Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters

Publication year range
1.
Article in English | MEDLINE | ID: mdl-39307288

ABSTRACT

BACKGROUND: Chronic rhinitis symptoms cause significant health burden among children and can have a heterogeneous presentation. Defining phenotypes of childhood chronic rhinitis and associated pathobiology may lead to prevention or improved treatments. OBJECTIVES: We sought to identify longitudinal patterns of rhinitis symptoms in childhood and determine their associations with early life risk factors, allergic comorbidities, and nasal epithelial cell gene expression. METHODS: Chronic rhinitis symptoms were evaluated from ages 1 through 11 years in 485 urban children at high risk for allergic disease in the URECA (Urban Environment and Childhood Asthma) birth cohort. We identified longitudinal rhinitis phenotypes and their relationships to early life exposures, atopic comorbidities, and patterns of nasal epithelial gene expression at age 11 years. RESULTS: Chronic rhinitis symptoms started early in many children and were a risk factor for developing aeroallergen sensitization. We identified 4 longitudinal rhinitis phenotypes: low/minimal, persistent, persistent decreasing, and late increasing. Persistent rhinitis was most closely linked to allergic sensitization and asthma. Risk factors for persistent rhinitis included frequent colds (P < .001), antibiotic use (P < .001), and reduced exposure to common indoor aeroallergens (P = .003). Compared to low/minimal rhinitis phenotype, the other rhinitis phenotypes were associated with increased expression of canonical type 2 genes and decreased expression of immune response genes. CONCLUSIONS: In urban children, rhinitis symptoms often precede aeroallergen sensitization. Rhinitis phenotypes based on symptoms had distinct risk factors and nasal transcriptome. These results suggest that focusing on early life risk factors and distinct immune mechanisms may be a target to preventing chronic rhinitis in childhood.

2.
J Allergy Clin Immunol ; 153(6): 1563-1573, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38423369

ABSTRACT

BACKGROUND: Five distinct respiratory phenotypes based on latent classes of longitudinal patterns of wheezing, allergic sensitization. and pulmonary function measured in urban children from ages from 0 to 7 years have previously been described. OBJECTIVE: Our aim was to determine whether distinct respiratory phenotypes are associated with early-life upper respiratory microbiota development and environmental microbial exposures. METHODS: Microbiota profiling was performed using 16S ribosomal RNA-based sequencing of nasal samples collected at age 12 months (n = 120) or age 36 months (n = 142) and paired house dust samples collected at 3 months (12-month, n = 73; 36-month, n = 90) from all 4 centers in the Urban Environment and Childhood Asthma (URECA) cohort. RESULTS: In these high-risk urban children, nasal microbiota increased in diversity between ages 12 and 36 months (ß = 2.04; P = .006). Age-related changes in microbiota evenness differed significantly by respiratory phenotypes (interaction P = .0007), increasing most in the transient wheeze group. At age 12 months, respiratory illness (R2 = 0.055; P = .0001) and dominant bacterial genus (R2 = 0.59; P = .0001) explained variance in nasal microbiota composition, and enrichment of Moraxella and Haemophilus members was associated with both transient and high-wheeze respiratory phenotypes. By age 36 months, nasal microbiota was significantly associated with respiratory phenotypes (R2 = 0.019; P = .0376), and Moraxella-dominated microbiota was associated specifically with atopy-associated phenotypes. Analysis of paired house dust and nasal samples indicated that 12 month olds with low wheeze and atopy incidence exhibited the largest number of shared bacterial taxa with their environment. CONCLUSION: Nasal microbiota development over the course of early childhood and composition at age 3 years are associated with longitudinal respiratory phenotypes. These data provide evidence supporting an early-life window of airway microbiota development that is influenced by environmental microbial exposures in infancy and associates with wheeze- and atopy-associated respiratory phenotypes through age 7 years.


Subject(s)
Microbiota , Phenotype , Respiratory Sounds , Urban Population , Humans , Infant , Child, Preschool , Male , Female , Longitudinal Studies , Asthma/microbiology , Asthma/epidemiology , Dust/analysis , Dust/immunology , Environmental Exposure , Nose/microbiology , RNA, Ribosomal, 16S/genetics , Child
3.
J Allergy Clin Immunol ; 150(1): 204-213, 2022 07.
Article in English | MEDLINE | ID: mdl-35149044

ABSTRACT

BACKGROUND: Seasonal variation in respiratory illnesses and exacerbations in pediatric populations with asthma is well described, though whether upper airway microbes play season-specific roles in these events is unknown. OBJECTIVE: We hypothesized that nasal microbiota composition is seasonally dynamic and that discrete microbe-host interactions modify risk of asthma exacerbation in a season-specific manner. METHODS: Repeated nasal samples from children with exacerbation-prone asthma collected during periods of respiratory health (baseline; n = 181 samples) or first captured respiratory illness (n = 97) across all seasons, underwent bacterial (16S ribosomal RNA gene) and fungal (internal transcribed spacer region 2) biomarker sequencing. Virus detection was performed by multiplex PCR. Paired nasal transcriptome data were examined for seasonal dynamics and integrative analyses. RESULTS: Upper airway bacterial and fungal microbiota and rhinovirus detection exhibited significant seasonal dynamics. In seasonally adjusted analysis, variation in both baseline and respiratory illness microbiota related to subsequent exacerbation. Specifically, in the fall, when respiratory illness and exacerbation events were most frequent, several Moraxella and Haemophilus members were enriched both in virus-positive respiratory illnesses and those that progressed to exacerbations. The abundance of 2 discrete bacterial networks, characteristically comprising either Streptococcus or Staphylococcus, exhibited opposing interactions with an exacerbation-associated SMAD3 nasal epithelial transcriptional module to significantly increase the odds of subsequent exacerbation (odds ratio = 14.7, 95% confidence interval = 1.50-144, P = .02; odds ratio = 39.17, 95% confidence interval = 2.44-626, P = .008, respectively). CONCLUSIONS: Upper airway microbiomes covary with season and with seasonal trends in respiratory illnesses and asthma exacerbations. Seasonally adjusted analyses reveal specific bacteria-host interactions that significantly increase risk of asthma exacerbation in these children.


Subject(s)
Asthma , Microbiota , Virus Diseases , Asthma/microbiology , Bacteria/genetics , Child , Humans , Rhinovirus , Seasons , Transcriptome
4.
Allergy ; 77(12): 3617-3628, 2022 12.
Article in English | MEDLINE | ID: mdl-35841380

ABSTRACT

BACKGROUND: The path to childhood asthma is thought to initiate in utero and be further promoted by postnatal exposures. However, the underlying mechanisms remain underexplored. We hypothesized that prenatal maternal immune dysfunction associated with increased childhood asthma risk (revealed by low IFN-γ:IL-13 secretion during the third trimester of pregnancy) alters neonatal immune training through epigenetic mechanisms and promotes early-life airway colonization by asthmagenic microbiota. METHODS: We examined epigenetic, immunologic, and microbial features potentially related to maternal prenatal immunity (IFN-γ:IL-13 ratio) and childhood asthma in a birth cohort of mother-child dyads sampled pre-, peri-, and postnatally (N = 155). Epigenome-wide DNA methylation and cytokine production were assessed in cord blood mononuclear cells (CBMC) by array profiling and ELISA, respectively. Nasopharyngeal microbiome composition was characterized at age 2-36 months by 16S rRNA sequencing. RESULTS: Maternal prenatal immune status related to methylome profiles in neonates born to non-asthmatic mothers. A module of differentially methylated CpG sites enriched for microbe-responsive elements was associated with childhood asthma. In vitro responsiveness to microbial products was impaired in CBMCs from neonates born to mothers with the lowest IFN-γ:IL-13 ratio, suggesting defective neonatal innate immunity in those who developed asthma during childhood. These infants exhibited a distinct pattern of upper airway microbiota development characterized by early-life colonization by Haemophilus that transitioned to a Moraxella-dominated microbiota by age 36 months. CONCLUSIONS: Maternal prenatal immune status shapes asthma development in her child by altering the epigenome and trained innate immunity at birth, and is associated with pathologic upper airway microbial colonization in early life.


Subject(s)
Asthma , Microbiota , Humans , Infant , Infant, Newborn , Pregnancy , Female , Child, Preschool , Interleukin-13 , RNA, Ribosomal, 16S , Respiratory System , Microbiota/genetics
5.
BMC Pulm Med ; 22(1): 287, 2022 Jul 28.
Article in English | MEDLINE | ID: mdl-35902830

ABSTRACT

BACKGROUND: Relationships between gut microbiomes and airway immunity have been established in murine and human studies of allergy and asthma. Early life Lactobacillus supplementation alters the composition and metabolic productivity of the gut microbiome. However, little is known of how Lactobacillus supplementation impacts the gut microbiota in children with cystic fibrosis (CF) and whether specific microbiota states that arise following gut microbiome manipulation relate to pulmonary outcomes. METHODS: Stool samples were collected from CF patients enrolled in a multi-center, double-blind, randomized placebo-controlled trial of daily Lactobacillus rhamnosus strain GG (LGG) probiotic supplementation over a 12-month period. Fecal 16S rRNA biomarker sequencing was used to profile fecal bacterial microbiota and analyses were performed in QiiME. RESULTS: Bifidobacteria-dominated fecal microbiota were more likely to arise in LGG-treated children with CF (P = 0.04). Children with Bifidobacteria-dominated gut microbiota had a reduced rate of pulmonary exacerbations (IRR = 0.55; 95% CI 0.25 to 0.82; P = 0.01), improved pulmonary function (+ 20.00% of predicted value FEV1; 95% CI 8.05 to 31.92; P = 0.001), lower intestinal inflammation (Calprotectin; Coef = - 16.53 µg g-1 feces; 95% CI - 26.80 to - 6.26; P = 0.002) and required fewer antibiotics (IRR = 0.43; 95% CI 0.22 to 0.69; P = 0.04) compared to children with Bacteroides-dominated microbiota who were less likely to have received LGG. CONCLUSIONS: The majority of pediatric CF patients in this study possessed a Bacteroides- or Bifidobacteria-dominated gut microbiota. Bifidobacteria-dominated gut microbiota were more likely to be associated with LGG-supplementation and with better clinical outcomes.


Subject(s)
Cystic Fibrosis , Lacticaseibacillus rhamnosus , Probiotics , Animals , Bifidobacterium/genetics , Child , Cystic Fibrosis/complications , Humans , Lactobacillus/genetics , Lacticaseibacillus rhamnosus/genetics , Mice , Probiotics/therapeutic use , RNA, Ribosomal, 16S/genetics
6.
J Allergy Clin Immunol ; 144(5): 1187-1197, 2019 11.
Article in English | MEDLINE | ID: mdl-31201890

ABSTRACT

BACKGROUND: In infants, distinct nasopharyngeal bacterial microbiotas differentially associate with the incidence and severity of acute respiratory tract infection and childhood asthma development. OBJECTIVE: We hypothesized that distinct nasal airway microbiota structures also exist in children with asthma and relate to clinical outcomes. METHODS: Nasal secretion samples (n = 3122) collected after randomization during the fall season from children with asthma (6-17 years, n = 413) enrolled in a trial of omalizumab (anti-IgE) underwent 16S rRNA profiling. Statistical analyses with exacerbation as the primary outcome and rhinovirus infection and respiratory illnesses as secondary outcomes were performed. Using A549 epithelial cells, we assessed nasal isolates of Moraxella, Staphylococcus, and Corynebacterium species for their capacity to induce epithelial damage and inflammatory responses. RESULTS: Six nasal airway microbiota assemblages, each dominated by Moraxella, Staphylococcus, Corynebacterium, Streptococcus, Alloiococcus, or Haemophilus species, were observed. Moraxella and Staphylococcus species-dominated microbiotas were most frequently detected and exhibited temporal stability. Nasal microbiotas dominated by Moraxella species were associated with increased exacerbation risk and eosinophil activation. Staphylococcus or Corynebacterium species-dominated microbiotas were associated with reduced respiratory illness and exacerbation events, whereas Streptococcus species-dominated assemblages increased the risk of rhinovirus infection. Nasal microbiota composition remained relatively stable despite viral infection or exacerbation; only a few taxa belonging to the dominant genera exhibited relative abundance fluctuations during these events. In vitro, Moraxella catarrhalis induced significantly greater epithelial damage and inflammatory cytokine expression (IL-33 and IL-8) compared with other dominant nasal bacterial isolates tested. CONCLUSION: Distinct nasal airway microbiotas of children with asthma relate to the likelihood of exacerbation, rhinovirus infection, and respiratory illnesses during the fall season.


Subject(s)
Asthma/microbiology , Eosinophils/immunology , Microbiota/genetics , Nasal Mucosa/microbiology , RNA, Ribosomal, 16S/analysis , Respiratory System/pathology , Respiratory Tract Infections/microbiology , A549 Cells , Adolescent , Asthma/immunology , Cell Death , Child , Disease Progression , Female , Humans , Infant , Inflammation , Male , Nasal Mucosa/immunology , Respiratory Tract Infections/immunology
7.
Am J Respir Crit Care Med ; 197(5): 621-631, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29035085

ABSTRACT

RATIONALE: Cigarette smoking is associated with increased risk of acute respiratory distress syndrome (ARDS) in patients after severe trauma; however, the mechanisms underlying this association are unknown. OBJECTIVES: To determine whether cigarette smoking contributes to ARDS development after trauma by altering community composition of the lung microbiota. METHODS: We studied the lung microbiota of mechanically ventilated patients admitted to the ICU after severe blunt trauma. To do so, we used 16S ribosomal RNA gene amplicon sequencing of endotracheal aspirate samples obtained on ICU admission (n = 74) and at 48 hours after admission (n = 30). Cigarette smoke exposure (quantified using plasma cotinine), ARDS development, and other clinical parameters were correlated with lung microbiota composition. MEASUREMENTS AND MAIN RESULTS: Smoking status was significantly associated with lung bacterial community composition at ICU admission (P = 0.007 by permutational multivariate ANOVA [PERMANOVA]) and at 48 hours (P = 0.03 by PERMANOVA), as well as with significant enrichment of potential pathogens, including Streptococcus, Fusobacterium, Prevotella, Haemophilus, and Treponema. ARDS development was associated with lung community composition at 48 hours (P = 0.04 by PERMANOVA) and was characterized by relative enrichment of Enterobacteriaceae and of specific taxa enriched at baseline in smokers, including Prevotella and Fusobacterium. CONCLUSIONS: After severe blunt trauma, a history of smoking is related to lung microbiota composition, both at the time of ICU admission and at 48 hours. ARDS development is also correlated with respiratory microbial community structure at 48 hours and with taxa that are relatively enriched in smokers at ICU admission. The data derived from this pilot study suggest that smoking-related changes in the lung microbiota could be related to ARDS development after severe trauma.


Subject(s)
Lung/microbiology , Microbiota , Respiration, Artificial , Respiratory Distress Syndrome/epidemiology , Smoking/epidemiology , Wounds, Nonpenetrating/epidemiology , Adult , Comorbidity , Critical Illness , Female , Humans , Lung/physiopathology , Male , Middle Aged , Pilot Projects , Prospective Studies , Respiratory Distress Syndrome/microbiology , Respiratory Distress Syndrome/physiopathology , San Francisco/epidemiology
8.
Am J Epidemiol ; 184(4): 261-73, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27492895

ABSTRACT

The association between tobacco smoke and acute myeloid leukemia (AML) is well established in adults but not in children. Individual-level data on parental cigarette smoking were obtained from 12 case-control studies from the Childhood Leukemia International Consortium (CLIC, 1974-2012), including 1,330 AML cases diagnosed at age <15 years and 13,169 controls. We conducted pooled analyses of CLIC studies, as well as meta-analyses of CLIC and non-CLIC studies. Overall, maternal smoking before, during, or after pregnancy was not associated with childhood AML; there was a suggestion, however, that smoking during pregnancy was associated with an increased risk in Hispanics (odds ratio = 2.08, 95% confidence interval (CI): 1.20, 3.61) but not in other ethnic groups. By contrast, the odds ratios for paternal lifetime smoking were 1.34 (95% CI: 1.11, 1.62) and 1.18 (95% CI: 0.92, 1.51) in pooled and meta-analyses, respectively. Overall, increased risks from 1.2- to 1.3-fold were observed for pre- and postnatal smoking (P < 0.05), with higher risks reported for heavy smokers. Associations with paternal smoking varied by histological type. Our analyses suggest an association between paternal smoking and childhood AML. The association with maternal smoking appears limited to Hispanic children, raising questions about ethnic differences in tobacco-related exposures and biological mechanisms, as well as study-specific biases.


Subject(s)
Leukemia, Myeloid, Acute/chemically induced , Tobacco Smoke Pollution/adverse effects , Adolescent , Adult , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Male , Odds Ratio , Parents , Pregnancy , Prenatal Exposure Delayed Effects/chemically induced , Risk , Socioeconomic Factors
9.
Epidemiology ; 25(6): 811-22, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25207954

ABSTRACT

BACKGROUND: Maternal prenatal supplementation with folic acid and other vitamins has been inconsistently associated with a reduced risk of childhood acute lymphoblastic leukemia (ALL). Little is known regarding the association with acute myeloid leukemia (AML), a rarer subtype. METHODS: We obtained original data on prenatal use of folic acid and vitamins from 12 case-control studies participating in the Childhood Leukemia International Consortium (enrollment period: 1980-2012), including 6,963 cases of ALL, 585 cases of AML, and 11,635 controls. Logistic regression was used to estimate pooled odds ratios (ORs) and 95% confidence intervals (CIs), adjusted for child's age, sex, ethnicity, parental education, and study center. RESULTS: Maternal supplements taken any time before conception or during pregnancy were associated with a reduced risk of childhood ALL; odds ratios were 0.85 (95% CI = 0.78-0.92) for vitamin use and 0.80 (0.71-0.89) for folic acid use. The reduced risk was more pronounced in children whose parents' education was below the highest category. The analyses for AML led to somewhat unstable estimates; ORs were 0.92 (0.75-1.14) and 0.68 (0.48-0.96) for prenatal vitamins and folic acid, respectively. There was no strong evidence that risks of either types of leukemia varied by period of supplementation (preconception, pregnancy, or trimester). CONCLUSIONS: Our results, based on the largest number of childhood leukemia cases to date, suggest that maternal prenatal use of vitamins and folic acid reduces the risk of both ALL and AML and that the observed association with ALL varied by parental education, a surrogate for lifestyle and sociodemographic characteristics.


Subject(s)
Folic Acid/administration & dosage , Leukemia, Myeloid, Acute/epidemiology , Leukemia, Myeloid, Acute/prevention & control , Precursor Cell Lymphoblastic Leukemia-Lymphoma/epidemiology , Precursor Cell Lymphoblastic Leukemia-Lymphoma/prevention & control , Vitamins/administration & dosage , Adolescent , Case-Control Studies , Child , Child, Preschool , Dietary Supplements , Female , Humans , Infant , Infant, Newborn , Male , Maternal-Fetal Exchange , Pregnancy , Risk , Risk Factors
10.
Ann Med ; 56(1): 2338244, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38648495

ABSTRACT

INTRODUCTION: A large proportion of patients with inflammatory bowel disease (IBD) experience IBD-related inflammatory conditions outside of the gastrointestinal tract, termed extraintestinal manifestations (EIMs) which further decreases quality of life and, in extreme cases, can be life threatening. The pathogenesis of EIMs remains unknown, and although gut microbiota alterations are a well-known characteristic of patients with IBD, its relationship with EIMs remains sparsely investigated. This study aimed to compare the gut microbiota of patients with IBD with and without EIMs. METHODS: A total of 131 Danish patients with IBD were included in the study, of whom 86 had a history of EIMs (IBD-EIM) and 45 did not (IBD-C). Stool samples underwent 16S rRNA sequencing. Amplicon sequence variants (ASVs) were mapped to the Silva database. Diversity indices and distance matrices were compared between IBD-EIM and IBD-C. Differentially abundant ASVs were identified using a custom multiple model statistical analysis approach, and modules of co-associated bacteria were identified using sparse correlations for compositional data (SparCC) and related to patient EIM status. RESULTS: Patients with IBD and EIMs exhibited increased disease activity, body mass index, increased fecal calprotectin levels and circulating monocytes and neutrophils. Microbiologically, IBD-EIM exhibited lower fecal microbial diversity than IBD-C (Mann-Whitney's test, p = .01) and distinct fecal microbiota composition (permutational multivariate analysis of variance; weighted UniFrac, R2 = 0.018, p = .01). A total of 26 ASVs exhibited differential relative abundances between IBD-EIM and IBD-C, including decreased Agathobacter and Blautia and increased Eggerthella lenta in the IBD-EIM group. SparCC analysis identified 27 bacterial co-association modules, three of which were negatively related to EIM (logistic regression, p < .05) and included important health-associated bacteria, such as Agathobacter and Faecalibacterium. CONCLUSIONS: The fecal microbiota in IBD patients with EIMs is distinct from that in IBD patients without EIM and could be important for EIM pathogenesis.


Subject(s)
Feces , Gastrointestinal Microbiome , Inflammatory Bowel Diseases , RNA, Ribosomal, 16S , Humans , Feces/microbiology , Male , Female , Inflammatory Bowel Diseases/microbiology , Inflammatory Bowel Diseases/complications , Middle Aged , Adult , RNA, Ribosomal, 16S/genetics , Denmark , Leukocyte L1 Antigen Complex/analysis , Leukocyte L1 Antigen Complex/metabolism , Aged
11.
Sci Rep ; 14(1): 18558, 2024 08 09.
Article in English | MEDLINE | ID: mdl-39122767

ABSTRACT

Fecal microbial transplantation (FMT) offers promise for treating ulcerative colitis (UC), though the mechanisms underlying treatment failure are unknown. This study harnessed longitudinally collected colonic biopsies (n = 38) and fecal samples (n = 179) from 19 adults with mild-to-moderate UC undergoing serial FMT in which antimicrobial pre-treatment and delivery mode (capsules versus enema) were assessed for clinical response (≥ 3 points decrease from the pre-treatment Mayo score). Colonic biopsies underwent dual RNA-Seq; fecal samples underwent parallel 16S rRNA and shotgun metagenomic sequencing as well as untargeted metabolomic analyses. Pre-FMT, the colonic mucosa of non-responsive (NR) patients harbored an increased burden of bacteria, including Bacteroides, that expressed more antimicrobial resistance genes compared to responsive (R) patients. NR patients also exhibited muted mucosal expression of innate immune antimicrobial response genes. Post-FMT, NR and R fecal microbiomes and metabolomes exhibited significant divergence. NR metabolomes had elevated concentrations of immunostimulatory compounds including sphingomyelins, lysophospholipids and taurine. NR fecal microbiomes were enriched for Bacteroides fragilis and Bacteroides salyersiae strains that encoded genes capable of taurine production. These findings suggest that both effective mucosal microbial clearance and reintroduction of bacteria that reshape luminal metabolism associate with FMT success and that persistent mucosal and fecal colonization by antimicrobial-resistant Bacteroides species may contribute to FMT failure.


Subject(s)
Bacteroides , Colitis, Ulcerative , Fecal Microbiota Transplantation , Feces , Intestinal Mucosa , Humans , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/therapy , Colitis, Ulcerative/metabolism , Male , Female , Feces/microbiology , Bacteroides/genetics , Adult , Intestinal Mucosa/microbiology , Intestinal Mucosa/metabolism , Middle Aged , Gastrointestinal Microbiome , Treatment Failure , RNA, Ribosomal, 16S/genetics , Metabolome
12.
Gut Microbes ; 16(1): 2290661, 2024.
Article in English | MEDLINE | ID: mdl-38117587

ABSTRACT

Early life gut microbiome composition has been correlated with childhood obesity, though microbial functional contributions to disease origins remain unclear. Here, using an infant birth cohort (n = 349) we identify a distinct fecal microbiota composition in 1-month-old infants with the lowest rate of exclusive breastfeeding, that relates with higher relative risk for obesity and overweight phenotypes at two years. Higher-risk infant fecal microbiomes exhibited accelerated taxonomic and functional maturation and broad-ranging metabolic reprogramming, including reduced concentrations of neuro-endocrine signals. In vitro, exposure of enterocytes to fecal extracts from higher-risk infants led to upregulation of genes associated with obesity and with expansion of nutrient sensing enteroendocrine progenitor cells. Fecal extracts from higher-risk infants also promoted enterocyte barrier dysfunction. These data implicate dysregulation of infant microbiome functional development, and more specifically promotion of enteroendocrine signaling and epithelial barrier impairment in the early-life developmental origins of childhood obesity.


Subject(s)
Gastrointestinal Microbiome , Microbiota , Pediatric Obesity , Infant , Humans , Child , Enterocytes , Gastrointestinal Microbiome/physiology , Feces
13.
J Bone Miner Res ; 39(2): 95-105, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38477719

ABSTRACT

Laparoscopic sleeve gastrectomy (LSG), the most common bariatric surgical procedure, leads to durable weight loss and improves obesity-related comorbidities. However, it induces abnormalities in bone metabolism. One unexplored potential contributor is the gut microbiome, which influences bone metabolism and is altered after surgery. We characterized the relationship between the gut microbiome and skeletal health in severe obesity and after LSG. In a prospective cohort study, 23 adults with severe obesity underwent skeletal health assessment and stool collection preoperatively and 6 mo after LSG. Gut microbial diversity and composition were characterized using 16S rRNA gene sequencing, and fecal concentrations of short-chain fatty acids (SCFA) were measured with LC-MS/MS. Spearman's correlations and PERMANOVA analyses were applied to assess relationships between the gut microbiome and bone health measures including serum bone turnover markers (C-terminal telopeptide of type 1 collagen [CTx] and procollagen type 1 N-terminal propeptide [P1NP]), areal BMD, intestinal calcium absorption, and calciotropic hormones. Six months after LSG, CTx and P1NP increased (by median 188% and 61%, P < .01) and femoral neck BMD decreased (mean -3.3%, P < .01). Concurrently, there was a decrease in relative abundance of the phylum Firmicutes. Although there were no change in overall microbial diversity or fecal SCFA concentrations after LSG, those with greater within-subject change in gut community microbial composition (ß-diversity) postoperatively had greater increases in P1NP level (ρ = 0.48, P = .02) and greater bone loss at the femoral neck (ρ = -0.43, P = .04). In addition, within-participant shifts in microbial richness/evenness (α-diversity) were associated with changes in IGF-1 levels (ρ = 0.56, P < .01). The lower the postoperative fecal butyrate concentration, the lower the IGF-1 level (ρ = 0.43, P = .04). Meanwhile, the larger the decrease in butyrate concentration, the higher the postoperative CTx (ρ = -0.43, P = .04). These findings suggest that LSG-induced gut microbiome alteration may influence skeletal outcomes postoperatively, and microbial influences on butyrate formation and IGF-1 are possible mechanisms.


Laparoscopic sleeve gastrectomy (LSG), the most common bariatric surgical procedure, is a highly effective treatment for obesity because it produces dramatic weight loss and improves obesity-related medical conditions. However, it also results in abnormalities in bone metabolism. It is important to understand how LSG affects the skeleton, so that bone loss after surgery might be prevented. We studied adult men and women before and 6 mo after LSG, and we explored the relationship between the altered gut bacteria and bone metabolism changes. We found that: Those with greater shifts in their gut bacterial composition had more bone loss.Butyrate, a metabolite produced by gut bacteria from fermentation of dietary fiber, was associated with less bone breakdown and higher IGF-1 level (a bone-building hormone). We conclude that changes in the gut bacteria may contribute to the negative skeletal impact of LSG and reduced butyrate production by the gut bacteria leading to lower IGF-1 levels is a possible mechanism.


Subject(s)
Bone and Bones , Gastrectomy , Gastrointestinal Microbiome , Laparoscopy , Humans , Female , Male , Adult , Bone and Bones/metabolism , Middle Aged , Feces/microbiology , Biomarkers/metabolism
14.
Ann Clin Transl Neurol ; 11(1): 169-184, 2024 01.
Article in English | MEDLINE | ID: mdl-37955284

ABSTRACT

OBJECTIVE: The relationship between multiple sclerosis and the gut microbiome has been supported by animal models in which commensal microbes are required for the development of experimental autoimmune encephalomyelitis. However, observational study findings in humans have only occasionally converged when comparing multiple sclerosis cases and controls which may in part reflect confounding by comorbidities and disease duration. The study of microbiome in pediatric-onset multiple sclerosis offers unique opportunities as it is closer to biological disease onset and minimizes confounding by comorbidities and environmental exposures. METHODS: A multicenter case-control study in which 35 pediatric-onset multiple sclerosis cases were 1:1 matched to healthy controls on age, sex, self-reported race, ethnicity, and recruiting site. Linear mixed effects models, weighted correlation network analyses, and PICRUSt2 were used to identify microbial co-occurrence networks and for predicting functional abundances based on marker gene sequences. RESULTS: Two microbial co-occurrence networks (one reaching significance after adjustment for multiple comparisons; q < 0.2) were identified, suggesting interdependent bacterial taxa that exhibited association with disease status. Both networks indicated a potentially protective effect of higher relative abundance of bacteria observed in these clusters. Functional predictions from the significant network suggested a contribution of short-chain fatty acid producers through anaerobic fermentation pathways in healthy controls. Consistent family-level findings from an independent Canadian-US study (19 case/control pairs) included Ruminococaccaeae and Lachnospiraceae (p < 0.05). Macronutrient intake was not significantly different between cases and controls, minimizing the potential for dietary confounding. INTERPRETATION: Our results suggest that short-chain fatty acid producers may be important contributors to multiple sclerosis onset.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Multiple Sclerosis , Animals , Child , Humans , Canada , Case-Control Studies , Fatty Acids, Volatile
15.
medRxiv ; 2024 Sep 16.
Article in English | MEDLINE | ID: mdl-39371172

ABSTRACT

Background: Bariatric surgery is highly effective in achieving weight loss in children and adolescents with severe obesity, however the underlying mechanisms are incompletely understood, and gut microbiome changes are unknown. Objectives: 1) To comprehensively examine gut microbiome and metabolome changes after laparoscopic vertical sleeve gastrectomy (VSG) in adolescents and 2) to assess whether the microbiome/metabolome changes observed with VSG influence phenotype using germ-free murine models. Design: 1) A longitudinal observational study in adolescents undergoing VSG with serial stool samples undergoing shotgun metagenomic microbiome sequencing and metabolomics (polar metabolites, bile acids and short chain fatty acids) and 2) a human-to-mouse fecal transplant study. Results: We show adolescents exhibit significant gut microbiome and metabolome shifts several months after VSG, with increased alpha diversity and notably with enrichment of oral-associated taxa. To assess causality of the microbiome/metabolome changes in phenotype, pre-VSG and post-VSG stool was transplanted into germ-free mice. Post-VSG stool was not associated with any beneficial outcomes such as adiposity reduction compared pre-VSG stool. However, post-VSG stool exhibited an inflammatory phenotype with increased intestinal Th17 and decreased regulatory T cells. Concomitantly, we found elevated fecal calprotectin and an enrichment of proinflammatory pathways in a subset of adolescents post-VSG. Conclusion: We show that in some adolescents, microbiome changes post-VSG may have inflammatory potential, which may be of importance considering the increased incidence of inflammatory bowel disease post-VSG.

16.
J Allergy Clin Immunol Pract ; 10(9): 2195-2204, 2022 09.
Article in English | MEDLINE | ID: mdl-35718258

ABSTRACT

Allergic diseases exclusively affect tissues that face environmental challenges and harbor endogenous bacterial microbiota. The microbes inhabiting the affected tissues may not be mere bystanders in this process but actively affect the risk of allergic sensitization, disease development, and exacerbation or abatement of symptoms. Experimental evidence provides several plausible means by which the human microbiota could influence the development of allergic diseases including, but not limited to, effects on antigen presentation and induction of tolerance and allergen permeation by endorsing or disrupting epithelial barrier integrity. Epidemiological evidence attests to the significance of age-appropriate, nonpathogenic microbiota development in skin, gastrointestinal tract, and airways for protection against allergic disease development. Thus, there exist potential targets for preventive actions either in the prenatal or postnatal period. These could include maternal dietary interventions, antibiotic stewardship for both the mother and infant, reducing elective cesarean deliveries, and understanding barriers to breastfeeding and timing of food diversification. In here, we will review the current understanding and evidence of allergy-associated human microbiota patterns, their role in the development of allergic diseases, and how we could harness these associations to our benefit against allergies.


Subject(s)
Asthma , Dermatitis, Atopic , Food Hypersensitivity , Microbiota , Breast Feeding , Female , Humans , Infant , Pregnancy
17.
Front Pediatr ; 10: 979777, 2022.
Article in English | MEDLINE | ID: mdl-36324820

ABSTRACT

Assessing the association of the newborn metabolic state with severity of subsequent respiratory tract infection may provide important insights on infection pathogenesis. In this multi-site birth cohort study, we identified newborn metabolites associated with lower respiratory tract infection (LRTI) in the first year of life in a discovery cohort and assessed for replication in two independent cohorts. Increased citrulline concentration was associated with decreased odds of LRTI (discovery cohort: aOR 0.83 [95% CI 0.70-0.99], p = 0.04; replication cohorts: aOR 0.58 [95% CI 0.28-1.22], p = 0.15). While our findings require further replication and investigation of mechanisms of action, they identify a novel target for LRTI prevention and treatment.

18.
J Clin Endocrinol Metab ; 107(4): 1053-1064, 2022 03 24.
Article in English | MEDLINE | ID: mdl-34888663

ABSTRACT

CONTEXT: The adverse skeletal effects of Roux-en-Y gastric bypass (RYGB) are partly caused by intestinal calcium absorption decline. Prebiotics, such as soluble corn fiber (SCF), augment colonic calcium absorption in healthy individuals. OBJECTIVE: We tested the effects of SCF on fractional calcium absorption (FCA), biochemical parameters, and the fecal microbiome in a post-RYGB population. METHODS: Randomized, double-blind, placebo-controlled trial of 20 postmenopausal women with history of RYGB a mean 5 years prior; a 2-month course of 20 g/day SCF or maltodextrin placebo was taken orally. The main outcome measure was between-group difference in absolute change in FCA (primary outcome) and was measured with a gold standard dual stable isotope method. Other measures included tolerability, adherence, serum calciotropic hormones and bone turnover markers, and fecal microbial composition via 16S rRNA gene sequencing. RESULTS: Mean FCA ± SD at baseline was low at 5.5 ± 5.1%. Comparing SCF to placebo, there was no between-group difference in mean (95% CI) change in FCA (+3.4 [-6.7, +13.6]%), nor in calciotropic hormones or bone turnover markers. The SCF group had a wider variation in FCA change than placebo (SD 13.4% vs 7.0%). Those with greater change in microbial composition following SCF treatment had greater increase in FCA (r2 = 0.72, P = 0.05). SCF adherence was high, and gastrointestinal symptoms were similar between groups. CONCLUSION: No between-group differences were observed in changes in FCA or calciotropic hormones, but wide CIs suggest a variable impact of SCF that may be due to the degree of gut microbiome alteration. Daily SCF consumption was well tolerated. Larger and longer-term studies are warranted.


Subject(s)
Gastric Bypass , Calcium , Calcium, Dietary , Female , Gastric Bypass/adverse effects , Hormones , Humans , Postmenopause , Prebiotics , RNA, Ribosomal, 16S , Vitamin D
19.
Cell Rep Med ; 3(8): 100713, 2022 08 16.
Article in English | MEDLINE | ID: mdl-35932762

ABSTRACT

Maternal asthma status, prenatal exposures, and infant gut microbiota perturbation are associated with heightened risk of atopy and asthma risk in childhood, observations hypothetically linked by intergenerational microbial transmission. Using maternal vaginal (n = 184) and paired infant stool (n = 172) samples, we identify four compositionally and functionally distinct Lactobacillus-dominated vaginal microbiota clusters (VCs) that relate to prenatal maternal health and exposures and infant serum immunoglobulin E (IgE) status at 1 year. Variance in bacteria shared between mother and infant pairs relate to VCs, maternal allergy/asthma status, and infant IgE levels. Heritable bacterial gene pathways associated with infant IgE include fatty acid synthesis and histamine and tryptophan degradation. In vitro, vertically transmitted Lactobacillus jensenii strains induce immunosuppressive phenotypes on human antigen-presenting cells. Murine supplementation with L. jensenii reduces lung eosinophils, neutrophilic expansion, and the proportion of interleukin-4 (IL-4)+ CD4+ T cells. Thus, bacterial and atopy heritability are intimately linked, suggesting a microbial component of intergenerational disease transmission.


Subject(s)
Asthma , Gastrointestinal Microbiome , Hypersensitivity, Immediate , Animals , Asthma/genetics , Bacteria/genetics , Female , Gastrointestinal Microbiome/genetics , Humans , Immune Tolerance/genetics , Immunoglobulin E , Infant , Mice , Pregnancy
20.
Lancet Microbe ; 3(5): e357-e365, 2022 05.
Article in English | MEDLINE | ID: mdl-35544096

ABSTRACT

BACKGROUND: Pneumonia is a leading cause of death worldwide and is a major health-care challenge in people living with HIV. Despite this, the causes of pneumonia in this population remain poorly understood. We aimed to assess the feasibility of metatranscriptomics for epidemiological surveillance of pneumonia in patients with HIV in Uganda. METHODS: We performed a retrospective observational study in patients with HIV who were admitted to Mulago Hospital, Kampala, Uganda between Oct 1, 2009, and Dec 31, 2011. Inclusion criteria were age 18 years or older, HIV-positivity, and clinically diagnosed pneumonia. Exclusion criteria were contraindication to bronchoscopy or an existing diagnosis of tuberculosis. Bronchoalveolar lavage fluid was collected within 72 h of admission and a combination of RNA sequencing and Mycobacterium tuberculosis culture plus PCR were performed. The primary outcome was detection of an established or possible respiratory pathogen in the total study population. FINDINGS: We consecutively enrolled 217 patients during the study period. A potential microbial cause for pneumonia was identified in 211 (97%) patients. At least one microorganism of established respiratory pathogenicity was identified in 113 (52%) patients, and a microbe of possible pathogenicity was identified in an additional 98 (45%). M tuberculosis was the most commonly identified established pathogen (35 [16%] patients; in whom bacterial or viral co-infections were identified in 13 [37%]). Streptococcus mitis, although not previously reported as a cause of pneumonia in patients with HIV, was the most commonly identified bacterial organism (37 [17%] patients). Haemophilus influenzae was the most commonly identified established bacterial pathogen (20 [9%] patients). Pneumocystis jirovecii was only identified in patients with a CD4 count of less than 200 cells per mL. INTERPRETATION: We show the feasibility of using metatranscriptomics for epidemiologic surveillance of pneumonia by describing the spectrum of respiratory pathogens in adults with HIV in Uganda. Applying these methods to a contemporary cohort could enable broad assessment of changes in pneumonia aetiology following the emergence of SARS-CoV-2. FUNDING: US National Institutes of Health, Chan Zuckerberg Biohub.


Subject(s)
COVID-19 , HIV Infections , Pneumonia , Adolescent , Adult , Cross-Sectional Studies , HIV Infections/complications , Humans , Pneumonia/epidemiology , SARS-CoV-2 , Uganda/epidemiology , United States
SELECTION OF CITATIONS
SEARCH DETAIL