CYP) 2D6 and CYP3A4, with less than 80% of the drug remaining. Erlotinib is significantly metabolized by CYP3A4, CYP2D6, and CYP1A2. Although gefitinib and erlotinib were metabolized by the same CYP isoenzymes, the metabolites formed from degradation of the two drugs were different.Fluoxetine inhibited CYP2D6 and CYP3A4 metabolism of gefitinib with an IC50 of 65.12 ± 1.88 µM and 4.11 ± 2.26 µM, respectively. Fluoxetine also inhibited CYP2D6 and CYP3A4 metabolism of erlotinib with an IC50 of 7.06 ± 1.54 µM and 4.57 ± 1.22 µM, respectively.For hepatocytes, fluoxetine affected the metabolism of gefitinib or erlotinib, while losartan had no effect. Gefitinib and erlotinib inhibited the metabolism of fluoxetine and losartan. Two-drug combinations involving gefitinib or erlotinib with fluoxetine or losartan yielded insignificant (p-value ≥ 0.05) differences in metabolism. However, combinations involving three drugs yielded significant degrees of inhibition (p-value ≤ 0.05). Three drug combinations involving fluoxetine and losartan with gefitinib or erlotinib yielded significant degrees of inhibition of the metabolism of gefitinib, but not for that of erlotinib. CONCLUSION: As could be predicted by previous studies involving the inhibitory effect of fluoxetine on CYP3A4 and CYP2D6, and studies involving CYP metabolism of gefitinib and erlotinib, the tests performed here confirmed that fluoxetine has an inhibitory effect on metabolism of gefitinib or erlotinib by the main CYP isoenzymes involved. This study suggests a variable inhibitory effect of fluoxetine particularly on CYP2D6 activity towards gefitinib or erlotinib; erlotinib metabolism is less affected. Likewise, the combination of fluoxetine and losartan does not significantly affect hepatocyte metabolism of erlotinib, but does for that of gefitinib. The results presented in this study thus indicate a need for DDI assays to involve multiple drugs to properly study multidrug regimens.

10.
Nat Commun ; 8: 15419, 2017 05 17.
Article in English | MEDLINE | ID: mdl-28513579

ABSTRACT

Given our vast methane reserves and the difficulty in transporting methane without substantial leaks, the conversion of methane directly into electricity would be beneficial. Microbial fuel cells harness electrical power from a wide variety of substrates through biological means; however, the greenhouse gas methane has not been used with much success previously as a substrate in microbial fuel cells to generate electrical current. Here we construct a synthetic consortium consisting of: (i) an engineered archaeal strain to produce methyl-coenzyme M reductase from unculturable anaerobic methanotrophs for capturing methane and secreting acetate; (ii) micro-organisms from methane-acclimated sludge (including Paracoccus denitrificans) to facilitate electron transfer by providing electron shuttles (confirmed by replacing the sludge with humic acids), and (iii) Geobacter sulfurreducens to produce electrons from acetate, to create a microbial fuel cell that converts methane directly into significant electrical current. Notably, this methane microbial fuel cell operates at high Coulombic efficiency.

11.
PLoS One ; 11(8): e0161577, 2016.
Article in English | MEDLINE | ID: mdl-27557125

ABSTRACT

Toxin/antitoxin (TA) systems reduce metabolism under stress; for example, toxin YafQ of the YafQ/DinJ Escherichia coli TA system reduces growth by cleaving transcripts with in-frame 5'-AAA-G/A-3' sites, and antitoxin DinJ is a global regulator that represses its locus as well as controls levels of the stationary sigma factor RpoS. Here we investigated the influence on cell growth at various temperatures and found that deletion of the antitoxin gene, dinJ, resulted in both reduced metabolism and slower growth at 18°C but not at 37°C. The reduction in growth could be complemented by producing DinJ from a plasmid. Using a transposon screen to reverse the effect of the absence of DinJ, two mutations were found that inactivated the toxin YafQ; hence, the toxin caused the slower growth only at low temperatures rather than DinJ acting as a global regulator. Corroborating this result, a clean deletion of yafQ in the ΔdinJ ΔKmR strain restored both metabolism and growth at 18°C. In addition, production of YafQ was more toxic at 18°C compared to 37°C. Furthermore, by overproducing all the E. coli proteins, the global transcription repressor Mlc was found that counteracts YafQ toxicity only at 18°C. Therefore, YafQ is more effective at reducing metabolism at low temperatures, and Mlc is its putative target.


Subject(s)
Bacterial Toxins/genetics , Bacterial Toxins/metabolism , Cold Temperature , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Escherichia coli/physiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA Transposable Elements , Energy Metabolism , Gene Expression Regulation , Gene Silencing , Mutation , Plasmids/genetics , Sigma Factor/genetics , Sigma Factor/metabolism
12.
Bioengineered ; 5(6): 386-92, 2014.
Article in English | MEDLINE | ID: mdl-25482085

ABSTRACT

Multidrug and toxic compound extrusion (MATE) proteins help maintain cellular homeostasis by secreting metabolic wastes. Flavins may occur as cellular waste products, with their production and secretion providing potential benefit for industrial applications related to biofuel cells. Here we find that MATE protein YeeO from Escherichia coli exports both flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD). Significant amounts of flavins were trapped intracellularly when YeeO was produced indicating transport limits secretion of flavins. Wild-type E. coli secreted 3 flavins (riboflavin, FMN, and FAD), so E. coli likely produces additional flavin transporters.


Subject(s)
Escherichia coli/metabolism , Flavins/metabolism , Biological Transport , Escherichia coli Proteins , Flavin Mononucleotide/metabolism , Flavin-Adenine Dinucleotide/metabolism
13.
BMC Syst Biol ; 6: 42, 2012 May 14.
Article in English | MEDLINE | ID: mdl-22583864

ABSTRACT

BACKGROUND: Genome-scale metabolic networks and flux models are an effective platform for linking an organism genotype to its phenotype. However, few modeling approaches offer predictive capabilities to evaluate potential metabolic engineering strategies in silico. RESULTS: A new method called "flux balance analysis with flux ratios (FBrAtio)" was developed in this research and applied to a new genome-scale model of Clostridium acetobutylicum ATCC 824 (iCAC490) that contains 707 metabolites and 794 reactions. FBrAtio was used to model wild-type metabolism and metabolically engineered strains of C. acetobutylicum where only flux ratio constraints and thermodynamic reversibility of reactions were required. The FBrAtio approach allowed solutions to be found through standard linear programming. Five flux ratio constraints were required to achieve a qualitative picture of wild-type metabolism for C. acetobutylicum for the production of: (i) acetate, (ii) lactate, (iii) butyrate, (iv) acetone, (v) butanol, (vi) ethanol, (vii) CO2 and (viii) H2. Results of this simulation study coincide with published experimental results and show the knockdown of the acetoacetyl-CoA transferase increases butanol to acetone selectivity, while the simultaneous over-expression of the aldehyde/alcohol dehydrogenase greatly increases ethanol production. CONCLUSIONS: FBrAtio is a promising new method for constraining genome-scale models using internal flux ratios. The method was effective for modeling wild-type and engineered strains of C. acetobutylicum.


Subject(s)
Clostridium acetobutylicum/genetics , Clostridium acetobutylicum/metabolism , Computational Biology/methods , Genome, Bacterial/genetics , Metabolic Engineering/methods , Metabolic Networks and Pathways , Models, Biological , Alcohol Oxidoreductases/deficiency , Alcohol Oxidoreductases/genetics , Aldehyde Oxidoreductases/deficiency , Aldehyde Oxidoreductases/genetics , Algorithms , Bacterial Proteins/genetics , Clostridium acetobutylicum/enzymology , Coenzyme A-Transferases/deficiency , Coenzyme A-Transferases/genetics , Gene Knockdown Techniques , Multienzyme Complexes/deficiency , Multienzyme Complexes/genetics , RNA, Antisense/genetics
SELECTION OF CITATIONS
SEARCH DETAIL