Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Tissue Barriers ; 2(4): e944449, 2014.
Article in English | MEDLINE | ID: mdl-25610755

ABSTRACT

For as long as the human blood-brain barrier (BBB) has been evolving to exclude bloodborne agents from the central nervous system (CNS), pathogens have adopted a multitude of strategies to bypass it. Some pathogens, notably viruses and certain bacteria, enter the CNS in whole form, achieving direct physical passage through endothelial or neuronal cells to infect the brain. Other pathogens, including bacteria and multicellular eukaryotic organisms, secrete toxins that preferentially interact with specific cell types to exert a broad range of biological effects on peripheral and central neurons. In this review, we will discuss the directed mechanisms that viruses, bacteria, and the toxins secreted by higher order organisms use to enter the CNS. Our goal is to identify ligand-mediated strategies that could be used to improve the brain-specific delivery of engineered nanocarriers, including polymers, lipids, biologically sourced materials, and imaging agents.

2.
J Vis Exp ; (82): 51015, 2013 Dec 27.
Article in English | MEDLINE | ID: mdl-24429733

ABSTRACT

Poly(lactic-co-glycolic acid) (PLGA) is a biocompatible member of the aliphatic polyester family of biodegradable polymers. PLGA has long been a popular choice for drug delivery applications, particularly since it is already FDA-approved for use in humans in the form of resorbable sutures. Hydrophobic and hydrophilic drugs are encapsulated in PLGA particles via single- or double-emulsion. Briefly, the drug is dissolved with polymer or emulsified with polymer in an organic phase that is then emulsified with the aqueous phase. After the solvent has evaporated, particles are washed and collected via centrifugation for lyophilization and long term storage. PLGA degrades slowly via hydrolysis in aqueous environments, and encapsulated agents are released over a period of weeks to months. Although PLGA is a material that possesses many advantages for drug delivery, reproducible formation of nanoparticles can be challenging; considerable variability is introduced by the use of different equipment, reagents batch, and precise method of emulsification. Here, we describe in great detail the formation and characterization of microparticles and nanoparticles formed by single- or double-emulsion using the emulsifying agent vitamin E-TPGS. Particle morphology and size are determined with scanning electron microscopy (SEM). We provide representative SEM images for nanoparticles produced with varying emulsifier concentration, as well as examples of imaging artifacts and failed emulsifications. This protocol can be readily adapted to use alternative emulsifiers (e.g. poly(vinyl alcohol), PVA) or solvents (e.g. dichloromethane, DCM).


Subject(s)
Lactic Acid/chemistry , Nanoparticles/chemistry , Polyglycolic Acid/chemistry , Vitamin E/chemistry , Emulsions/chemistry , Microscopy, Electron, Scanning , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer
3.
Cancer Prev Res (Phila) ; 5(2): 328-35, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22144422

ABSTRACT

Methylation of the MLH1 gene promoter region is an underlying cause of colorectal cancer (CRC) with high microsatellite instability (MSI-H) diagnosed in persons without a germ line mutation in a mismatch repair (MMR) gene (non-Lynch Syndrome CRC). It is unclear whether relatives of CRC cases with MLH1 methylation have an increased risk of colorectal or other cancers. In this retrospective cohort study, we assessed risk of CRC and other cancers for the first- and second-degree relatives of CRC cases with a methylated MLH1 gene, by comparing observed numbers of cases with those expected on the basis of age-, sex-, and country-specific cancer incidences (standardized incidence ratios). The cohort consisted of 3,128 first- and second-degree relatives of the 233 MLH1-methylated CRC cases with no MMR or MUTYH gene mutations. The standardized incidence ratio (SIR) for CRC was 1.60 [95% confidence interval (CI), 1.22-2.16] for first-degree relatives and 1.08 (0.74-1.60) for second-degree relatives. The SIR for gastric cancer was 2.58 (1.52-4.71) for first-degree relatives and 4.52 (2.23-10.61) for second-degree relatives and, for ovarian cancer, it was 2.16 (1.29-3.86) for first-degree relatives. The risk of liver cancer was also increased significantly in first-degree relatives but the estimate was on the basis of only two cases. These data imply that relatives of CRC cases with MLH1 methylation may be at increased risk of CRC and stomach cancer and possibly ovarian and liver cancer, suggesting that there may be a heritable factor for CRC and other cancers associated with MLH1 methylation in non-Lynch syndrome CRCs.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Colorectal Neoplasms/diagnosis , Colorectal Neoplasms/genetics , DNA Methylation , Genetic Predisposition to Disease , Microsatellite Instability , Nuclear Proteins/genetics , Promoter Regions, Genetic/genetics , Adult , Aged , Aged, 80 and over , DNA, Neoplasm/genetics , Family , Female , Germ-Line Mutation/genetics , Humans , Male , Middle Aged , MutL Protein Homolog 1 , MutS Homolog 2 Protein/genetics , Polymerase Chain Reaction , Prognosis , Retrospective Studies , Risk Factors , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL