Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Cancer Immunol Immunother ; 72(4): 815-826, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36063172

ABSTRACT

Immune suppressive factors of the tumor microenvironment (TME) undermine viability and exhaust the activities of the intratumoral cytotoxic CD8 + T lymphocytes (CTL) thereby evading anti-tumor immunity and decreasing the benefits of immune therapies. To counteract this suppression and improve the efficacy of therapeutic regimens, it is important to identify and understand the critical regulators within CD8 + T cells that respond to TME stress and tumor-derived factors. Here we investigated the regulation and importance of activating transcription factor-4 (ATF4) in CTL using a novel Atf4ΔCD8 mouse model lacking ATF4 specifically in CD8 + cells. Induction of ATF4 in CD8 + T cells occurred in response to antigenic stimulation and was further increased by exposure to tumor-derived factors and TME conditions. Under these conditions, ATF4 played a critical role in the maintenance of survival and activities of CD8 + T cells. Conversely, selective ablation of ATF4 in CD8 + T cells in mice rendered these Atf4ΔCD8 hosts prone to accelerated growth of implanted tumors. Intratumoral ATF4-deficient CD8 + T cells were under-represented compared to wild-type counterparts and exhibited impaired activation and increased apoptosis. These findings identify ATF4 as an important regulator of viability and activity of CD8 + T cells in the TME and argue for caution in using agents that could undermine these functions of ATF4 for anti-cancer therapies.


Subject(s)
Lymphocytes, Tumor-Infiltrating , Neoplasms , Mice , Animals , CD8-Positive T-Lymphocytes , T-Lymphocytes, Cytotoxic , Activating Transcription Factors , Tumor Microenvironment
2.
Mol Cancer Res ; 21(3): 228-239, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36378658

ABSTRACT

Cholesterol dependence is an essential characteristic of pancreatic ductal adenocarcinoma (PDAC). Cholesterol 25-hydroxylase (CH25H) catalyzes monooxygenation of cholesterol into 25-hydroxycholesterol, which is implicated in inhibiting cholesterol biosynthesis and in cholesterol depletion. Here, we show that, within PDAC cells, accumulation of cholesterol was facilitated by the loss of CH25H. Methylation of the CH25H gene and decreased levels of CH25H expression occurred in human pancreatic cancers and was associated with poor prognosis. Knockout of Ch25h in mice accelerated progression of Kras-driven pancreatic intraepithelial neoplasia. Conversely, restoration of CH25H expression in human and mouse PDAC cells decreased their viability under conditions of cholesterol deficit, and decelerated tumor growth in immune competent hosts. Mechanistically, the loss of CH25H promoted autophagy resulting in downregulation of MHC-I and decreased CD8+ T-cell tumor infiltration. Re-expression of CH25H in PDAC cells combined with immune checkpoint inhibitors notably inhibited tumor growth. We discuss additional benefits that PDAC cells might gain from inactivation of CH25H and the potential translational importance of these findings for therapeutic approaches to PDAC. IMPLICATIONS: Loss of CH25H by pancreatic cancer cells may stimulate tumor progression and interfere with immunotherapies.


Subject(s)
Carcinoma, Pancreatic Ductal , Pancreatic Neoplasms , Steroid Hydroxylases , Animals , Humans , Mice , Carcinoma, Pancreatic Ductal/pathology , Mice, Knockout , Pancreatic Neoplasms/pathology , Steroid Hydroxylases/metabolism , Pancreatic Neoplasms
3.
Cancer Immunol Res ; 10(12): 1490-1505, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36255418

ABSTRACT

Fragility of regulatory T (Treg) cells manifested by the loss of neuropilin-1 (NRP1) and expression of IFNγ undermines the immune suppressive functions of Treg cells and contributes to the success of immune therapies against cancers. Intratumoral Treg cells somehow avoid fragility; however, the mechanisms by which Treg cells are protected from fragility in the tumor microenvironment are not well understood. Here, we demonstrate that the IFNAR1 chain of the type I IFN (IFN1) receptor was downregulated on intratumoral Treg cells. Downregulation of IFNAR1 mediated by p38α kinase protected Treg cells from fragility and maintained NRP1 levels, which were decreased in response to IFN1. Genetic or pharmacologic inactivation of p38α and stabilization of IFNAR1 in Treg cells induced fragility and inhibited their immune suppressive and protumorigenic activities. The inhibitor of sumoylation TAK981 (Subasumstat) upregulated IFNAR1, eliciting Treg fragility and inhibiting tumor growth in an IFNAR1-dependent manner. These findings describe a mechanism by which intratumoral Treg cells retain immunosuppressive activities and suggest therapeutic approaches for inducing Treg fragility and increasing the efficacy of immunotherapies.


Subject(s)
Neoplasms , T-Lymphocytes, Regulatory , Humans , Tumor Microenvironment , Neuropilin-1 , Immunotherapy
4.
Cell Metab ; 34(9): 1342-1358.e7, 2022 09 06.
Article in English | MEDLINE | ID: mdl-36070682

ABSTRACT

Effector trogocytosis between malignant cells and tumor-specific cytotoxic T lymphocytes (CTLs) contributes to immune evasion through antigen loss on target cells and fratricide of antigen-experienced CTLs by other CTLs. The mechanisms regulating these events in tumors remain poorly understood. Here, we demonstrate that tumor-derived factors (TDFs) stimulated effector trogocytosis and restricted CTLs' tumoricidal activity and viability in vitro. TDFs robustly altered the CTL's lipid profile, including depletion of 25-hydroxycholesterol (25HC). 25HC inhibited trogocytosis and prevented CTL's inactivation and fratricide. Mechanistically, TDFs induced ATF3 transcription factor that suppressed the expression of 25HC-regulating gene-cholesterol 25-hydroxylase (CH25H). Stimulation of trogocytosis in the intratumoral CTL by the ATF3-CH25H axis attenuated anti-tumor immunity, stimulated tumor growth, and impeded the efficacy of chimeric antigen receptor (CAR) T cell adoptive therapy. Through use of armored CAR constructs or pharmacologic agents restoring CH25H expression, we reversed these phenotypes and increased the efficacy of immunotherapies.


Subject(s)
T-Lymphocytes, Cytotoxic , Trogocytosis , Immunotherapy , Steroid Hydroxylases , Virus Replication/genetics
5.
Neoplasia ; 23(5): 529-538, 2021 05.
Article in English | MEDLINE | ID: mdl-33945993

ABSTRACT

Chronic infection with hepatitis B virus (HBV) is a major risk factor for the development of hepatocellular carcinoma (HCC). The HBV encoded oncoprotein, HBx, alters the expression of host genes and the activity of multiple signal transduction pathways that contribute to the pathogenesis of HCC by multiple mechanisms independent of HBV replication. However, it is not clear which pathways are the most relevant therapeutic targets in hepatocarcinogenesis. Short chain fatty acids (SCFAs) have strong anti-inflammatory and anti-neoplastic properties, suggesting that they may block the progression of chronic liver disease (CLD) to HCC, thereby identifying the mechanisms relevant to HCC development. This hypothesis was tested in HBx transgenic (HBxTg) mice fed SCFAs. Groups of HBxTg mice were fed with SCFAs or vehicle from 6 to 9 months of age and then assessed for dysplasia, and from 9 to 12 months of age and then assessed for HCC. Livers from 12 month old mice were then analyzed for changes in gene expression by mass spectrometry-based proteomics. SCFA-fed mice had significantly fewer dysplastic and HCC nodules compared to controls at 9 and 12 months, respectively. Pathway analysis of SCFA-fed mice showed down-regulation of signaling pathways altered by HBx in human CLD and HCC, including those involved in inflammation, phosphatidylinositol 3-kinase, epidermal growth factor, and Ras. SCFA treatment promoted increased expression of the tumor suppressor, disabled homolog 2 (DAB2). DAB2 depresses Ras pathway activity, which is constitutively activated by HBx. SCFAs also reduced cell viability in HBx-transfected cell lines in a dose-dependent manner while the viability of primary human hepatocytes was unaffected. These unique findings demonstrate that SCFAs delay the pathogenesis of CLD and development of HCC, and provide insight into some of the underlying mechanisms that are relevant to pathogenesis in that they are responsive to treatment.


Subject(s)
Carcinoma, Hepatocellular/etiology , Carcinoma, Hepatocellular/metabolism , Fatty Acids, Volatile/metabolism , Hepatitis B virus/physiology , Hepatitis B/complications , Liver Neoplasms/etiology , Liver Neoplasms/metabolism , Animals , Cell Line, Tumor , Disease Models, Animal , Disease Susceptibility , Gene Expression Regulation, Neoplastic , Hepatitis B/virology , Humans , Immunohistochemistry , Mice , Mice, Transgenic , Models, Biological , Proteome , Proteomics/methods , Signal Transduction , Trans-Activators/genetics , Viral Regulatory and Accessory Proteins/genetics
6.
Viruses ; 13(1)2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33467678

ABSTRACT

While treatment options are available for hepatitis B virus (HBV), there is currently no cure. Anti-HBV nucleoside analogs and interferon-alpha 2b rarely clear HBV covalently closed circular DNA (cccDNA), requiring lifelong treatment. Recently, we identified GLP-26, a glyoxamide derivative which modulates HBV capsid assembly. The impact of GLP-26 on viral replication and integrated DNA was assessed in an HBV nude mouse model bearing HBV transfected AD38 xenografts. At day 45 post-infection, GLP-26 reduced HBV titers by 2.3-3 log10 versus infected placebo-treated mice. Combination therapy with GLP-26 and entecavir reduced HBV log10 titers by 4.6-fold versus placebo. Next, we examined the pharmacokinetics (PK) in cynomolgus monkeys administered GLP-26 via IV (1 mg/kg) or PO (5 mg/kg). GLP-26 was found to have 34% oral bioavailability, with a mean input time of 3.17 h. The oral dose produced a mean peak plasma concentration of 380.7 ng/mL, observed 0.67 h after administration (~30-fold > in vitro EC90 corrected for protein binding), with a mean terminal elimination half-life of 2.4 h and a mean area under the plasma concentration versus time curve of 1660 ng·hr/mL. GLP-26 was 86.7% bound in monkey plasma. Lastly, GLP-26 demonstrated a favorable toxicity profile confirmed in primary human cardiomyocytes. Thus, GLP-26 warrants further preclinical development as an add on to treatment for HBV infection.


Subject(s)
Capsid/drug effects , Capsid/metabolism , Cardiotoxins/pharmacokinetics , Hepatitis B virus/drug effects , Hepatitis B virus/physiology , Sulfonylurea Compounds/pharmacokinetics , Virus Assembly/drug effects , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Hepatitis B/drug therapy , Hepatitis B/virology , Humans , Macaca fascicularis , Male , Mice , Myocytes, Cardiac/drug effects , Sulfonylurea Compounds/adverse effects , Sulfonylurea Compounds/chemistry , Viral Load
7.
Oncogene ; 39(38): 6129-6137, 2020 09.
Article in English | MEDLINE | ID: mdl-32807917

ABSTRACT

Activation of cancer-associated fibroblasts (CAFs) and ensuing desmoplasia play an important role in the growth and progression of solid tumors. Here we demonstrate that, within colon and pancreatic ductal adenocarcinoma tumors, efficient stromagenesis relies on downregulation of the IFNAR1 chain of the type I interferon (IFN1) receptor. Expression of the fibroblast activation protein (FAP) and accumulation of the extracellular matrix (ECM) was notably impaired in tumors grown in the Ifnar1S526A (SA) knock-in mice, which are deficient in IFNAR1 downregulation. Primary fibroblasts from these mice exhibited elevated levels of Smad7, a negative regulator of the transforming growth factor-ß (TGFß) pathway. Knockdown of Smad7 alleviated deficient ECM production in SA fibroblasts in response to TGFß. Analysis of human colorectal cancers revealed an inverse correlation between IFNAR1 and FAP levels. Whereas growth of tumors in SA mice was stimulated by co-injection of wild type but not SA fibroblasts, genetic ablation of IFNAR1 in fibroblasts also accelerated tumor growth. We discuss how inactivation of IFNAR1 in CAFs acts to stimulate stromagenesis and tumor growth.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Gene Expression Regulation, Neoplastic , Neoplasms/genetics , Neoplasms/metabolism , Receptor, Interferon alpha-beta/genetics , Tumor Microenvironment , Animals , Biomarkers, Tumor , Cell Line, Tumor , Disease Models, Animal , Humans , Immunohistochemistry , Interferon Type I/metabolism , Mice , Neoplasms/pathology , Receptor, Interferon alpha-beta/metabolism , Signal Transduction , Tumor Microenvironment/genetics
SELECTION OF CITATIONS
SEARCH DETAIL