Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Genomics ; 114(2): 110274, 2022 03.
Article in English | MEDLINE | ID: mdl-35090995

ABSTRACT

The cotyledon and caruncle tissues provide a functional bridge between the fetus and the dam. However, the relationship between these tissues and the transcriptomic profile that underlies the tissue functions remains elusive. Herein we investigate the expression profile of cotyledon and caruncle from nulliparous beef heifers carrying female fetuses at day 83 of pregnancy to identify changes occurring across tissues that contribute to placental function and their tissue-specific roles. We identified 2654 differentially expressed genes [padj ≤ 0.05, abs(log2FC) ≥ 1], including nutrient transporters and paternally imprinted genes. We found key regulators of tissue function and differentiation, including FOXO4, GATA2, GATA3, and HAND1, rewired between the tissues. Finally, we shed light on the over-represented pathways related to immune tolerance, tissue differentiation and remodeling. Our findings highlighted the intricate and coordinated cross-talk between fetal-maternal tissues. They provided evidence of a fine-tuned gene regulatory network underlying pregnancy and tissue-specific function in the bovine placenta.


Subject(s)
Gene Regulatory Networks , Placenta , Animals , Cattle/genetics , Female , Fetus , Nutrients , Placenta/metabolism , Pregnancy , Transcriptome
2.
Adv Exp Med Biol ; 1354: 63-76, 2022.
Article in English | MEDLINE | ID: mdl-34807437

ABSTRACT

Maternal nutritional status affects conceptus development and, therefore, embryonic survival, growth, and development. These effects are apparent very early in pregnancy, which is when most embryonic losses occur. Maternal nutritional status has been shown to affect conceptus growth and gene expression throughout the periconceptual period of pregnancy (the period immediately before and after conception). Thus, the periconceptual period may be an important "window" during which the structure and function of the fetus and the placenta are "programmed" by stressors such as maternal malnutrition, which can have long-term consequences for the health and well-being of the offspring, a concept often referred to as Developmental Origins of Health and Disease (DOHaD) or simply developmental programming. In this review, we focus on recent studies, using primarily animal models, to examine the effects of various maternal "stressors," but especially maternal malnutrition and Assisted Reproductive Techniques (ART, including in vitro fertilization, cloning, and embryo transfer), during the periconceptual period of pregnancy on conceptus survival, growth, and development. We also examine the underlying mechanisms that have been uncovered in these recent studies, such as effects on the development of both the placenta and fetal organs. We conclude with our view of future research directions in this critical area of investigation.


Subject(s)
Maternal Nutritional Physiological Phenomena , Pregnancy Complications , Animals , Embryonic Development , Female , Fertilization , Fetal Development , Fetus , Humans , Placenta , Pregnancy
3.
Reprod Domest Anim ; 57(11): 1465-1473, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35925034

ABSTRACT

We hypothesized that yearling bulls selected for a 28-d breeding season would have reduced sperm concentrations and morphology, and have increased seminal plasma concentrations of pro-inflammatory cytokine interleukin-8 (IL-8). Yearling bulls were selected based on a breeding soundness examination (BSE) at approximately 415 d of age and contained at least 750 million sperm in the ejaculate, with 12 bulls randomly selected for breeding (BREEDERS) and 12 bulls not selected for breeding (NON-BREEDERS). After a 28-d breeding period, all bulls underwent a BSE. Plasma and seminal plasma were collected at each time point for analysis. Data were analysed utilizing either the MIXED or GLIMMIX procedures with repeated measures in SAS with breeding group, age and the interaction as fixed effects. Sperm concentration per ml of ejaculate was reduced (p < .05) in yearling bulls used for breeding compared with those not used for breeding at the end of the breeding season. Seminal plasma IL-8 concentrations in yearling bulls used for breeding were increased (p < .05) after the breeding season compared with bulls not used for breeding. Taken together, yearling bulls selected for a 28-d breeding season have reduced sperm production per ml of an ejaculate and increased inflammatory response in the seminal plasma that can lead to impaired breeding response if they are to be used for more than 30 d of breeding.


Subject(s)
Semen , Sperm Motility , Animals , Cattle , Male , Interleukin-8 , Scrotum/anatomy & histology , Seasons , Spermatozoa
4.
J Nutr Biochem ; 132: 109691, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38879136

ABSTRACT

Maternal nutrition during pregnancy influences fetal development; however, the regulatory markers of fetal programming across different gestational phases remain underexplored in livestock models. Herein, we investigated the regulatory role of long non-coding RNAs (lncRNAs) on fetal liver gene expression, the impacts of maternal vitamin and mineral supplementation, and the rate of maternal body weight gain during the periconceptual period. To this end, crossbred Angus heifers (n=31) were randomly assigned to a 2×2 factorial design to evaluate the main effects of the rate of weight gain (low gain [LG, avg. daily gain of 0.28 kg/day] vs. moderate gain [MG, avg. daily gain of 0.79 kg/day]) and vitamins and minerals supplementation (VTM vs. NoVTM). On day 83±0.27 of gestation, fetuses were collected for morphometric measurements, and fetal liver was collected for transcriptomic and mineral analyses. The maternal diet significantly affected fetal liver development and mineral reserves. Using an RNA-Seq approach, we identified 320 unique differentially expressed genes (DEGs) across all six comparisons (FDR <0.05). Furthermore, lncRNAs were predicted through the FEELnc pipeline, revealing 99 unique differentially expressed lncRNAs (DELs). The over-represented pathways and biological processes (BPs) were associated with energy metabolism, Wnt signaling, CoA carboxylase activity, and fatty acid metabolism. The DEL-regulated BPs were associated with metal ion transport, pyrimidine metabolism, and classical energy metabolism-related glycolytic, gluconeogenic, and TCA cycle pathways. Our findings suggest that lncRNAs regulate mineral homeostasis- and energy metabolism-related gene networks in the fetal liver in response to early maternal nutrition.


Subject(s)
Energy Metabolism , Gene Regulatory Networks , Homeostasis , Liver , Maternal Nutritional Physiological Phenomena , Minerals , RNA, Long Noncoding , Transcriptome , Animals , Female , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Cattle , Liver/metabolism , Pregnancy , Minerals/metabolism , Dietary Supplements , Fetus/metabolism , Fetal Development , Animal Nutritional Physiological Phenomena , Vitamins/metabolism , Vitamins/administration & dosage
5.
Transl Anim Sci ; 8: txae074, 2024.
Article in English | MEDLINE | ID: mdl-38800103

ABSTRACT

Length of the menstrual cycle was positively associated with antral follicle number in women. If this pattern is consistent in cattle, a value-added benefit to using automated activity monitors to determine estrous status could be the ability to predict antral follicle count (AFC). We, therefore, hypothesized that as inter-estrous interval increased ultrasonographic AFC would be greater in crossbred beef heifers. Over 3 yr, crossbred beef heifers (n = 1,394) were fitted with automated activity monitors for 81 d. From days 42 to 46, heifers were submitted for ultrasonographic examination to determine AFC. From days 60 to 81, heifers were visually observed twice daily for 45 min for signs of behavioral estrus. Heifers that had a behavioral estrus that coincided with a sensor-based estrus and had a previous sensor-based estrus between 15 and 26 d earlier were used for the analysis (n = 850). A combination of regression analyses and correlation analyses were applied to understand the association between data collected by sensors and follicle number determined by ultrasonographic examination. Antral follicle count was analyzed using the GLM procedure of SAS with estrous cycle length (15 to 26 d) as a fixed effect. Estrus was more likely to initiate in the early morning hours and peak activity was greater (P < 0.0001) when estrus initiated between 0200 and 0800 hours then when estrus initiated at other times of the day. Antral follicle count did not differ due to length of the estrous cycle (P = 0.87). Thus, length of the estrous cycle obtained from three-axis accelerometers cannot be used to predict follicle number in crossbred beef heifers; however, machine learning approaches that combine multiple features could be used to integrate parameters of activity with other relevant environmental and management data to quantify AFC and improve reproductive management in beef cows.

6.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-39028436

ABSTRACT

Endometrial-derived uterine histotroph is a critical component of nutrient supply to a growing conceptus throughout gestation; however, the effect of nutritional plane on histotroph nutrient composition remains unknown in multiparous cows. We hypothesized that differing planes of nutrition would alter histotroph and serum nutrient composition in beef cattle. Thus, we evaluated serum and histotroph amino acid and glucose composition, and serum non-esterified fatty acids (NEFA) and blood urea nitrogen (BUN) in cows individually fed to maintain body weight (BW; 0 kd/d, n = 9; CON) compared with those losing moderate BW (-0.7 kg/d, n = 9; NEG). After 49 d of differing nutritional planes, cows were subjected to the 7-d CoSynch + controlled internal drug release device estrus synchronization protocol and then slaughtered on day 62. Blood serum (days 0 and 62) and uterine histotroph [day 62; from uterine horns ipsilateral and contralateral to the corpus luteum (CL)] were collected and analyzed for concentrations of amino acids, glucose, and NEFA. Performance characteristics, body composition via ultrasound (days 0 and 62), and carcass characteristics were collected. Body condition score, change in BW, average daily gain, dry matter intake, and gain:feed were decreased (P ≤ 0.05) in NEG vs. CON cows. There were no differences in body composition or carcass characteristics, except an increase (P ≤ 0.05) in dressing percentage in NEG cows due to differences in gut fill, consistent with study design. Serum NEFA increased (P ≤ 0.05) in the NEG group, but there were no differences between NEG vs. CON in glucose or BUN. Serum histidine increased (P ≤ 0.05) and alanine, isoleucine, and tryptophan decreased (P ≤ 0.05) in NEG vs. CON cows. Compared with that of the uterine horn ipsilateral to the CL, histotroph from the uterine horn contralateral to the CL had increased (P ≤ 0.05) isoleucine, asparagine, and proline concentrations in NEG cows, and decreased (P ≤ 0.05) tryptophan as a proportion of essential and total amino acids. There were no differences in glucose concentrations of histotroph contralateral or ipsilateral to the CL. Cow nutritional plane does alter serum and histotroph amino acid composition, although the presence of an embryo may be necessary to fully elucidate these changes. Differences in serum and histotroph tryptophan should be given consideration in future studies due to its importance as an essential amino acid in protein synthesis and bioactive affects.


Amino acids are important in protein synthesis and bioactive affects. Maternal diet could impact histotroph amino acid composition which serves as a nutrient supply to the conceptus throughout pregnancy and is especially critical during early pregnancy, before the placenta is fully functional. Cows were subjected to their diets for 62 d, resulting in decreased body condition, average daily gain, dry matter intake, G:F, and a greater change in body weight (BW) among moderate loss cows. These data demonstrate our model for moderate BW loss was successful. Moderate BW loss cows exhibited alterations in serum and histotroph amino acid composition in the uterine horn contralateral to the corpus luteum (CL). However, in the present study, histotroph amino acid alterations were in the uterine horn contralateral to the CL, which would be opposite of the developing conceptus. Nevertheless, because the 2 uterine horns communicate via the common uterine body, the pre-implantation conceptus should have access to the histotroph from the contralateral uterine horn. Thus, future studies are needed to fully elucidate effects of nutritional plane on histotroph nutrient composition, and its potential impact on pregnancy.


Subject(s)
Amino Acids , Estrous Cycle , Animals , Cattle/physiology , Cattle/blood , Female , Amino Acids/blood , Amino Acids/metabolism , Estrous Cycle/drug effects , Animal Nutritional Physiological Phenomena , Fatty Acids, Nonesterified/blood , Blood Glucose , Pregnancy , Diet/veterinary , Blood Urea Nitrogen , Estrus Synchronization , Parity , Body Composition , Uterus/metabolism , Animal Feed/analysis
7.
J Anim Sci ; 1022024 Jan 03.
Article in English | MEDLINE | ID: mdl-39028632

ABSTRACT

Our study objectives were to evaluate the effects of divergent rates of body weight (BW) gain during early gestation in beef heifers on F0 performance, metabolic and endocrine status, colostrum immunoglobulins, and subsequent F1 calf characteristics, growth performance, concentrations of hormones and metabolites, and response to vaccination. Angus-based heifers (n = 100; BW = 369 ±â€…2.5 kg) were adapted to individual feeding for 14 d and bred using artificial insemination with female-sexed semen. Heifers were ranked by BW and assigned to either a basal diet targeting 0.28 kg/d gain (low [LG], n = 50) or the basal diet plus an energy/protein supplement targeting 0.79 kg/d gain (moderate gain [MG], n = 50) until day 84 of gestation. Dam BW and blood samples were collected at 6 time points during gestation; body composition was evaluated on days -10 and 84; and fetal measurements were taken on days 42, 63, and 84. At calving (LG, n = 23; MG, n = 23), dam and calf BW were recorded; and colostrum, calf body measurements, and blood samples were collected. Cow-calf pairs were managed on a common diet from calving to weaning, followed by a common postnatal development period for all F1 female offspring. Growth performance, hormone and metabolite profiles, feeding behavior, and reproductive performance were assessed from birth to prebreeding in F1 heifers. Offspring were vaccinated against respiratory disease and bovine viral diarrhea pathogens on days 62.3 ±â€…4.13 and 220.3 ±â€…4.13 postcalving. By design, MG dams were heavier (P < 0.0001) than LG on day 84, and the BW advantage persisted until subsequent weaning of F1 calves. Concentrations of serum IGF-1 and glucose were increased throughout gestation (P < 0.001) in MG dams, whereas concentrations of NEFA were decreased (P < 0.001) in LG dams. Calves from MG dams were 2.14 kg heavier (P = 0.03) and had larger chest circumference (P = 0.04) at birth compared with LG cohorts. Heifers from MG dams continued to have greater (P ≤ 0.03) BW gain and feed efficiency during the development period, but no differences were observed (P ≥ 0.13) in body composition, concentrations of hormones and metabolites, feeding behavior, puberty attainment, and response to vaccination in F1 offspring. Hence, early gestation rate of gain impacted BW and concentrations of glucose and IGF-1 throughout gestation in the F0 dam, resulting in altered F1 calf BW and measurements at birth and increased gain and efficiency during the development period.


Generally, beef heifers are managed on grazing pastures during early gestation, which are subject to fluctuations in forage quantity and quality. Variations in the nutrients available to the dam can impact the developing offspring during early gestation. Providing energy/protein supplements to grazing cattle is a method to ensure nutrient requirements are being met and to enhance the rate of gain. This study modeled the effects of pasture supplementation in beef heifers during early gestation to determine whether 2 rates of body weight (BW) gain alter maternal body composition and concentrations of hormones and metabolites, as well as changes to postnatal characteristics of the subsequent F1 generation heifer calves. The rate of gain affected the heifer's BW, body composition, and concentrations of key metabolites and hormones, which likely altered the nutritional environment experienced by the fetus. Subsequently, F1 offspring from supplemented dams had greater morphometric characteristics at birth and had greater BW gain, feed efficiency, and eating rate during the postweaning development period. However, body composition, concentrations of hormones and metabolites, other feeding behaviors, puberty attainment, and response to vaccination of offspring were not affected. Further research is warranted to investigate how the early gestational rate of BW gain impacts key metabolic organs and mechanisms involved in transferring programming outcomes to subsequent generations.


Subject(s)
Colostrum , Diet , Animals , Cattle/physiology , Cattle/growth & development , Pregnancy , Female , Diet/veterinary , Colostrum/chemistry , Vaccination/veterinary , Hormones/blood , Animal Feed/analysis , Gestational Weight Gain , Body Composition
8.
Vet Sci ; 11(3)2024 Mar 02.
Article in English | MEDLINE | ID: mdl-38535845

ABSTRACT

The effect of vitamins and minerals supplementation (VTM) and/or two rates of body weight gain (GAIN) on bovine placental vascular development and angiogenic factors gene expression were evaluated in two experiments: In Exp. 1, crossbred Angus heifers (n = 34) were assigned to VTM/NoVTM treatments at least 71 days before breeding to allow changes in the mineral status. At breeding, through artificial insemination (AI), heifers were assigned to low-gain (LG) 0.28 kg/d or moderate-gain (MG) 0.79 kg/d treatments, resulting in NoVTM-LG (Control; n = 8), NoVTM-MG (n = 8), VTM-LG (n = 9), and VTM-MG (n = 9) until day 83 of gestation; In Exp. 2, crossbred angus heifers (n = 28), were assigned to control (CON; n = 12), receiving a basal total mixed ration (TMR) or TMR + VTM (VTM; n = 16) from breeding until parturition. Placentomes from Exp. 1 and cotyledons (COT) from Exp. 2 were evaluated by immunohistochemistry for COT vascular density area. COTs from Exp. 1 were evaluated for angiogenic factor (ANGPT-1, ANGPT-2, eNOS2, eNOS3, FLT1, KDR, TEK, VEGFA) gene expression. In Exp. 1, COT vascularity was not affected by the interaction of VTM and GAIN (p = 0.67) or the main effects of VTM (p = 0.50) and GAIN (p = 0.55). Likewise, angiogenic factors were not differentially expressed between treatments (p < 0.05). In Exp. 2, COT vascularity was greater in VTM vs. CON (p = 0.07). In conclusion, there is a suggested later-stage influence of vitamin and mineral supplementation on placental vascularity, emphasizing the importance of supplementation beyond early pregnancy.

9.
Transl Anim Sci ; 7(1): txad013, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36911554

ABSTRACT

Our objectives were to develop a Mobile Cow Command Center (MCCC) capable of precision monitoring of grazing heifers to 1) examine the relationship between supplement intake on concentrations of liver mineral and blood metabolites and 2) examine activity, reproductive, and health behavior. Yearling crossbred Angus heifers (N = 60; initial BW = 400.4 ± 6.2 kg) were fitted with radio frequency identification ear tags that allowed access to electronic feeders (SmartFeed system; C-Lock Inc., Rapid City, SD), and with activity monitoring tags (CowManager B.V., the Netherlands) that monitored reproductive, feeding, and health-associated behaviors. Heifers were assigned randomly to one of three treatments for a 57-day monitoring period: 1) no supplement (CON; N = 20), 2) free choice mineral (MIN; Purina Wind and Rain Storm [Land O'Lakes, Inc.], N = 20), or 3) free choice energy and mineral supplement (NRG; Purina Accuration Range Supplement 33 with added MIN [Land O'Lakes, Inc.], N = 20). Consecutive day body weights, blood, and liver biopsies were collected at pasture turnout and final day of monitoring. By design, mineral intake was greatest in MIN heifers (49 ± 37 g/d) and energy supplement intake was greatest in NRG heifers (1,257 ± 37 g/d). Final BW and ADG were similar among treatments (P > 0.42). Concentrations of glucose on day 57 were greater (P = 0.01) in NRG compared with CON and MIN heifers. Liver concentrations of Se and Fe on day 57 were greater (P < 0.05) in NRG heifers than CON, with MIN being intermediate. Activity tags reported NRG heifers spent less time eating (P < 0.0001) and more time (P < 0.0001) being "highly active" than MIN with CON heifers being intermediate. Data retrieved from activity tags identified 16 of 28 pregnant heifers exhibiting some type of estrus-associated behavior even after confirmation of established pregnancy. The activity monitoring system triggered a total of 146 health alerts from 34 of the 60 heifers monitored, but only 3 heifers of the heifers initiating an electronic health alert needed clinical treatment. However, animal care staff identified nine additional heifers that required treatment for which no electronic health alert was generated. The electronic feeders successfully controlled intake of individual heifers managed in groups pastures; however, the activity monitoring system misrepresented estrus and health events.

10.
Transl Anim Sci ; 7(1): txad077, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37483682

ABSTRACT

Our objectives were to evaluate the impacts of providing vitamin and mineral (VTM) supplements to cow-calf pairs during the summer grazing period on cow and calf performance and liver concentrations of minerals. During a two-year period, 727 crossbred cows and their calves (initial cow BW = 601.7 ± 48.1 kg; calf BW = 87.8 ± 5.0 kg; n = 381 in year 1, n = 346 in year 2) from the Central Grasslands Research Extension Center (Streeter, N.D.) were blocked by parity (young [parity 1 to 3], and old [parity 4+]) and randomly assigned to pastures at the beginning of the grazing season (16 in year 1 and 14 in year 2). Pastures were assigned to receive a free-choice VTM supplement (SUPP) or no VTM supplement (CON) from pasture turnout to pasture removal (158 and 156 days in year 1 and 2, respectively). Consecutive day weights were taken from cows and calves at pasture turnout and removal and liver biopsies were collected from a subset of cows at both timepoints and from calves at weaning. Cows were bred via AI 37 to 41 d after pasture turnout and by natural service cleanup bulls for a 70 to 80 d breeding season. Calving and weaning data were collected from the calf conceived and gestated during treatments. Data were analyzed for the effect of VTM treatment (SUPP vs. CON), block of parity, and their interaction using the GLM procedure of SAS with pasture as the experimental unit. Year was considered a random effect in the final analysis. Cow pregnancy success was evaluated using the GLIMMIX procedure in SAS with model terms of VTM treatment, parity, and their interaction with year as a random effect. In year 2, cows in differing days postpartum (DPP) groups at pasture turnout (66.1, 48.8, and 34.5 ± 1.04 DPP for EARLY, MID, and LATE groups, respectively) were selected for liver biopsies with cow as the experimental unit. Cow and calf BW and BW change were not impacted (P ≥ 0.20) by VTM access. Pregnancy rate to AI, overall pregnancy rate, gestating calf birth BW and calving distribution were not affected (P ≥ 0.11) by treatment. Liver concentrations of Se, Cu, and Co were greater (P ≤ 0.002) at pasture removal and weaning for cows and suckling calves that had access to VTM. Cows considered EARLY calving had greater (P = 0.05) concentrations of liver Se compared with LATE calving cows. Although VTM supplementation enhanced concentrations of key minerals in the liver of cow-calf pairs, reproductive and growth performance was not affected.

11.
Microbiol Spectr ; : e0518022, 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36916922

ABSTRACT

In this study, we evaluated the seminal and fecal microbiota in yearling beef bulls fed a common diet to achieve moderate (1.13 kg/day) or high (1.80 kg/day) rates of weight gain. Semen samples were collected on days 0 and 112 of dietary intervention (n = 19/group) as well as postbreeding (n = 6/group) using electroejaculation, and the microbiota was assessed using 16S rRNA gene sequencing, quantitative PCR (qPCR), and culturing. The fecal microbiota was also evaluated, and its similarity with seminal microbiota was assessed. A subset of seminal bacterial isolates (n = 33) was screened for resistance against 28 antibiotics. A complex and dynamic microbiota was detected in bovine semen, and the community structure was affected by sampling time (R2 = 0.16, P < 0.001). Microbial richness increased significantly from day 0 to day 112, and diversity increased after breeding (P > 0.05). Seminal microbiota remained unaffected by the differential rates of gain, and its overall composition was distinct from fecal microbiota, with only 6% of the taxa shared between them. A total of 364 isolates from 49 different genera were recovered under aerobic and anaerobic culturing. Among these seminal isolates were pathogenic species and those resistant to several antibiotics. Overall, our results suggest that bovine semen harbors a rich and complex microbiota which changes over time and during the breeding season but appears to be resilient to differential gains achieved via a common diet. Seminal microbiota is distinct from the fecal microbiota and harbors potentially pathogenic and antibiotic-resistant bacterial species. IMPORTANCE Increasing evidence from human and other animal species supports the existence of a commensal microbiota in semen and that this seminal microbiota may influence not only sperm quality and fertility but also female reproduction. Seminal microbiota in bulls and its evolution and factors shaping this community, however, remain largely underexplored. In this study, we characterized the seminal microbiota of yearling beef bulls and its response to the bull age, different weight gains, and mating activity. We compared bacterial composition between seminal and fecal microbiota and evaluated the diversity of culturable seminal bacteria and their antimicrobial resistance. Our results obtained from sequencing, culturing, and antibiotic susceptibility testing provide novel information on the taxonomic composition, evolution, and factors shaping the seminal microbiota of yearling beef bulls. This information will serve as an important basis for further understanding of the seminal microbiome and its involvement in reproductive health and fertility in cattle.

12.
Metabolites ; 13(2)2023 Jan 25.
Article in English | MEDLINE | ID: mdl-36837794

ABSTRACT

Herein, we evaluated the hepatic lipid metabolic profiles of bovine fetuses in response to maternal vitamin and mineral supplementation (VMSUP; supplemented (VTM) or not (NoVTM)) and two different rates of gain (GAIN; low gain (LG), 0.28 kg/d, or moderate gain (MG), 0.79 kg/d). Crossbred Angus heifers (n = 35; initial BW = 359.5 ± 7.1 kg) were randomly assigned to a 2 × 2 factorial arrangement, resulting in the following treatment combinations: NoVTM-LG (n = 9), NoVTM-MG (n = 9), VTM-LG (n = 9), and VTM-MG (n = 8). Heifers received their treatments until d 83 of gestation, when they were ovariohysterectomized. Fetuses were harvested and liver samples were analyzed via ultrahigh-performance liquid chromatography-tandem mass spectroscopy to characterize lipid profiles and abundances. We identified 374 biochemicals/metabolites belonging to 57 sub-pathways of the lipid metabolism super-pathway. The majority of the biochemicals/metabolites (n = 152) were significantly affected by the main effect of GAIN. Maternal moderate rates of gain resulted in greater abundances (p ≤ 0.0001) of ω-3 fatty acids (eicosapentaenoate, docosapentaenoate, and docosahexaenoate) and lower abundances (p ≤ 0.0001) of ω-6 fatty acids. Further, MG resulted in the accumulation of several diacylglycerols and depletion of the majority of the monoacylglycerols. Concentrations of nearly all acylcarnitines (p ≤ 0.03) were decreased in VTM-LG fetal livers compared to all other treatment combinations, indicating a greater rate of complete oxidation of fatty acids. Levels of secondary bile acids were impacted by VMSUP, being greater (p ≤ 0.0048) in NoVTM than in VTM fetal livers. Moreover, NoVTM combined with lower rate of gain resulted in greater concentrations of most secondary bile acid biochemicals/metabolites. These data indicate that maternal diet influenced and altered fetal hepatic lipid composition in the first trimester of gestation. Maternal body weight gain exerted a greater influence on fetal lipid profiles than vitamin and mineral supplementation. Specifically, lower rate of gain (0.28 kg/d) resulted in an increased abundance of the majority of the biochemicals/metabolites identified in this study.

13.
Animals (Basel) ; 13(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36830387

ABSTRACT

During pregnancy, the fetus relies on the dam for its nutrient supply. Nutritional stimuli during fetal organ development can program hepatic metabolism and function. Herein, we investigated the role of vitamin and mineral supplementation (VTM or NoVTM-at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG) or moderate (MG)-from breeding to day 83) on the fetal liver transcriptome and the underlying biological pathways. Crossbred Angus beef heifers (n = 35) were randomly assigned to one of four treatments in a 2 × 2 factorial design (VTM_LG, VTM_MG, NoVTM_LG, and NoVTM_MG). Gene expression was measured with RNA-Seq in fetal livers collected on day 83 ± 0.27 of gestation. Our results show that vitamin and mineral supplementation and rate of weight gain led to the differential expression of hepatic genes in all treatments. We identified 591 unique differentially expressed genes across all six VTM-gain contrasts (FDR ≤ 0.1). Over-represented pathways were related to energy metabolism, including PPAR and PI3K-Akt signaling pathways, as well as lipid metabolism, mineral transport, and amino acid transport. Our findings suggest that periconceptual maternal nutrition affects fetal hepatic function through altered expression of energy- and lipid-related genes.

14.
Data Brief ; 48: 109173, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37180878

ABSTRACT

Herein, we present a dataset based on the RNA-Seq analysis of liver tissue from bovine female fetuses at day 83 of gestation. The findings were reported in the main article, "Periconceptual maternal nutrition affects fetal liver programming of energy- and lipid-related genes" [1]. These data were generated to investigate the effects of periconceptual maternal vitamin and mineral supplementation and rates of body weight gain on the transcript abundance of genes associated with fetal hepatic metabolism and function. To this end, crossbred Angus beef heifers (n = 35) were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial design. The main effects tested were vitamin and mineral supplementation (VTM or NoVTM - at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG - 0.28 kg/d) or moderate (MG - 0.79 kg/d) - from breeding to day 83). The fetal liver was collected on day 83 ± 0.27 of gestation. After total RNA isolation and quality control, strand-specific RNA libraries were prepared and sequenced on the Illumina® NovaSeq 6000 platform to generate paired-end 150-bp reads. After read mapping and counting, differential expression analysis was performed with edgeR. We identified 591 unique differentially expressed genes across all six vitamin-gain contrasts (FDR ≤ 0.1). To our knowledge, this is the first dataset investigating the fetal liver transcriptome in response to periconceptual maternal vitamin and mineral supplementation and/or the rate of weight gain. The data described in this article provides genes and molecular pathways differentially programming liver development and function.

15.
Animals (Basel) ; 12(15)2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35953914

ABSTRACT

We evaluated the effects of vitamin and mineral supplementation (from pre-breeding to day 83 of gestation) and two rates of gain (from breeding to day 83 of gestation) on trace mineral concentrations in maternal and fetal liver, fetal muscle, and allantoic (ALF) and amniotic (AMF) fluids. Crossbred Angus heifers (n = 35; BW = 359.5 ± 7.1 kg) were randomly assigned to one of two vitamin and mineral supplementation treatments (VMSUP; supplemented (VTM) vs. unsupplemented (NoVTM)). The VMSUP factor was initiated 71 to 148 d before artificial insemination (AI), allowing time for the mineral status of heifers to be altered in advance of breeding. The VTM supplement (113 g·heifer−1·d−1) provided macro and trace minerals and vitamins A, D, and E to meet 110% of the requirements specified by the NASEM, and the NoVTM supplement was a pelleted product fed at a 0.45 kg·heifer−1·day−1 with no added vitamin and mineral supplement. At AI, heifers were assigned to one of two rates of gain treatments (GAIN; low gain (LG) 0.28 kg/d or moderate gain (MG) 0.79 kg/d) within their respective VMSUP groups. On d 83 of gestation fetal liver, fetal muscle, ALF, and AMF were collected. Liver biopsies were performed prior to VMSUP factor initiation, at the time of AI, and at the time of ovariohysterectomy. Samples were analyzed for concentrations of Se, Cu, Zn, Mo, Mn, and Co. A VMSUP × GAIN × day interaction was present for Se and Cu (p < 0.01 and p = 0.02, respectively), with concentrations for heifers receiving VTM being greater at AI and tissue collection compared with heifers not receiving VTM (p < 0.01). A VMSUP × day interaction (p = 0.01) was present for Co, with greater (p < 0.01) concentrations for VTM than NoVTM at the time of breeding. VTM-MG heifers had greater concentrations of Mn than all other treatments (VMSUP × GAIN, p < 0.01). Mo was greater (p = 0.04) for MG than LG, while Zn concentrations decreased throughout the experiment (p < 0.01). Concentrations of Se (p < 0.01), Cu (p = 0.01), Mn (p = 0.04), and Co (p = 0.01) were greater in fetal liver from VTM than NoVTM. Mo (p ≤ 0.04) and Co (p < 0.01) were affected by GAIN, with greater concentrations in fetal liver from LG than MG. In fetal muscle, Se (p = 0.02) and Zn (p < 0.01) were greater for VTM than NoVTM. Additionally, Zn in fetal muscle was affected by GAIN (p < 0.01), with greater concentrations in LG than MG. The ALF in VTM heifers (p < 0.01) had greater Se and Co than NoVTM. In AMF, trace mineral concentrations were not affected (p ≥ 0.13) by VMSUP, GAIN, or their interaction. Collectively, these data suggest that maternal nutrition pre-breeding and in the first trimester of gestation affects fetal reserves of some trace minerals, which may have long-lasting impacts on offspring performance and health.

16.
Animals (Basel) ; 12(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35883305

ABSTRACT

Thirty-five crossbred Angus heifers (initial BW = 359.5 ± 7.1 kg) were randomly assigned to a 2 × 2 factorial design to evaluate effects of vitamin and mineral supplementation [VMSUP; supplemented (VTM) vs. unsupplemented (NoVTM)] and different rates of gain [GAIN; low gain (LG), 0.28 kg/d, vs. moderate gain (MG), 0.79 kg/d] during the first 83 d of gestation on dam hormone and metabolic status, fetal tissue and organ mass, and concentration of glucose and fructose in fetal fluids. The VMSUP was initiated 71 to 148 d before artificial insemination (AI), allowing time for mineral status of heifers to be altered in advance of breeding. At AI heifers were assigned their GAIN treatment. Heifers received treatments until the time of ovariohysterectomy (d 83 ± 0.27 after AI). Throughout the experiment, serum samples were collected and analyzed for non-esterified fatty acids (NEFA), progesterone (P4), insulin, and insulin-like growth factor 1 (IGF-1). At ovariohysterectomy, gravid reproductive tracts were collected, measurements were taken, samples of allantoic (ALF) and amniotic (AMF) fluids were collected, and fetuses were dissected. By design, MG had greater ADG compared to LG (0.85 vs. 0.34 ± 0.04 kg/d, respectively; p < 0.01). Concentrations of NEFA were greater for LG than MG (p = 0.04) and were affected by a VMSUP × day interaction (p < 0.01), with greater concentrations for NoVTM on d 83. Insulin was greater for NoVTM than VTM (p = 0.01). A GAIN × day interaction (p < 0.01) was observed for IGF-1, with greater concentrations for MG on d 83. At d 83, P4 concentrations were greater for MG than LG (GAIN × day, p < 0.01), and MG had greater (p < 0.01) corpus luteum weights versus LG. Even though fetal BW was not affected (p ≥ 0.27), MG fetuses had heavier (p = 0.01) femurs than LG, and VTM fetuses had heavier (p = 0.05) livers than those from NoVTM. Additionally, fetal liver as a percentage of BW was greater in fetuses from VTM (P = 0.05; 3.96 ± 0.06% BW) than NoVTM (3.79 ± 0.06% BW), and from LG (p = 0.04; 3.96 ± 0.06% BW) than MG (3.78 ± 0.06% BW). A VMSUP × GAIN interaction was observed for fetal small intestinal weight (p = 0.03), with VTM-MG being heavier than VTM-LG. Therefore, replacement heifer nutrition during early gestation can alter the development of organs that are relevant for future offspring performance. These data imply that compensatory mechanisms are in place in the developing conceptus that can alter the growth rate of key metabolic organs possibly in an attempt to increase or decrease energy utilization.

17.
Metabolites ; 12(8)2022 Jul 27.
Article in English | MEDLINE | ID: mdl-36005568

ABSTRACT

The objective of this study was to evaluate the effects of feeding heifers a vitamin and mineral supplement and targeting divergent rates of weight gain during early gestation on the fetal liver amino acid, carbohydrate, and energy profile at d 83 of gestation. Seventy-two crossbred Angus heifers were randomly assigned in a 2 × 2 factorial arrangement to one of four treatments comprising the main effects of vitamin and mineral supplementation (VTM or NOVTM) and feeding to achieve different rates of weight gain (low gain [LG] 0.28 kg/day vs. moderate gain [MG] 0.79 kg/day). Thirty-five gestating heifers with female fetuses were ovariohysterectomized on d 83 of gestation and fetal liver was collected and analyzed by reverse phase UPLC-tandem mass spectrometry with positive and negative ion mode electrospray ionization, as well as by hydrophilic interaction liquid chromatography UPLC-MS/MS with negative ion mode ESI for compounds of known identity. The Glycine, Serine, and Threonine metabolism pathway and the Leucine, Isoleucine, and Valine metabolism pathway had a greater total metabolite abundance in the liver of the NOVTM-LG group and least in the VTM-LG group (p < 0.01). Finally, both the TCA Cycle and Oxidative Phosphorylation pathways within the Energy Metabolism superpathway were differentially affected by the main effect of VTM, where the TCA cycle metabolites were greater (p = 0.04) in the NOVTM fetal livers and the Oxidative Phosphorylation biochemicals were greater (p = 0.02) in the fetal livers of the VTM supplemented heifers. These data demonstrate that the majority of metabolites that are affected by rate of weight gain or vitamin/mineral supplementation are decreased in heifers on a greater rate of weight gain or vitamin/mineral supplementation.

18.
Transl Anim Sci ; 5(1): txab007, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33659862

ABSTRACT

Crossbred Angus cow-calf pairs (n = 28 pairs) at the Central Grasslands Research Extension Center (Streeter, ND) were used to evaluate an electronic feeder to monitor individual mineral intake and feeding behavior and their relationship with growth performance and liver mineral concentrations. Cows and calves were fitted with radio frequency identification ear tags that allowed access to an electronic feeder (SmartFeed system; C-Lock Inc., Rapid City, SD) and were provided ad libitum minerals (Purina Wind and Rain Storm, Land O'Lakes, Inc., Arden Hills, MN). Mineral intake, number of visits, and duration at the feeder were recorded over a 95-d monitoring period while pairs were grazing native range. Liver biopsies were collected from a subset of cows on the final day of monitoring and analyzed for mineral concentrations. Data were analyzed with the GLM procedure in SAS for mineral intake and feeding behavior with age class (cows vs. calves), intake category (high vs. low), and the interaction between class and category in the model. Correlations were calculated among cow feeding behavior and calf intake and growth performance with the CORR procedure, and a comparison of liver mineral concentrations among cows of high (>90 g/d; average 125.4 g/d) and low (<90 g/d; average 33.5 g/d) mineral intake was performed using the GLM procedure. High-intake calves (>50 g/d; average 72.2 g/d) consumed greater (P < 0.001) amounts of minerals than low-intake calves (<50 g/d; average 22.2 g/d) intake calves. Cows and calves attended the mineral feeder a similar (P = 0.71) proportion of the days during the experiment (overall mean of 20%, or once every 5 d). On days calves visited the feeder, they consumed less (P < 0.01) minerals than cows (222 ± 27 vs. 356 ± 26 g/d, respectively). Over the grazing period, calves gained 1.17 ± 0.02 kg/d, whereas cows lost 0.35 ± 0.02 kg/d. Calf mineral intake was correlated with cow duration at the mineral feeder (r = 0.403, P = 0.05). Cows with high mineral intake had greater (P < 0.01) concentrations of Se (2.92 vs. 2.41 ug/g), Cu (247 vs. 116 ug/g), and Co (0.51 vs. 0.27 ug/g) compared with low mineral intake cows, but liver concentrations of Fe, Zn, Mo, and Mn did not differ (P ≥ 0.22). We were able to successfully monitor individual mineral intake and feeding behavior with the electronic feeder evaluated, and the divergence in mineral intake observed with the feeder was corroborated by concentrations of minerals in the liver.

19.
Front Microbiol ; 12: 771832, 2021.
Article in English | MEDLINE | ID: mdl-35126326

ABSTRACT

A recent study reported the existence of a diverse microbiota in 5-to-7-month-old calf fetuses, suggesting that colonization of the bovine gut with so-called "pioneer" microbiota may begin during mid-gestation. In the present study, we investigated 1) the presence of microbiota in bovine fetuses at early gestation (12 weeks), and 2) whether the fetal microbiota is influenced by the maternal rate of gain or dietary supplementation with vitamins and minerals (VTM) during early gestation. Amniotic and allantoic fluids, and intestinal and placental (cotyledon) tissue samples obtained from fetuses (n = 33) on day 83 of gestation were processed for the assessment of fetal microbiota using 16S rRNA gene sequencing. The sequencing results revealed that a diverse and complex microbial community was present in each of these fetal compartments evaluated. Allantoic and amniotic fluids, and fetal intestinal and placenta microbiota each had distinctly different (0.047 ≥ R 2 ≥ 0.019, P ≤ 0.031) microbial community structures. Allantoic fluid had a greater (P < 0.05) microbial richness (number of OTUs) (Mean 122) compared to amniotic fluid (84), intestine (63), and placenta (66). Microbial diversity (Shannon index) was similar for the intestinal and placental samples, and both were less diverse compared with fetal fluid microbiota (P < 0.05). Thirty-nine different archaeal and bacterial phyla were detected across all fetal samples, with Proteobacteria (55%), Firmicutes (16.2%), Acidobacteriota (13.6%), and Bacteroidota (5%) predominating. Among the 20 most relatively abundant bacterial genera, Acidovorax, Acinetobacter, Brucella, Corynebacterium, Enterococcus, Exiguobacterium, and Stenotrophomonas differed by fetal sample type (P < 0.05). A total of 55 taxa were shared among the four different microbial communities. qPCR of bacteria in the intestine and placenta samples as well as scanning electron microscopy imaging of fetal fluids provided additional evidence for the presence of a microbiota in these samples. Minor effects of maternal rate of gain and VTM supplementation, and their interactions on microbial richness and composition were detected. Overall, the results of this study indicate that colonization with pioneer microbiota may occur during early gestation in bovine fetuses, and that the maternal nutritional regime during gestation may influence the early fetal microbiota.

20.
Anim Reprod Sci ; 226: 106703, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33549887

ABSTRACT

Yearling Angus bulls (n = 36) were assigned one of three diets: 1) 60 % concentrate as corn (CON, 0.2 % S, 13.4 % CP; n = 12); 2) 60 % dried corn distiller's grains plus solubles (60DDGS 0.5 % S, 22.0 % CP; n = 12); 3) CON diet + equivalent sulfur of 60DDGS as CaSO4 (SULF, 0.5 % S, 13.9 % CP; n = 12) to evaluate effects of feeding 60 % DDGS or sulfur as CaSO4 on mineral and metabolite concentrations in serum and seminal plasma. Treatment × day interactions (P < 0.03) were observed for serum Cu, Se, and Mo. For Cu at d 112, lesser (P < 0.01) concentrations were observed in bulls fed the 60DDGS compared to SULF and CON diets. There were greater (P < 0.01) concentrations of Se at d 112 in bulls fed 60DDGS than CON and SULF diets. Concentrations of Mo were greater at d 56 and 112 (P < 0.01) in bulls fed CON compared to SULF and 60DDGS diets. In seminal plasma, there were treatment × day interactions (P < 0.02) for Cu and Mo. For Cu, at d 112, there was a lesser (P < 0.01) concentration in the bulls fed SULF compared to CON and 60DDGS diets. For Mo, there was a greater (P < 0.01) concentration in bulls fed the CON than 60DDGS and SULF diets at d 56 and 112. Changes in mineral and metabolite concentrations may have effects on bull reproductive performance when there is a relatively greater dietary sulfur content.


Subject(s)
Animal Feed/analysis , Calcium Sulfate/administration & dosage , Cattle , Diet/veterinary , Minerals/blood , Semen/chemistry , Amino Acids/chemistry , Amino Acids/metabolism , Animal Nutritional Physiological Phenomena , Animals , Calcium Sulfate/pharmacology , Dietary Supplements , Glucose/chemistry , Glucose/metabolism , Male , Minerals/metabolism , Urea/metabolism , Zea mays
SELECTION OF CITATIONS
SEARCH DETAIL