Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Respir Crit Care Med ; 203(1): 90-101, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32730093

ABSTRACT

Rationale: Early pathogenesis of lung adenocarcinoma (LUAD) remains largely unknown. We found that, relative to wild-type littermates, the innate immunomodulator Lcn2 (lipocalin-2) was increased in normal airways from mice with knockout of the airway lineage gene Gprc5a (Gprc5a-/-) and that are prone to developing inflammation and LUAD. Yet, the role of LCN2 in lung inflammation and LUAD is poorly understood.Objectives: Delineate the role of Lcn2 induction in LUAD pathogenesis.Methods: Normal airway brushings, uninvolved lung tissues, and tumors from Gprc5a-/- mice before and after tobacco carcinogen exposure were analyzed by RNA sequencing. LCN2 mRNA was analyzed in public and in-house data sets of LUAD, lung squamous cancer (LUSC), chronic obstructive pulmonary disease (COPD), and LUAD/LUSC with COPD. LCN2 protein was immunohistochemically analyzed in a tissue microarray of 510 tumors. Temporal lung tumor development, gene expression programs, and host immune responses were compared between Gprc5a-/- and Gprc5a-/-/Lcn2-/- littermates.Measurements and Main Results:Lcn2 was progressively elevated during LUAD development and positively correlated with proinflammatory cytokines and inflammation gene sets. LCN2 was distinctively elevated in human LUADs, but not in LUSCs, relative to normal lungs and was associated with COPD among smokers and patients with LUAD. Relative to Gprc5a-/- mice, Gprc5a-/-/Lcn2-/- littermates exhibited significantly increased lung tumor development concomitant with reduced T-cell abundance (CD4+) and richness, attenuated antitumor immune gene programs, and increased immune cell expression of protumor inflammatory cytokines.Conclusions: Augmented LCN2 expression is a molecular feature of COPD-associated LUAD and counteracts LUAD development in vivo by maintaining antitumor immunity.


Subject(s)
Adenocarcinoma of Lung/immunology , Antineoplastic Agents/immunology , Lipocalin-2/genetics , Lipocalin-2/immunology , Lung Neoplasms/immunology , Pulmonary Disease, Chronic Obstructive/blood , Pulmonary Disease, Chronic Obstructive/physiopathology , Animals , Biomarkers/blood , Female , Gene Expression Regulation , Humans , Lipocalin-2/blood , Male , Mice , RNA, Messenger
2.
EBioMedicine ; 42: 296-303, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30905849

ABSTRACT

BACKGROUND: Genomic investigation of atypical adenomatous hyperplasia (AAH), the only known precursor lesion to lung adenocarcinomas (LUAD), presents challenges due to the low mutant cell fractions. This necessitates sensitive methods for detection of chromosomal aberrations to better study the role of critical alterations in early lung cancer pathogenesis and the progression from AAH to LUAD. METHODS: We applied a sensitive haplotype-based statistical technique to detect chromosomal alterations leading to allelic imbalance (AI) from genotype array profiling of 48 matched normal lung parenchyma, AAH and tumor tissues from 16 stage-I LUAD patients. To gain insights into shared developmental trajectories among tissues, we performed phylogenetic analyses and integrated our results with point mutation data, highlighting significantly-mutated driver genes in LUAD pathogenesis. FINDINGS: AI was detected in nine AAHs (56%). Six cases exhibited recurrent loss of 17p. AI and the enrichment of 17p events were predominantly identified in patients with smoking history. Among the nine AAH tissues with detected AI, seven exhibited evidence for shared chromosomal aberrations with matched LUAD specimens, including losses harboring tumor suppressors on 17p, 8p, 9p, 9q, 19p, and gains encompassing oncogenes on 8q, 12p and 1q. INTERPRETATION: Chromosomal aberrations, particularly 17p loss, appear to play critical roles early in AAH pathogenesis. Genomic instability in AAH, as well as truncal chromosomal aberrations shared with LUAD, provide evidence for mutation accumulation and are suggestive of a cancerized field contributing to the clonal selection and expansion of these premalignant lesions. FUND: Supported in part by Cancer Prevention and Research Institute of Texas (CPRIT) grant RP150079 (PS and HK), NIH grant R01HG005859 (PS) and The University of Texas MD Anderson Cancer Center Core Support Grant.


Subject(s)
Cell Transformation, Neoplastic/genetics , Lung/metabolism , Lung/pathology , Precancerous Conditions/genetics , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Adult , Aged , Aged, 80 and over , Alleles , Allelic Imbalance , Chromosomal Instability , Disease Progression , Female , Genetic Heterogeneity , Genome-Wide Association Study , Haplotypes , Humans , Hyperplasia , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Male , Middle Aged , Models, Statistical , Mutation , Neoplasm Staging , Phylogeny , Polymorphism, Single Nucleotide , Young Adult
3.
Cancer Prev Res (Phila) ; 11(4): 237-248, 2018 04.
Article in English | MEDLINE | ID: mdl-29382653

ABSTRACT

Smoking perpetuates in cytologically normal airways a molecular "field of injury" that is pertinent to lung cancer and early detection. The evolution of airway field changes prior to lung oncogenesis is poorly understood largely due to the long latency of lung cancer in smokers. Here, we studied airway expression changes prior to lung cancer onset in mice with knockout of the Gprc5a gene (Gprc5a-/-) and tobacco carcinogen (NNK) exposure and that develop the most common type of lung cancer, lung adenocarcinoma, within 6 months following exposure. Airway epithelial brushings were collected from Gprc5a-/- mice before exposure and at multiple times post-NNK until time of lung adenocarcinoma development and then analyzed by RNA sequencing. Temporal airway profiles were identified by linear models and analyzed by comparative genomics in normal airways of human smokers with and without lung cancer. We identified significantly altered profiles (n = 926) in the NNK-exposed mouse normal airways relative to baseline epithelia, a subset of which were concordantly modulated with smoking status in the human airway. Among airway profiles that were significantly modulated following NNK, we found that expression changes (n = 22) occurring as early as 2 months following exposure were significantly associated with lung cancer status when examined in airways of human smokers. Furthermore, a subset of a recently reported human bronchial gene classifier (Percepta; n = 56) was enriched in the temporal mouse airway profiles. We underscore evolutionarily conserved profiles in the normal-appearing airway that develop prior to lung oncogenesis and that comprise viable markers for early lung cancer detection in suspect smokers. Cancer Prev Res; 11(4); 237-48. ©2018 AACR.


Subject(s)
Adenocarcinoma/pathology , Bronchi/metabolism , Cell Transformation, Neoplastic/pathology , Gene Expression Regulation, Neoplastic , Lung Neoplasms/pathology , Receptors, G-Protein-Coupled/physiology , Smoking/adverse effects , Adenocarcinoma/etiology , Animals , Bronchi/pathology , Cell Transformation, Neoplastic/genetics , Female , Gene Expression Profiling , Genome, Human , Genomics , Humans , Lung Neoplasms/etiology , Male , Mice, Inbred C57BL , Mice, Knockout , Nitrosamines/toxicity
4.
Cancer Res ; 77(22): 6119-6130, 2017 11 15.
Article in English | MEDLINE | ID: mdl-28951454

ABSTRACT

There is a dearth of knowledge about the pathogenesis of premalignant lung lesions, especially for atypical adenomatous hyperplasia (AAH), the only known precursor for the major lung cancer subtype adenocarcinoma (LUAD). In this study, we performed deep DNA and RNA sequencing analyses of a set of AAH, LUAD, and normal tissues. Somatic BRAF variants were found in AAHs from 5 of 22 (23%) patients, 4 of 5 of whom had matched LUAD with driver EGFR mutations. KRAS mutations were present in AAHs from 4 of 22 (18%) of patients. KRAS mutations in AAH were only found in ever-smokers and were exclusive to BRAF-mutant cases. Integrative analysis revealed profiles expressed in KRAS-mutant cases (UBE2C, REL) and BRAF-mutant cases (MAX) of AAH, or common to both sets of cases (suppressed AXL). Gene sets associated with suppressed antitumor (Th1; IL12A, GZMB) and elevated protumor (CCR2, CTLA-4) immune signaling were enriched in AAH development and progression. Our results reveal potentially divergent BRAF or KRAS pathways in AAH as well as immune dysregulation in the pathogenesis of this premalignant lung lesion. Cancer Res; 77(22); 6119-30. ©2017 AACR.


Subject(s)
Adenocarcinoma/genetics , Genomics , Lung Neoplasms/genetics , Lung/metabolism , Precancerous Conditions/genetics , Proto-Oncogene Proteins B-raf/genetics , Proto-Oncogene Proteins p21(ras)/genetics , Adenocarcinoma/pathology , Aged , Disease Progression , Female , Gene Expression Profiling , Humans , Hyperplasia/genetics , Lung/pathology , Lung Neoplasms/pathology , Male , Middle Aged , Mutation
SELECTION OF CITATIONS
SEARCH DETAIL