Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Immunity ; 48(6): 1208-1219.e4, 2018 06 19.
Article in English | MEDLINE | ID: mdl-29858011

ABSTRACT

While signals that activate group 3 innate lymphoid cells (ILC3s) have been described, the factors that negatively regulate these cells are less well understood. Here we found that the tumor necrosis factor (TNF) superfamily member receptor activator of nuclear factor κB ligand (RANKL) suppressed ILC3 activity in the intestine. Deletion of RANKL in ILC3s and T cells increased C-C motif chemokine receptor 6 (CCR6)+ ILC3 abundance and enhanced production of interleukin-17A (IL-17A) and IL-22 in response to IL-23 and during infection with the enteric murine pathogen Citrobacter rodentium. Additionally, CCR6+ ILC3s produced higher amounts of the master transcriptional regulator RORγt at steady state in the absence of RANKL. RANKL-mediated suppression was independent of T cells, and instead occurred via interactions between CCR6+ ILC3s that expressed both RANKL and its receptor, RANK. Thus, RANK-RANKL interactions between ILC3s regulate ILC3 abundance and activation, suggesting that cell clustering may control ILC3 activity.


Subject(s)
Immunity, Innate/immunology , Lymphocyte Subsets/immunology , RANK Ligand/immunology , Animals , Cytokines/biosynthesis , Cytokines/immunology , Lymphocyte Subsets/metabolism , Mice , Nuclear Receptor Subfamily 1, Group F, Member 3/biosynthesis , Nuclear Receptor Subfamily 1, Group F, Member 3/immunology , RANK Ligand/metabolism , Receptors, CCR6/immunology
2.
Proc Natl Acad Sci U S A ; 121(13): e2309994121, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38517976

ABSTRACT

Maternal immunoglobulins of the class G (IgGs) protect offspring from enteric infection, but when, where, and how these antibodies are physiologically generated and confer protection remains enigmatic. We found that circulating IgGs in adult mice preferentially bind early-life gut commensal bacteria over their own adult gut commensal bacteria. IgG-secreting plasma cells specific for early-life gut bacteria appear in the intestine soon after weaning, where they remain into adulthood. Manipulating exposure to gut bacteria or plasma cell development before, but not after, weaning reduced IgG-secreting plasma cells targeting early-life gut bacteria throughout life. Further, the development of this anti-gut commensal IgG response coincides with the early-life interval in which goblet cell-associated antigen passages (GAPs) are present in the colon. Offspring of dams "perturbed" by B cell ablation or reduced bacterial exposure in early life were more susceptible to enteric pathogen challenge. In contrast to current concepts, protective maternal IgGs targeted translocating gut commensals in the offspring, not the enteric pathogen. These early-life events affecting anti-commensal IgG production have intergenerational effects for protection of the offspring.


Subject(s)
B-Lymphocytes , Bacteria , Animals , Mice , Bacteria/metabolism , Goblet Cells/metabolism , Immunoglobulin G
3.
Nat Immunol ; 14(9): 937-48, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23913046

ABSTRACT

Defense against attaching-and-effacing bacteria requires the sequential generation of interleukin 23 (IL-23) and IL-22 to induce protective mucosal responses. Although CD4(+) and NKp46(+) innate lymphoid cells (ILCs) are the critical source of IL-22 during infection, the precise source of IL-23 is unclear. We used genetic techniques to deplete mice of specific subsets of classical dendritic cells (cDCs) and analyzed immunity to the attaching-and-effacing pathogen Citrobacter rodentium. We found that the signaling receptor Notch2 controlled the terminal stage of cDC differentiation. Notch2-dependent intestinal CD11b(+) cDCs were an obligate source of IL-23 required for survival after infection with C. rodentium, but CD103(+) cDCs dependent on the transcription factor Batf3 were not. Our results demonstrate a nonredundant function for CD11b(+) cDCs in the response to pathogens in vivo.


Subject(s)
Citrobacter rodentium/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Receptor, Notch2/metabolism , Animals , Antigens, CD/metabolism , CD11b Antigen/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Dendritic Cells/cytology , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Enterobacteriaceae Infections/mortality , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Interleukin-23/metabolism , Intestinal Mucosa/microbiology , Lectins, C-Type/metabolism , Lymphotoxin beta Receptor/genetics , Lymphotoxin beta Receptor/metabolism , Mice , Mice, Transgenic , Minor Histocompatibility Antigens , Receptor, Notch2/deficiency , Receptors, Cell Surface/metabolism , Signal Transduction , Spleen/immunology , Transcription Factors/genetics , Transcription Factors/metabolism , Wound Healing/genetics , Wound Healing/immunology
4.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34083442

ABSTRACT

Lymphoid tissue inducer (LTi)-like cells are tissue resident innate lymphocytes that rapidly secrete cytokines that promote gut epithelial integrity and protect against extracellular bacterial infections.Here, we report that the retention of LTi-like cells in conventional solitary intestinal lymphoid tissue (SILT) is essential for controlling LTi-like cell function and is maintained by expression of the chemokine receptor CXCR5. Deletion of Cxcr5 functionally unleashed LTi-like cells in a cell intrinsic manner, leading to uncontrolled IL-17 and IL-22 production. The elevated production of IL-22 in Cxcr5-deficient mice improved gut barrier integrity and protected mice during infection with the opportunistic pathogen Clostridium difficile Interestingly, Cxcr5-/- mice developed LTi-like cell aggregates that were displaced from their typical niche at the intestinal crypt, and LTi-like cell hyperresponsiveness was associated with the local formation of this unconventional SILT. Thus, LTi-like cell positioning within mucosa controls their activity via niche-specific signals that temper cytokine production during homeostasis.


Subject(s)
Immunity, Innate , Interleukin-17/immunology , Interleukins/immunology , Intestinal Mucosa/immunology , Lymphocytes/immunology , Receptors, CXCR5/immunology , Animals , Gene Deletion , Interleukin-17/genetics , Interleukins/genetics , Intestinal Mucosa/cytology , Lymphocytes/cytology , Mice , Mice, Knockout , Receptors, CXCR5/genetics , Interleukin-22
5.
Nat Immunol ; 13(2): 144-51, 2011 Nov 20.
Article in English | MEDLINE | ID: mdl-22101730

ABSTRACT

Innate lymphoid cells (ILCs) of the ILC22 type protect the intestinal mucosa from infection by secreting interleukin 22 (IL-22). ILC22 cells include NKp46(+) and lymphoid tissue-inducer (LTi)-like subsets that express the aryl hydrocarbon receptor (AHR). Here we found that Ahr(-/-) mice had a considerable deficit in ILC22 cells that resulted in less secretion of IL-22 and inadequate protection against intestinal bacterial infection. Ahr(-/-) mice also lacked postnatally 'imprinted' cryptopatches and isolated lymphoid follicles (ILFs), but not embryonically 'imprinted' Peyer's patches. AHR induced the transcription factor Notch, which was required for NKp46(+) ILCs, whereas LTi-like ILCs, cryptopatches and ILFs were partially dependent on Notch signaling. Thus, AHR was essential for ILC22 cells and postnatal intestinal lymphoid tissues. Moreover, ILC22 subsets were heterogeneous in their requirement for Notch and their effect on the generation of intestinal lymphoid tissues.


Subject(s)
Receptor, Notch1/metabolism , Receptor, Notch2/metabolism , Receptors, Aryl Hydrocarbon/metabolism , Animals , Antigens, Ly/metabolism , Female , Gastrointestinal Tract/immunology , Gastrointestinal Tract/metabolism , Interleukins/genetics , Interleukins/immunology , Interleukins/metabolism , Lymphoid Tissue/immunology , Lymphoid Tissue/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Natural Cytotoxicity Triggering Receptor 1/metabolism , Signal Transduction/immunology , Interleukin-22
6.
J Surg Res ; 258: 73-81, 2021 02.
Article in English | MEDLINE | ID: mdl-33002664

ABSTRACT

BACKGROUND: Short bowel syndrome resulting from small bowel resection (SBR) is associated with significant morbidity and mortality. Many adverse sequelae including steatohepatitis and bacterial overgrowth are thought to be related to increased bacterial translocation, suggesting alterations in gut permeability. We hypothesized that after intestinal resection, the intestinal barrier is altered via toll-like receptor 4 (TLR4) signaling at the intestinal level. METHODS: B6 and intestinal-specific TLR4 knockout (iTLR4 KO) mice underwent 50% SBR or sham operation. Transcellular permeability was evaluated by measuring goblet cell associated antigen passages via two-photon microscopy. Fluorimetry and electron microscopy evaluation of tight junctions (TJ) were used to assess paracellular permeability. In parallel experiments, single-cell RNA sequencing measured expression of intestinal integral TJ proteins. Western blot and immunohistochemistry confirmed the results of the single-cell RNA sequencing. RESULTS: There were similar number of goblet cell associated antigen passages after both SBR and sham operation (4.5 versus 5.0, P > 0.05). Fluorescein isothiocyanate-dextran uptake into the serum after massive SBR was significantly increased compared with sham mice (2.13 ± 0.39 ng/µL versus 1.62 ± 0.23 ng/µL, P < 0.001). SBR mice demonstrated obscured TJ complexes on electron microscopy. Single-cell RNA sequencing revealed a decrease in TJ protein occludin (21%) after SBR (P < 0.05), confirmed with immunostaining and western blot analysis. The KO of iTLR4 mitigated the alterations in permeability after SBR. CONCLUSIONS: Permeability after SBR is increased via changes at the paracellular level. However, these alterations were prevented in iTLR4 mice. These findings suggest potential protein targets for restoring the intestinal barrier and obviating the adverse sequelae of short bowel syndrome.


Subject(s)
Intestinal Mucosa/metabolism , Short Bowel Syndrome/etiology , Tight Junctions/metabolism , Toll-Like Receptor 4/metabolism , Animals , Mice, Inbred C57BL , Mice, Knockout , Permeability , Short Bowel Syndrome/metabolism , Tight Junctions/ultrastructure , Toll-Like Receptor 4/genetics
7.
J Allergy Clin Immunol ; 144(4): 1058-1073.e3, 2019 10.
Article in English | MEDLINE | ID: mdl-31175877

ABSTRACT

BACKGROUND: Food-induced anaphylaxis (FIA) is an IgE-dependent immune response that can affect multiple organs and lead to life-threatening complications. The processes by which food allergens cross the mucosal surface and are delivered to the subepithelial immune compartment to promote the clinical manifestations associated with food-triggered anaphylaxis are largely unexplored. OBJECTIVE: We sought to define the processes involved in the translocation of food allergens across the mucosal epithelial surface to the subepithelial immune compartment in FIA. METHODS: Two-photon confocal and immunofluorescence microscopy was used to visualize and trace food allergen passage in a murine model of FIA. A human colon cancer cell line, RNA silencing, and pharmacologic approaches were used to identify the molecular regulation of intestinal epithelial allergen uptake and translocation. Human intestinal organoid transplants were used to demonstrate the conservation of these molecular processes in human tissues. RESULTS: Food allergens are sampled by using small intestine (SI) epithelial secretory cells (termed secretory antigen passages [SAPs]) that are localized to the SI villous and crypt region. SAPs channel food allergens to lamina propria mucosal mast cells through an IL-13-CD38-cyclic adenosine diphosphate ribose (cADPR)-dependent process. Blockade of IL-13-induced CD38/cADPR-dependent SAP antigen passaging in mice inhibited induction of clinical manifestations of FIA. IL-13-CD38-cADPR-dependent SAP sampling of food allergens was conserved in human intestinal organoids. CONCLUSION: We identify that SAPs are a mechanism by which food allergens are channeled across the SI epithelium mediated by the IL-13/CD38/cADPR pathway, regulate the onset of FIA reactions, and are conserved in human intestine.


Subject(s)
Allergens/immunology , Anaphylaxis/immunology , Food Hypersensitivity/immunology , Interleukin-13/immunology , Intestinal Mucosa/immunology , Allergens/metabolism , Anaphylaxis/metabolism , Animals , Food Hypersensitivity/metabolism , Humans , Immunoglobulin E/immunology , Interleukin-13/metabolism , Intestinal Mucosa/metabolism , Mast Cells/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred NOD , Mice, SCID
8.
Nature ; 483(7389): 345-9, 2012 Mar 14.
Article in English | MEDLINE | ID: mdl-22422267

ABSTRACT

The intestinal immune system is exposed to a mixture of foreign antigens from diet, commensal flora and potential pathogens. Understanding how pathogen-specific immunity is elicited while avoiding inappropriate responses to the background of innocuous antigens is essential for understanding and treating intestinal infections and inflammatory diseases. The ingestion of protein antigen can induce oral tolerance, which is mediated in part by a subset of intestinal dendritic cells (DCs) that promote the development of regulatory T cells. The lamina propria (LP) underlies the expansive single-cell absorptive villous epithelium and contains a large population of DCs (CD11c(+) CD11b(+) MHCII(+) cells) comprised of two predominant subsets: CD103(+) CX(3)CR1(-) DCs, which promote IgA production, imprint gut homing on lymphocytes and induce the development of regulatory T cells, and CD103(-) CX(3)CR1(+) DCs (with features of macrophages), which promote tumour necrosis factor-α (TNF-α) production, colitis, and the development of T(H)17 T cells. However, the mechanisms by which different intestinal LP-DC subsets capture luminal antigens in vivo remains largely unexplored. Using a minimally disruptive in vivo imaging approach we show that in the steady state, small intestine goblet cells (GCs) function as passages delivering low molecular weight soluble antigens from the intestinal lumen to underlying CD103(+) LP-DCs. The preferential delivery of antigens to DCs with tolerogenic properties implies a key role for this GC function in intestinal immune homeostasis.


Subject(s)
Antigens, CD/metabolism , Antigens/immunology , Dendritic Cells/immunology , Dendritic Cells/metabolism , Goblet Cells/immunology , Immune Tolerance/immunology , Integrin alpha Chains/metabolism , Intestine, Small/immunology , Animals , Antigens/metabolism , Dendritic Cells/cytology , Diet , Goblet Cells/metabolism , Homeostasis , Humans , Immunoglobulin A/immunology , Intestine, Small/cytology , Intestine, Small/metabolism , Mice , Mice, Transgenic , Microscopy, Fluorescence, Multiphoton , Solubility , T-Lymphocytes, Regulatory/immunology , Th17 Cells/immunology , Tumor Necrosis Factor-alpha/immunology
9.
Immunology ; 152(4): 613-627, 2017 12.
Article in English | MEDLINE | ID: mdl-28746740

ABSTRACT

The intestinal lamina propria (LP) contains antigen-presenting cells with features of dendritic cells and macrophages, collectively referred to as mononuclear phagocytes (MNPs). Association of MNPs with the epithelium is thought to play an important role in multiple facets of intestinal immunity including imprinting MNPs with the ability to induce IgA production, inducing the expression of gut homing molecules on T cells, facilitating the capture of luminal antigens and microbes, and subsequent immune responses in the mesenteric lymph node (MLN). However, the factors promoting this process in the steady state are largely unknown, and in vivo models to test and confirm the importance of LP-MNP association with the epithelium for these outcomes are unexplored. Evaluation of epithelial expression of chemoattractants in mice where MNP-epithelial associations were impaired suggested CCL20 as a candidate promoting epithelial association. Expression of CCR6, the only known receptor for CCL20, was required for MNPs to associate with the epithelium. LP-MNPs from CCR6-/- mice did not display defects in acquiring antigen and stimulating T-cell responses in ex vivo assays or in responses to antigen administered systemically. However, LP-MNPs from CCR6-deficient mice were impaired at acquiring luminal and epithelial antigens, inducing IgA production in B cells, inducing immune responses in the MLN, and capturing and trafficking luminal commensal bacteria to the MLN. These findings identify a crucial role for CCR6 in promoting LP-MNPs to associate with the intestinal epithelium in the steady state to perform multiple functions promoting gut immune homeostasis.


Subject(s)
Dendritic Cells/immunology , Genomic Imprinting/immunology , Immunologic Surveillance , Intestinal Mucosa/immunology , Macrophages/immunology , Receptors, CCR6/immunology , Animals , B-Lymphocytes/cytology , B-Lymphocytes/immunology , Chemokine CCL20/genetics , Chemokine CCL20/immunology , Dendritic Cells/cytology , Humans , Macrophages/cytology , Mice , Mice, Knockout , Receptors, CCR6/genetics , T-Lymphocytes/cytology , T-Lymphocytes/immunology
10.
Gut ; 65(7): 1100-9, 2016 07.
Article in English | MEDLINE | ID: mdl-26045138

ABSTRACT

OBJECTIVE: Antibiotic use is associated with an increased risk of developing multiple inflammatory disorders, which in turn are linked to alterations in the intestinal microbiota. How these alterations in the intestinal microbiota translate into an increased risk for inflammatory responses is largely unknown. Here we investigated whether and how antibiotics promote inflammation via the translocation of live native gut commensal bacteria. DESIGN: Oral antibiotics were given to wildtype and induced mutant mouse strains, and the effects on bacterial translocation, inflammatory responses and the susceptibility to colitis were evaluated. The sources of the bacteria and the pathways required for bacterial translocation were evaluated using induced mutant mouse strains, 16s rRNA sequencing to characterise the microbial communities, and in vivo and ex vivo imaging techniques. RESULTS: Oral antibiotics induced the translocation of live native commensal bacteria across the colonic epithelium, promoting inflammatory responses, and predisposing to increased disease in response to coincident injury. Bacterial translocation resulted from decreased microbial signals delivered to colonic goblet cells (GCs), was associated with the formation of colonic GC-associated antigen passages, was abolished when GCs were depleted and required CX3CR1(+) dendritic cells. Bacterial translocation occurred following a single dose of most antibiotics tested, and the predisposition for increased inflammation was only associated with antibiotics inducing bacterial translocation. CONCLUSIONS: These findings reveal an unexpected outcome of antibiotic therapy and suggest that bacterial translocation as a result of alterations in the intestinal microflora may provide a link between increasing antibiotic use and the increased incidence of inflammatory disorders.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Translocation/drug effects , Colon/microbiology , Goblet Cells/metabolism , Goblet Cells/microbiology , Inflammation/microbiology , Lymph Nodes/microbiology , Animals , Bacterial Translocation/immunology , CX3C Chemokine Receptor 1 , Colitis/microbiology , Cytokines/metabolism , Dendritic Cells/chemistry , Disease Susceptibility , Enterococcus faecalis/isolation & purification , Escherichia coli/isolation & purification , Goblet Cells/immunology , Intestine, Small/microbiology , Mesentery , Mice , Mice, Inbred C57BL , Myeloid Differentiation Factor 88 , Receptors, Chemokine/analysis
11.
Am J Pathol ; 180(3): 984-997, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22222225

ABSTRACT

Dendritic cells (DCs) use all-trans retinoic acid (ATRA) to promote characteristic intestinal responses, including Foxp3(+) Treg conversion, lymphocyte gut homing molecule expression, and IgA production. How this ability to generate ATRA is conferred to DCs in vivo remains largely unstudied. Here, we observed that among DCs, retinaldehyde dehydrogenase (ALDH1), which catalyzes the conversion of retinal to ATRA, was preferentially expressed by small intestine CD103(+) lamina propria (LP) DCs. Retinoids induced LP CD103(+) DCs to generate ATRA via ALDH1 activity. Either biliary or dietary retinoids were required to confer ALDH activity to LP DCs in vivo. Cellular retinol-binding protein II (CRBPII), a cytosolic retinoid chaperone that directs enterocyte retinol and retinal metabolism but is redundant to maintain serum retinol, was required to confer ALDH activity to CD103(+) LP DCs. CRBPII expression was restricted to small intestine epithelial cells, and ALDH activity in CRBPII(-/-) DCs was restored by transfer to a wild-type recipient. CD103(+) LP DCs from CRBPII(-/-) mice had a decreased capacity to promote IgA production. Moreover, CD103(+) DCs preferentially associated with the small intestine epithelium and LP CD103(+) DC ALDH activity, and the ability to promote IgA production was reduced in mice with impaired DC-epithelia associations. These findings demonstrate in vivo roles for the expression of epithelial CRBPII and lumenal retinoids to imprint local gut DCs with an intestinal phenotype.


Subject(s)
Dendritic Cells/metabolism , Immunoglobulin A/biosynthesis , Intestine, Small/metabolism , Isoenzymes/metabolism , Retinal Dehydrogenase/metabolism , Retinol-Binding Proteins, Cellular/metabolism , Tretinoin/metabolism , Aldehyde Dehydrogenase 1 Family , Animals , Antigens, CD/metabolism , Dendritic Cells/immunology , Immunity, Cellular/physiology , Integrin alpha Chains/metabolism , Interleukin-6/metabolism , Intestine, Small/cytology , Intestine, Small/immunology , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Phenotype
12.
Front Immunol ; 14: 1268909, 2023.
Article in English | MEDLINE | ID: mdl-37901245

ABSTRACT

Vancomycin is a broad-spectrum antibiotic widely used in cases of suspected sepsis in premature neonates. While appropriate and potentially lifesaving in this setting, early-life antibiotic exposure alters the developing microbiome and is associated with an increased risk of deadly complications, including late-onset sepsis (LOS) and necrotizing enterocolitis (NEC). Recent studies show that neonatal vancomycin treatment disrupts postnatal enteric nervous system (ENS) development in mouse pups, which is in part dependent upon neuroimmune interactions. This suggests that early-life antibiotic exposure could disrupt these interactions in the neonatal gut. Notably, a subset of tissue-resident intestinal macrophages, muscularis macrophages, has been identified as important contributors to the development of postnatal ENS. We hypothesized that vancomycin-induced neonatal dysbiosis impacts postnatal ENS development through its effects on macrophages. Using a mouse model, we found that exposure to vancomycin in the first 10 days of life, but not in adult mice, resulted in an expansion of pro-inflammatory colonic macrophages by increasing the recruitment of bone-marrow-derived macrophages. Single-cell RNA sequencing of neonatal colonic macrophages revealed that early-life vancomycin exposure was associated with an increase in immature and inflammatory macrophages, consistent with an influx of circulating monocytes differentiating into macrophages. Lineage tracing confirmed that vancomycin significantly increased the non-yolk-sac-derived macrophage population. Consistent with these results, early-life vancomycin exposure did not expand the colonic macrophage population nor decrease enteric neuron density in CCR2-deficient mice. Collectively, these findings demonstrate that early-life vancomycin exposure alters macrophage number and phenotypes in distinct ways compared with vancomycin exposure in adult mice and results in altered ENS development.


Subject(s)
Gastrointestinal Microbiome , Sepsis , Mice , Animals , Vancomycin/adverse effects , Dysbiosis/chemically induced , Macrophages , Anti-Bacterial Agents/adverse effects , Neurons , Sepsis/chemically induced
13.
Gut Microbes ; 15(2): 2284240, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38036944

ABSTRACT

Obesity and the metabolic syndrome are complex disorders resulting from multiple factors including genetics, diet, activity, inflammation, and gut microbes. Animal studies have identified roles for each of these, however the contribution(s) specifically attributed to the gut microbiota remain unclear, as studies have used combinations of genetically altered mice, high fat diet, and/or colonization of germ-free mice, which have an underdeveloped immune system. We investigated the role(s) of the gut microbiota driving obesity and inflammation independent of manipulations in diet and genetics in mice with fully developed immune systems. We demonstrate that the human obese gut microbiota alone was sufficient to drive weight gain, systemic, adipose tissue, and intestinal inflammation, but did not promote intestinal barrier leak. The obese microbiota induced gene expression promoting caloric uptake/harvest but was less effective at inducing genes associated with mucosal immune responses. Thus, the obese gut microbiota is sufficient to induce weight gain and inflammation.


Subject(s)
Gastrointestinal Microbiome , Humans , Animals , Mice , Obesity/metabolism , Weight Gain , Inflammation/metabolism , Diet, High-Fat/adverse effects , Adipose Tissue/metabolism , Mice, Inbred C57BL
14.
J Immunol ; 184(7): 3907-16, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20181893

ABSTRACT

The chronic inflammatory bowel diseases are characterized by aberrant innate and adaptive immune responses to commensal luminal bacteria. In both human inflammatory bowel disease and in experimental models of colitis, there is an increased expression of the enzyme IDO. IDO expression has the capacity to exert antimicrobial effects and dampen adaptive immune responses. In the murine trinitrobenzene sulfonic acid model of colitis, inhibition of this enzyme leads to worsened disease severity, suggesting that IDO acts as a natural break in limiting colitis. In this investigation, we show that induction of IDO-1 by a TLR-9 agonist, immunostimulatory (ISS) DNA, critically contributes to its colitis limiting capacities. ISS DNA induces intestinal expression of IDO-1 but not the recently described paralog enzyme IDO-2. This induction occurred in both epithelial cells and in subsets of CD11c(+) and CD11b(+) cells of the lamina propria, which also increase after ISS-oligodeoxynucleotide. Signaling required for intestinal IDO-1 induction involves IFN-dependent pathways, as IDO-1 was not induced in STAT-1 knockout mice. Using both the trinitrobenzene sulfonic acid and dextran sodium sulfate models of colitis, we show the importance of IDO-1s induction in limiting colitis severity. The clinical parameters and histological correlates of colitis in these models were improved by administration of the TLR-9 agonist; however, when the function of IDO is inhibited, the colitis limiting effects of ISS-oligodeoxynucleotide were abrogated. These findings support the possibility that targeted induction of IDO-1 is an approach deserving further investigation as a therapeutic strategy for diseases of intestinal inflammation.


Subject(s)
Adjuvants, Immunologic/pharmacology , Colitis/enzymology , Colitis/immunology , Indoleamine-Pyrrole 2,3,-Dioxygenase/metabolism , Oligodeoxyribonucleotides/pharmacology , Signal Transduction/immunology , Animals , Blotting, Western , Chromatography, High Pressure Liquid , Colitis/pathology , DNA/pharmacology , Dextran Sulfate/toxicity , Female , Fluorescent Antibody Technique , Intestinal Mucosa/enzymology , Isoenzymes/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mucous Membrane/enzymology , Oligodeoxyribonucleotides/immunology , Reverse Transcriptase Polymerase Chain Reaction , Toll-Like Receptor 9/agonists , Trinitrobenzenesulfonic Acid/toxicity
15.
Am J Pathol ; 176(5): 2367-77, 2010 May.
Article in English | MEDLINE | ID: mdl-20304952

ABSTRACT

In the adult intestine, luminal microbiota induce cryptopatches to transform into isolated lymphoid follicles (ILFs), which subsequently act as sites for the generation of IgA responses. The events leading to this conversion are incompletely understood. Dendritic cells (DCs) are components of cryptopatches (CPs) and ILFs and were therefore evaluated in this process. We observed that the adult murine intestine contains clusters of DCs restricted to the CP/ILF continuum. A numerical and cell associative hierarchy in the adult intestine and a chronologic hierarchy in the neonatal intestine demonstrated that these clusters form after the coalescence of CD90+ cells to form CPs and before the influx of B220+ B lymphocytes to form ILFs. Cluster formation was dependent on lymphotoxin and the lymphotoxin beta receptor and independent of lymphocytes. The ILF DC population was distinguished from that of the lamina propria by the absence of CD4+CD11c+ cells and an increased proportion of CD11c+B220+ cells. The formation of clusters was not limited by DC numbers but was induced by luminal microbiota. Moreover, in the absence of the chemokine CXCL13, CP transformation into ILF was arrested. Furthermore, ILF DCs express CXCL13, and depletion of DCs resulted in regression of ILFs and disorganization of CPs. These results reveal DC participation in ILF transformation and maintenance and suggest that in part this may be due to CXCL13 production by these cells.


Subject(s)
Chemokine CXCL13/metabolism , Dendritic Cells/cytology , Gene Expression Regulation , Intestine, Small/metabolism , Lymphoid Tissue/metabolism , Animals , B-Lymphocytes/cytology , Flow Cytometry/methods , Immune System , Leukocyte Common Antigens/metabolism , Lymphocytes/cytology , Mice , Mice, Inbred C57BL , Mucous Membrane/pathology , Thy-1 Antigens/biosynthesis
16.
Immun Ageing ; 8(1): 1, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21214915

ABSTRACT

BACKGROUND: Immunosenescence is the age-related decline and dysfunction of protective immunity leading to a marked increase in the risk of infections, autoimmune disease, and cancer. The majority of studies have focused on immunosenescence in the systemic immune system; information concerning the effect of aging on intestinal immunity is limited. Isolated lymphoid follicles (ILFs) are newly appreciated dynamic intestinal lymphoid structures that arise from nascent lymphoid tissues, or cryptopatches (CP), in response to local inflammatory stimuli. ILFs promote "homeostatic" responses including the production of antigen-specific IgA, thus playing a key role in mucosal immune protection. ILF dysfunction with aging could contribute to immunosenescence of the mucosal system, and accordingly we examined phenotypic and functional aspects of ILFs from young (2 month old) and aged (2 year old) mice. RESULTS: We observed that aged mice have increased numbers of ILFs and increased numbers of structures corresponding to an early stage of CPs transforming into ILFs. The cellular composition of ILFs in aged mice is altered with a smaller B-lymphocyte population and an increased T-lymphocyte population. The ILF T-lymphocyte population is notable by the presence of CD4+ CD8αα+ T-lymphocytes, which are absent from the systemic compartment. The smaller B-lymphocyte population in ILFs from aged mice is directly correlated with decreased mRNA and protein expression of CCL20 and CXCL13, two chemokines that play crucial roles in recruiting B-lymphocytes into ILFs. Aged mice had elevated levels of serum and fecal immunoglobulins and despite the decreased B-lymphocyte population, ILFs from aged mice displayed increased IgA production. The immunoglobulin repertoire was skewed in aged mice, and ILFs demonstrated a repertoire usage similar to that of the systemic pool in both young and aged mice. CONCLUSIONS: Here we observed that ILF development, cellular composition, and immunoglobulin production are altered with aging suggesting that ILF dysfunction contributes to mucosal immunosenescence.

17.
Elife ; 102021 10 22.
Article in English | MEDLINE | ID: mdl-34677124

ABSTRACT

Intestinal goblet cells maintain the protective epithelial barrier through mucus secretion and yet sample lumenal substances for immune processing through formation of goblet cell associated antigen passages (GAPs). The cellular biology of GAPs and how these divergent processes are balanced and regulated by goblet cells remains unknown. Using high-resolution light and electron microscopy, we found that in mice, GAPs were formed by an acetylcholine (ACh)-dependent endocytic event remarkable for delivery of fluid-phase cargo retrograde into the trans-golgi network and across the cell by transcytosis - in addition to the expected transport of fluid-phase cargo by endosomes to multi-vesicular bodies and lysosomes. While ACh also induced goblet cells to secrete mucins, ACh-induced GAP formation and mucin secretion were functionally independent and mediated by different receptors and signaling pathways, enabling goblet cells to differentially regulate these processes to accommodate the dynamically changing demands of the mucosal environment for barrier maintenance and sampling of lumenal substances.


Cells in the gut need to be protected against the many harmful microbes which inhabit this environment. Yet the immune system also needs to 'keep an eye' on intestinal contents to maintain tolerance to innocuous substances, such as those from the diet. The 'goblet cells' that are part of the gut lining do both: they create a mucus barrier that stops germs from invading the body, but they also can pass on molecules from the intestine to immune cells deep in the tissue to promote tolerance. This is achieved through a 'GAP' mechanism. A chemical messenger called acetylcholine can trigger both mucus release and the GAP process in goblet cells. Gustafsson et al. investigated how the cells could take on these two seemingly opposing roles in response to the same signal. A fluorescent molecule was introduced into the intestines of mice, and monitored as it pass through the goblet cells. This revealed how the GAP process took place: the cells were able to capture molecules from the intestines, wrap them in internal sack-like vesicles and then transport them across the entire cell. To explore the role of acetylcholine, Gustafsson et al. blocked the receptors that detect the messenger at the surface of goblet cells. Different receptors and therefore different cascades of molecular events were found to control mucus secretion and GAP formation; this explains how the two processes can be performed in parallel and independently from each other. Understanding how cells relay molecules to the immune system is relevant to other tissues in contact with the environment, such as the eyes, the airways, or the inside of the genital and urinary tracts. Understanding, and then ultimately harnessing this mechanism could help design of new ways to deliver drugs to the immune system and alter immune outcomes.


Subject(s)
Antigens/metabolism , Goblet Cells/metabolism , Transcytosis , Transport Vesicles/physiology , Animals , Mice
18.
Mucosal Immunol ; 14(3): 751-761, 2021 05.
Article in English | MEDLINE | ID: mdl-33674763

ABSTRACT

Although they globally cause viral gastroenteritis in children, astroviruses are understudied due to the lack of well-defined animal models. While murine astroviruses (muAstVs) chronically infect immunodeficient mice, a culture system and understanding of their pathogenesis is lacking. Here, we describe a platform to cultivate muAstV using air-liquid interface (ALI) cultures derived from mouse enteroids, which support apical infection and release. Chronic muAstV infection occurs predominantly in the small intestine and correlates with higher interferon-lambda (IFN-λ) expression. MuAstV stimulates IFN-λ production in ALI, recapitulating our in vivo findings. We demonstrate that goblet cells and enterocytes are targets for chronic muAstV infection in vivo, and that infection is enhanced by parasite co-infection or type 2 cytokine signaling. Depletion of goblet cells from ALI limits muAstV infection in vitro. During chronic infection, muAstV stimulates IFN-λ production in infected cells and induces ISGs throughout the intestinal epithelium in an IFN-λ-receptor-dependent manner. Collectively, our study provides insights into the cellular tropism and innate immune responses to muAstV and establishes an enteroid-based culture system to propagate muAstV in vitro.


Subject(s)
Astroviridae Infections/immunology , Astroviridae/physiology , Cytokines/metabolism , Enterocytes/virology , Gastroenteritis/immunology , Goblet Cells/virology , Th2 Cells/immunology , Animals , Cells, Cultured , Coinfection , Enterocytes/immunology , Goblet Cells/immunology , Humans , Immunity, Innate , Mice , Mice, Inbred C57BL , Mice, Knockout , Organ Culture Techniques , Viral Tropism
19.
J Immunol ; 181(6): 4052-61, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18768861

ABSTRACT

The alpha(4) integrins alpha(4)beta(7) and alpha(4)beta(1), and their ligands mucosal vascular addressin cell adhesion molecule 1 (MAdCAM-1) and VCAM-1, have diverse functions, including roles in the formation of secondary lymphoid tissues at early time points during the colonization and clustering of the fetal lymphoid tissue inducer (LTi) cells and at later time points during the recruitment of lymphocytes. In this study, we evaluated the role of alpha(4) integrins in the development of a recently appreciated class of intestinal lymphoid tissues, isolated lymphoid follicles (ILFs). We observed that diverse ILF cellular populations express alpha(4)beta(7) and alpha(4)beta(1), including the LTi-like cells and lymphocytes, while ILF stromal cells and vessels within ILFs express VCAM-1 and MAdCAM-1, respectively. Evaluation of adult and neonatal beta(7)(-/-) mice and adult and neonatal mice given blocking Abs to alpha(4)beta(7), MAdCAM-1, or VCAM-1 did not identify a role for alpha(4) integrins in cryptopatch (CP) development; however, these studies demonstrated that alpha(4)beta(7) and MAdCAM-1 are required for the transitioning of CP into lymphoid tissues containing lymphocytes or ILFs. Competitive bone marrow transfers demonstrated that beta(7)(-/-) LTi-like cells had a reduced but not significantly impaired ability to localize to CP. Bone marrow transfers and adoptive transfers of B lymphocytes revealed that beta(7) expression by B lymphocytes was essential for their entry into the developing ILFs. These findings demonstrate an essential role for alpha(4)beta(7)/MAdCAM-1 in ILF development corresponding to the influx of beta(7)-expressing lymphocytes and a nonessential role for beta(7)-localizing LTi-like cells to the small intestine.


Subject(s)
Cell Adhesion Molecules/metabolism , Cell Communication/immunology , Cell Movement/immunology , Integrin alpha Chains/metabolism , Integrin beta Chains/metabolism , Integrins/metabolism , Peyer's Patches/immunology , Animals , Animals, Newborn , Cell Adhesion Molecules/biosynthesis , Cell Adhesion Molecules/physiology , Cell Aggregation/immunology , Integrin alpha Chains/physiology , Integrin beta Chains/biosynthesis , Integrin beta Chains/genetics , Integrin beta Chains/physiology , Integrins/biosynthesis , Integrins/physiology , Intestinal Mucosa/blood supply , Intestinal Mucosa/cytology , Intestinal Mucosa/immunology , Intestinal Mucosa/metabolism , Ligands , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Mucoproteins , Peyer's Patches/blood supply , Peyer's Patches/metabolism , Platelet Endothelial Cell Adhesion Molecule-1/biosynthesis , Platelet Endothelial Cell Adhesion Molecule-1/genetics , Platelet Endothelial Cell Adhesion Molecule-1/metabolism
20.
Front Immunol ; 11: 603059, 2020.
Article in English | MEDLINE | ID: mdl-33613522

ABSTRACT

Atopic disorders including allergic rhinitis, asthma, food allergy, and dermatitis, are increasingly prevalent in Western societies. These disorders are largely characterized by T helper type 2 (Th2) immune responses to environmental triggers, particularly inhaled and dietary allergens. Exposure to such stimuli during early childhood reduces the frequency of allergies in at-risk children. These allergic responses can be restrained by regulatory T cells (Tregs), particularly Tregs arising in the gut. The unique attributes of how early life exposure to diet and microbes shape the intestinal Treg population is a topic of significant interest. While imprinting during early life promotes the development of a balanced immune system and protects against immunopathology, it remains unclear if Tregs that develop in early life continue to restrain systemic inflammatory responses throughout adulthood. Here, an inducible deletion strategy was used to label Tregs at specified time points with a targeted mechanism to be deleted later. Deletion of the Tregs labeled peri-weaning at day of life 24, but not before weaning at day of life 14, resulted in increased circulating IgE and IL-13, and abrogated induction of tolerance towards new antigens. Thus, Tregs developing peri-weaning, but not before day of life 14 are continually required to restrain allergic responses into adulthood.


Subject(s)
Cell Communication , Colon/immunology , Cytokines/blood , Hypersensitivity, Delayed/immunology , T-Lymphocytes, Regulatory/immunology , Th2 Cells/immunology , Administration, Oral , Adoptive Transfer , Age Factors , Animals , Animals, Genetically Modified , Antigens/administration & dosage , Antigens/immunology , Colon/metabolism , Disease Models, Animal , Hypersensitivity, Delayed/blood , Hypersensitivity, Delayed/genetics , Immune Tolerance , Immunoglobulin E/blood , Mice, Inbred C57BL , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Ovalbumin , Phenotype , Signal Transduction , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/transplantation , Th2 Cells/metabolism , Weaning
SELECTION OF CITATIONS
SEARCH DETAIL