Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
FASEB J ; 32(3): 1170-1183, 2018 03.
Article in English | MEDLINE | ID: mdl-29092903

ABSTRACT

The microenvironment of pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense fibrotic stroma (desmoplasia) generated by pancreatic cancer-associated fibroblasts (CAFs) derived from pancreatic stellate cells (PSCs) and pancreatic fibroblasts (PFs). Using an unbiased GPCRomic array approach, we identified 82 G-protein-coupled receptors (GPCRs) commonly expressed by CAFs derived from 5 primary PDAC tumors. Compared with PSCs and PFs, CAFs have increased expression of GPR68 (a proton-sensing GPCR), with the results confirmed by immunoblotting, The Cancer Genome Atlas data, and immunohistochemistry of PDAC tumors. Co-culture of PSCs with PDAC cells, or incubation with TNF-α, induced GPR68 expression. GPR68 activation (by decreasing the extracellular pH) enhanced IL-6 expression via a cAMP/PKA/cAMP response element binding protein signaling pathway. Knockdown of GPR68 by short interfering RNA diminished low pH-induced production of IL-6 and enhancement of PDAC cell proliferation by CAF conditioned media. CAFs from other gastrointestinal cancers also express GPR68. PDAC cells thus induce expression by CAFs of GPR68, which senses the acidic microenvironment, thereby increasing production of fibrotic markers and IL-6 and promoting PDAC cell proliferation. CAF-expressed GPR68 is a mediator of low-pH-promoted regulation of the tumor microenvironments, in particular to PDAC cell-CAF interaction and may be a novel therapeutic target for pancreatic and perhaps other types of cancers.-Wiley, S. Z., Sriram, K., Liang, W., Chang, S. E., French, R., McCann, T., Sicklick, J., Nishihara, H., Lowy, A. M., Insel, P. A. GPR68, a proton-sensing GPCR, mediates interaction of cancer-associated fibroblasts and cancer cells.


Subject(s)
Cancer-Associated Fibroblasts/pathology , Carcinoma, Pancreatic Ductal/pathology , Cell Communication , Pancreatic Neoplasms/pathology , Pancreatic Stellate Cells/pathology , Receptors, G-Protein-Coupled/metabolism , Tumor Microenvironment , Cancer-Associated Fibroblasts/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Cell Proliferation , Cells, Cultured , Coculture Techniques , Culture Media, Conditioned , Gene Expression Regulation, Neoplastic , Humans , Pancreatic Neoplasms/metabolism , Pancreatic Stellate Cells/metabolism , Pancreatic Neoplasms
2.
Mol Pharmacol ; 88(1): 181-7, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25737495

ABSTRACT

G protein-coupled receptors (GPCRs), the largest family of signaling receptors in the human genome, are also the largest class of targets of approved drugs. Are the optimal GPCRs (in terms of efficacy and safety) currently targeted therapeutically? Especially given the large number (∼ 120) of orphan GPCRs (which lack known physiologic agonists), it is likely that previously unrecognized GPCRs, especially orphan receptors, regulate cell function and can be therapeutic targets. Knowledge is limited regarding the diversity and identity of GPCRs that are activated by endogenous ligands and that native cells express. Here, we review approaches to define GPCR expression in tissues and cells and results from studies using these approaches. We identify problems with the available data and suggest future ways to identify and validate the physiologic and therapeutic roles of previously unrecognized GPCRs. We propose that a particularly useful approach to identify functionally important GPCRs with therapeutic potential will be to focus on receptors that show selective increases in expression in diseased cells from patients and experimental animals.


Subject(s)
Gene Expression Profiling/methods , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Animals , Gene Expression Regulation , Humans , Molecular Targeted Therapy , Receptors, G-Protein-Coupled/antagonists & inhibitors , Tissue Distribution
3.
Front Pharmacol ; 9: 431, 2018.
Article in English | MEDLINE | ID: mdl-29872392

ABSTRACT

G protein-coupled receptors (GPCRs), the largest family of targets for approved drugs, are rarely targeted for cancer treatment, except for certain endocrine and hormone-responsive tumors. Limited knowledge regarding GPCR expression in cancer cells likely has contributed to this lack of use of GPCR-targeted drugs as cancer therapeutics. We thus undertook GPCRomic studies to define the expression of endoGPCRs (which respond to endogenous molecules such as hormones, neurotransmitters and metabolites) in multiple types of cancer cells. Using TaqMan qPCR arrays to quantify the mRNA expression of ∼340 such GPCRs, we found that human chronic lymphocytic leukemia (CLL) cells/stromal cells associated with CLL, breast cancer cell lines, colon cancer cell lines, pancreatic ductal adenocarcinoma (PDAC) cells, cancer associated fibroblasts (CAFs), and PDAC tumors express 50 to >100 GPCRs, including many orphan GPCRs (which lack known physiologic agonists). Limited prior data exist regarding the expression or function of most of the highly expressed GPCRs in these cancer cells and tumors. Independent results from public cancer gene expression databases confirm the expression of such GPCRs. We propose that highly expressed GPCRs in cancer cells (for example, GPRC5A in PDAC and colon cancer cells and GPR68 in PDAC CAFs) may contribute to the malignant phenotype, serve as biomarkers and/or may be novel therapeutic targets for the treatment of cancer.

4.
Article in Zh | WPRIM | ID: wpr-666613

ABSTRACT

OBJECTIVE Pancreatic ductal adenocarcinoma (PDAC), a lethal cancer in need of new, effective therapies, has a unique tumor microenvironment characterized by a dense fibrotic stroma (desmoplasia) that is generated by pancreatic cancer- associated fibroblasts (PCAFs) derived from pancreatic stellate cells (PSCs) and pancreatic fibroblasts (PFs). METHEDS and RESULTS Hypothe?sizing that G protein-coupled receptors (GPCRs) may regulate PCAFs, we used an unbiased GPCRomic array approach to compare GPCR expression in PCAFs, PFs and PSCs and identified 82 GPCRs commonly expressed by PCAFs derived from primary tumors of five PDAC patients. We discovered that PCAFs have increased expression of numerous GPCRs, in particular aGPCR with much higher expression in PCAFs compared to both PFs and PSCs. Immunohistochemistry revealed increased expression of this GPCR in PDAC tumors. Co- culture of PSCs with PDAC cells or incubation with TNFα induced its expression. Activation of the GPCR in PCAF sincreased expression of interleukin-6 (IL-6) via a cAMP/PKA/CREB signaling pathway. GPCR knockdown with siRNA diminished IL-6 production and secretionby PCAFs and ability of PCAF conditioned media to enhance proliferation of PDAC cells. CONCLUSION We conclude that PDAC cells induce expression by PCAFs of a novel GPCR, resulting in increased IL-6 production by PCAFs and promotion of PDAC cell proliferation. This PCAF-expressed GPCR thus contributes to PDAC cell-PCAF interaction and as such, may be a novel therapeutic target for PDAC tumors.

SELECTION OF CITATIONS
SEARCH DETAIL