Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
J Appl Microbiol ; 133(2): 665-672, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35476225

ABSTRACT

AIMS: Agar art bridges the gap between science and art using microbes instead of paint. Afterwards, the art can change in response to microbial fluctuation, meaning preservation of the original art is essential. Here, formaldehyde and glutaraldehyde were investigated as preservatives, involving techniques used in healthcare settings to preserve samples. METHODS AND RESULTS: Formaldehyde was tested at 1.0%, 2.0% and 3.7%, w/v, whereas glutaraldehyde was tested at 1% and 2.5%, w/v. Both compounds and respective concentrations were tested for different time periods. Escherichia coli, Serratia marcescens, Staphlococcus aureus and Micrococcus luteus were used as bacteria for "drawing" the works of art. The effectiveness of fixation was determined using integrated densities and visual assessment. Initially, both compounds showed potential promise, albeit with a loss of bacteria. Ser. marcescens was prone to colour changes and glutaraldehyde caused discolouration of agar and bacteria. These could be caused by a pH decrease in the agar, due to residual free aldehyde groups. Reduction of this was tested using 300 mM sodium metabisulfite to neutralize excess aldehydes. This initially led to reduced bacterial loss and avoided colour changes, however measurements 24 h post-fixation showed colour loss to some bacterial clusters. CONCLUSIONS: Here, at least 2% formaldehyde for a short fixation period, typically 1 min, depending on the species, was most promising for the preservation of art. Given the success of this with different bacteria, it would make a good starting combination for anyone trying to fix agar art, although methodology refinement may be needed for optimisation depending on the bacterial species used. SIGNIFICANCE AND IMPACT OF STUDY: This study shows, for the first time, successful fixation and preservation of different bacterial species on agar. The impact of this is to preserve agar art while making it safe and non-infective to those in contact with the microbial art.


Subject(s)
Aldehydes , Formaldehyde , Agar , Fixatives/pharmacology , Formaldehyde/pharmacology , Glutaral/pharmacology
2.
Arch Microbiol ; 201(7): 889-896, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30968220

ABSTRACT

Differences in the rumen bacterial community have been previously reported for Soay sheep housed under different day length conditions. This study extends this previous investigation to other organs of the digestive tract, as well as the analysis of ciliated protozoa and anaerobic fungi. The detectable concentrations of ciliated protozoa and anaerobic fungi decreased with increased day length in both the rumen and large colon, unlike those of bacteria where no effect was observed. Conversely, bacterial community composition was affected by day length in both the rumen and large colon, but the community composition of the detectable ciliated protozoa and anaerobic fungi was not affected. Day length-associated differences in the bacterial community composition extended to all of the organs examined, with the exception of the duodenum and the jejunum. It is proposed that differences in rumen fill and ruminal 'by-pass' nutrients together with endocrinological changes cause the observed effects of day length on the different gut microbial communities.


Subject(s)
Eating/radiation effects , Gastrointestinal Microbiome/radiation effects , Gastrointestinal Tract/microbiology , Microbiota/radiation effects , Sheep, Domestic/microbiology , Sheep, Domestic/parasitology , Sunlight , Animals , Bacterial Physiological Phenomena , Ciliophora/physiology , Fungi/physiology , Gastrointestinal Tract/parasitology , Sheep , Time Factors
3.
J Equine Sci ; 30(1): 1-5, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30944540

ABSTRACT

Next-generation sequencing of DNA from nematode eggs has been utilised to give the first account of the equine 'nemabiome'. In all equine faecal samples investigated, multiple species of Strongylidae were detected, ranging from 7.5 (SEM 0.79) with 99+% identity to sequences in the NCBI database to 13.3 (SEM 0.80) with 90+% identity. This range is typical of the number of species described previously in morphological studies using large quantities of digesta per animal. However, the current method is non-invasive; relies on DNA analysis, avoiding the need for specialist microscopy identification; and can be carried out with small samples, providing significant advantages over current methods.

4.
Genome ; 61(10): 767-770, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30184439

ABSTRACT

Height is an important characteristic in the equine industry although little is known about its genetic control in native British breeds of ponies. This study aimed to map QTL data with the withers height in four pony breeds native to the British Isles, including two different sections within Welsh Cobs. In this study, a genome-wide analysis approach using the Illumina EquineSNP50 Infinium BeadChip was applied to 105 ponies and cobs. Analysis identified 222 highly significant height-associated SNPs (P ≤ 10-5), among which three SNPs on ECA9 have also been previously reported elsewhere. The highest number of significant SNPs associated to height in the native British horses were located on ECA1, ECA8, and ECA16.


Subject(s)
Genotyping Techniques/methods , Horses/anatomy & histology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , Animals , Biometry , Breeding , Chromosome Mapping , Chromosomes, Mammalian/genetics , High-Throughput Nucleotide Sequencing , Horses/genetics , Whole Genome Sequencing/methods
5.
J Equine Sci ; 29(2): 47-51, 2018.
Article in English | MEDLINE | ID: mdl-29991923

ABSTRACT

Anthelmintics are used as anti-worming agents. Although known to affect their target organisms, nothing has been published regarding their effect on other digestive tract organisms or on metabolites produced by them. The current work investigated effects of fenbendazole, a benzimidazole anthelmintic, on bacteria and ciliates in the equine digestive tract and on and their major metabolites. Animals receiving anthelmintic treatment had high faecal egg counts relative to controls. Analysis was performed over two weeks, with temporal differences detected in bacterial populations but with no other significant differences detected. This suggests fenbendazole has no detectable effect on organisms other than its targets. Moreover it does not appear to make a contribution to changing the resulting metabolome.

6.
Vet Dermatol ; 26(5): 374-5, e84-5, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26123607

ABSTRACT

BACKGROUND: Sweating is important in regulating body temperature but can be a source of loss of both fluids and electrolytes. Although the process has been studied in horses, the variation in sweat osmolarity across the body has not. OBJECTIVES: This work describes an investigation to determine if there is regional variation in the osmolarity of sweat across different anatomical regions of the horse. ANIMALS: Ten horses were used in the study and were animals either stabled for riding lessons or had livery on-site. METHODS: Sweat samples were collected from five regions on each horse following exercise and the osmolarity measurements were made using an Osmomat 030 (Gonotec, Berlin, Germany). Values were analysed by paired t-tests and analysis of variance. RESULTS: Samples from the back and ears had statistically (P < 0.05) lower osmolarity values than those seen for the neck and forelimb, with thigh values intermediate between the other two sets of values. CONCLUSIONS AND CLINICAL IMPORTANCE: Previous studies have used osmolarity values based on the sweat collected from the horse's back. The current work demonstrates that these values are probably an underestimation of electrolyte loss, which may have implications for the composition and administration of rehydration compounds.


Subject(s)
Horses/metabolism , Sweat/metabolism , Animals , Back , Ear, External , Female , Forelimb , Horses/physiology , Male , Neck , Osmolar Concentration , Sweat/physiology , Thigh
7.
Antibiotics (Basel) ; 12(8)2023 Aug 10.
Article in English | MEDLINE | ID: mdl-37627727

ABSTRACT

Bovine mastitis is a polymicrobial disease characterised by inflammation of the udders of dairy and beef cattle. The infection has huge implications to health and welfare of animals, impacting milk and beef production and costing up to EUR 32 billion annually to the dairy industry, globally. Bacterial communities associated with the disease include representative species from Staphylococcus, Streptococcus, Enterococcus, Actinomyces, Aerococcus, Escherichia, Klebsiella and Proteus. Conventional treatment relies on antibiotics, but antimicrobial resistance, declining antibiotic innovations and biofilm production negatively impact therapeutic efficacy. Bacteriophages (phages) are viruses which effectively target and lyse bacteria with extreme specificity and can be a valuable supplement or replacement to antibiotics for bovine mastitis. In this review, we provide an overview of the etiology of bovine mastitis, the advantages of phage therapy over chemical antibiotics for the strains and research work conducted in the area in various model systems to support phage deployment in the dairy industry. We emphasise work on phage isolation procedures from samples obtained from mastitic and non-mastitic sources, characterisation and efficacy testing of single and multiple phages as standalone treatments or adjuncts to probiotics in various in vitro, ex vivo and in vivo bovine mastitis infection models. Furthermore, we highlight the areas where improvements can be made with focus on phage cocktail optimisation, formulation, and genetic engineering to improve delivery, stability, efficacy, and safety in cattle. Phage therapy is becoming more attractive in clinical medicine and agriculture and thus, could mitigate the impending catastrophe of antimicrobial resistance in the dairy sector.

8.
Curr Microbiol ; 61(4): 357-60, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20217090

ABSTRACT

Bacteria were isolated from rabbit faeces using equine caecal fluid as a growth medium. Two new isolates of the genus Streptococcus are described in terms of their biochemical properties. One of these has a 16S rRNA gene with 97.7%, and the other 98.5%, identity to Streptococcus thoraltensis. While S. thoraltensis has been described in the intestinal tract of pigs, it is generally considered to inhabit the porcine genital tract. The biochemical properties of these bacteria indicate that both new isolates showed an ability to digest xylose, an adaptation beneficial for survival in a niche where much of the nutrient supply is of plant origin. Moreover, having bacteria able to digest xylose in the digestive tract should be beneficial to the rabbit, allowing more effective utilisation and digestion of food. This work provides one of the few examples of an analysis of the physiological properties of a bacterium found in the hindgut of the rabbit. By building up a number of such studies, the mechanisms of bacterial digestion in the rabbit will become better understood.


Subject(s)
Cellobiose/metabolism , Feces/microbiology , Gastrointestinal Tract/microbiology , Streptococcus , Xylose/metabolism , Animals , Bacterial Typing Techniques , Cecum/microbiology , Cecum/physiology , DNA, Bacterial/analysis , Digestion , Gastrointestinal Contents/microbiology , Gastrointestinal Tract/physiology , Phylogeny , Plants/metabolism , RNA, Ribosomal, 16S/genetics , Rabbits , Streptococcus/classification , Streptococcus/genetics , Streptococcus/isolation & purification , Streptococcus/physiology , Symbiosis
9.
Animals (Basel) ; 10(3)2020 Mar 11.
Article in English | MEDLINE | ID: mdl-32168784

ABSTRACT

The purpose of this study was to compare the effect of the presence of protozoa in the rumen of wild roe deer (Capreolus capreolus) on the bacteria composition and digestion rate of the main carbohydrates of forage. The research material involved rumen content and rumen fluid, which were collected in the autumn-winter season, from eight adult males of roe deer with an average body mass of 22.6 kg. The microscopic analysis demonstrated that there were only protozoa in 50% of the animals sampled. Qualitative analysis revealed the presence of protozoa belonging to the genus Entodinium. The density of protozoal population varied from 6.5 to 38.7 × 105/mL rumen fluid. The analysis of bacteria composition indicated that protozoa did not have an effect on bacterial diversity. Furthermore, the results of hydrolytic activity revealed that the fastest digestion of carbohydrates was for pectin, while the slowest was inulin. The pH and redox potential in the rumen varied from 5.9 to 6.1 and from -248.1 to -251.1 mV, respectively. In summary, the presence of protozoa in the rumen of wild roe deer does not have an effect on the bacterial population and has no effect on the digestion rate of carbohydrates in the rumen.

10.
Microorganisms ; 8(11)2020 Nov 11.
Article in English | MEDLINE | ID: mdl-33187375

ABSTRACT

Anaerobic fungi in the gut of domesticated and wild mammalian herbivores play a key role in the host's ability to utilize plant biomass. Due to their highly effective ability to enzymatically degrade lignocellulose, anaerobic fungi are biotechnologically interesting. Numerous factors have been shown to affect the ability of anaerobic fungi to break down plant biomass. However, methods to reduce the non-productive lag time in batch cultures and the effect of leaf-blade cut-length and condition on the fungal fermentation are not known. Therefore, experimentation using a novel gas production approach with pre-grown, axenic cultures of Neocallimastix frontalis was performed using both fresh and air-dried perennial ryegrass leaf-blades of different cut-lengths. The methodology adopted removed the lag-phase and demonstrated the digestion of un-autoclaved leaf-blades. Fermentation of leaf-blades of 4.0 cm cut-length produced 18.4% more gas yet retained 11.2% more apparent DM relative to 0.5 cm cut-length leaf-blades. Drying did not affect fermentation by N. frontalis, although an interaction between drying and leaf-blade cut-length was noted. Removal of the lag phase and the use of un-autoclaved substrates are important when considering the biotechnological potential of anaerobic fungi. A hypothesis based upon sporulation at cut surfaces is proposed to describe the experimental results.

11.
Ecol Evol ; 10(3): 1352-1367, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32076519

ABSTRACT

The UK and Ireland have many native pony breeds with historical and cultural importance as well as being a source of uncharacterized genetic diversity. However, there is a lack of comprehensive research investigating their genetic diversity and phylogenetic interrelationships. Many studies contain a limited number of pony breeds or small sample sizes for these breeds. This may result in erroneous grouping of pony breeds that otherwise have intricate interrelationships with each other and are not evaluated correctly when placed as a token subset of a larger dataset. This is the first study that specifically investigates the genetic diversity within and between British and Irish native pony breeds using large sample numbers from locations of their native origin. This study used a panel of microsatellite markers and sequence analysis of the mitochondrial control region to analyze the genetic diversity within and between 11 pony breeds from Britain and Ireland. A large dataset was collected (a total of 485 animals were used for mtDNA analysis and 450 for microsatellite analysis), and previously published data were used to place the British and Irish ponies in a global context. The native ponies of Britain and Ireland were found to have had a complex history, and the interrelationships between the breeds were revealed. Overall, high levels of genetic diversity were maintained in native breeds, although some reduction was evident in small or isolated populations (Shetland, Carneddau, and Section C). Unusual mitochondrial diversity distribution patterns were apparent for the Carneddau and Dartmoor, although among breeds and global haplogroups there was a high degree of haplotype sharing evident, well-represented within British and Irish ponies. Ancestral maternal diversity was maintained by most populations, particularly the Fells and Welsh ponies, which exhibited rare and ancient lineages. The maternal and paternal histories of the breeds are distinct, with male-biased crossings between native breeds, and other shared influences, likely Arabs and Thoroughbreds, are apparent. The data generated herein provide valuable information to guide and implement the conservation of increasingly rare native genetic resources.

12.
Front Microbiol ; 11: 720, 2020.
Article in English | MEDLINE | ID: mdl-32411103

ABSTRACT

The rumen protozoa, alongside fungi, comprise the eukaryotic portion of the rumen microbiome. Rumen protozoa may account for up to 50% of biomass, yet their role in this ecosystem remains unclear. Early experiments inferred a role in carbohydrate and protein metabolism, but due to their close association with bacteria, definitively attributing these functions to the protozoa was challenging. The advent of 'omic technologies has created opportunities to broaden our understanding of the rumen protozoa. This study aimed to utilize these methods to further our understanding of the role that protozoa play in the rumen in terms of their metabolic capacities, and in doing so, contribute valuable sequence data to reduce the chance of mis or under-representation of the rumen protozoa in meta'omic datasets. Rumen protozoa were isolated and purified using glucose-based sedimentation and differential centrifugation, extracted RNA was Poly(A) fraction enriched and DNase treated before use in a phage-based, cDNA metatranscriptomic library. Biochemical activity testing of the phage library showed 6 putatively positive plaques in response to carboxymethyl cellulose agar (indicative of cellulose activity), and no positive results for tributyrin (indicative of esterase/lipase activity) or egg yolk agar (indicative of proteolysis). Direct sequencing of the cDNA was also conducted using the Illumina HiSeq 2500. The metatranscriptome identified a wealth of carbohydrate-active enzymes which accounted for 8% of total reads. The most highly expressed carbohydrate-active enzymes were glycosyl hydrolases 5 and 11, polysaccharide lyases and deacetylases, xylanases and enzymes active against pectin, mannan and chitin; the latter likely used to digest rumen fungi which contain a chitin-rich cell membrane. Codon usage analysis of expressed genes also showed evidence of horizontal gene transfer, suggesting that many of these enzymes were acquired from the rumen bacteria in an evolutionary response to the carbohydrate-rich environment of the rumen. This study provides evidence of the significant contribution that the protozoa make to carbohydrate breakdown in the rumen, potentially using horizontally acquired genes, and highlights their predatory capacity.

13.
J Equine Sci ; 20(4): 73-7, 2009.
Article in English | MEDLINE | ID: mdl-24833970

ABSTRACT

Although various combinations of parental coat colours can produce a Palomino foal, examination of records of the British Palomino Society suggest that many animals registered with the society resulted from matings which maximise the likelihood or even guarantee a Palomino foal. When show records were examined, it was clear that the colouration preferred by judges corresponds to that of the only pair-wise parental combination guaranteeing a Palomino foal.

14.
Sci Rep ; 9(1): 18621, 2019 12 09.
Article in English | MEDLINE | ID: mdl-31819069

ABSTRACT

Gut microbiota have been associated with health, disease and behaviour in several species and are an important link in gut-brain axis communication. Diet plays a key role in affecting the composition of gut microbiota. In horses, high-starch diets alter the hindgut microbiota. High-starch diets are also associated with increased behavioural reactivity in horses. These changes in microbiota and behaviour may be associated. This study compares the faecal microbiota and behaviour of 10 naïve ponies. A cross-over design was used with experimental groups fed high-starch (HS) or high-fibre (HF) diets. Results showed that ponies were more reactive and less settled when being fed the HS diet compared to the HF diet. Irrespective of diet, the bacterial profile was dominated by two main phyla, Firmicutes, closely followed by Bacteroidetes. However, at lower taxonomic levels multivariate analysis of 16S rRNA gene sequencing data showed diet affected faecal microbial community structure. The abundance of 85 OTUs differed significantly related to diet. Correlative relationships exist between dietary induced alterations to faecal microbiota and behaviour. Results demonstrate a clear link between diet, faecal microbial community composition and behaviour. Dietary induced alterations to gut microbiota play a role in affecting the behaviour of the host.


Subject(s)
Animal Feed , Behavior, Animal , Brain/metabolism , Feces , Gastrointestinal Microbiome/drug effects , Intestines/physiology , Starch/administration & dosage , Animals , Bacteroidetes , Cross-Over Studies , Dietary Fiber , Firmicutes , Horses , Multivariate Analysis , RNA, Ribosomal, 16S , Sequence Analysis, RNA
15.
FEMS Microbiol Ecol ; 66(3): 537-45, 2008 Dec.
Article in English | MEDLINE | ID: mdl-18673390

ABSTRACT

Anaerobic fungi (Neocallimastigales) are active degraders of fibrous plant material in the rumen. However, only limited information is available relating to how quickly they colonize ingested feed particles. The aim of this study was to determine the dynamics of initial colonization of forage by anaerobic fungi in the rumen and the impact of different postsampling wash procedures used to remove loosely associated microorganisms. Neocallimastigales-specific molecular techniques were optimized to ensure maximal coverage before application to assess the population size (quantitative PCR) and composition (automated ribosomal intergenic spacer analysis) of the colonizing anaerobic fungi. Colonization of perennial ryegrass (PRG) was evident within 5 min, with no consistent effect of time or wash procedure on fungal population composition. Wash procedure had no effect on population size unlike time, which had a significant effect. Colonizing fungal population size continued to increase over the incubation period after an initial lag of c. 4 min. This dynamic differs from that reported previously for rumen bacteria, where substantial colonization of PRG occurred within 5 min. The observed delay in colonization of plant material by anaerobic fungi is suggested to be primarily mediated by the time taken for fungal zoospores to locate, attach and encyst on plant material.


Subject(s)
Cattle/metabolism , Cattle/microbiology , Lolium/microbiology , Neocallimastigales/physiology , Rumen/metabolism , Rumen/microbiology , Animals , Cluster Analysis , Colony Count, Microbial , Female , Gastrointestinal Contents/microbiology , Molecular Sequence Data , Neocallimastigales/growth & development , Neocallimastigales/isolation & purification , Polymerase Chain Reaction , Reproducibility of Results
16.
Article in English | MEDLINE | ID: mdl-30533609

ABSTRACT

Three variants of the multidrug-resistant plasmid pLUH01 were assembled by deep sequencing from nasopharyngeal swabs. All have a 21-bp deletion in the RS14515 hypothetical gene. Variants 1 through 3 have 2, 6, and 3 nucleotide substitutions, respectively, compared to the pLUH01 reference genome. We named the new plasmid variants pLUH01/Lancaster/2015/1 to pLUH01/Lancaster/2015/3.

17.
Front Microbiol ; 9: 2161, 2018.
Article in English | MEDLINE | ID: mdl-30319557

ABSTRACT

The rumen is a complex ecosystem composed of anaerobic bacteria, protozoa, fungi, methanogenic archaea and phages. These microbes interact closely to breakdown plant material that cannot be digested by humans, whilst providing metabolic energy to the host and, in the case of archaea, producing methane. Consequently, ruminants produce meat and milk, which are rich in high-quality protein, vitamins and minerals, and therefore contribute to food security. As the world population is predicted to reach approximately 9.7 billion by 2050, an increase in ruminant production to satisfy global protein demand is necessary, despite limited land availability, and whilst ensuring environmental impact is minimized. Although challenging, these goals can be met, but depend on our understanding of the rumen microbiome. Attempts to manipulate the rumen microbiome to benefit global agricultural challenges have been ongoing for decades with limited success, mostly due to the lack of a detailed understanding of this microbiome and our limited ability to culture most of these microbes outside the rumen. The potential to manipulate the rumen microbiome and meet global livestock challenges through animal breeding and introduction of dietary interventions during early life have recently emerged as promising new technologies. Our inability to phenotype ruminants in a high-throughput manner has also hampered progress, although the recent increase in "omic" data may allow further development of mathematical models and rumen microbial gene biomarkers as proxies. Advances in computational tools, high-throughput sequencing technologies and cultivation-independent "omics" approaches continue to revolutionize our understanding of the rumen microbiome. This will ultimately provide the knowledge framework needed to solve current and future ruminant livestock challenges.

18.
BMC Evol Biol ; 7: 230, 2007 Nov 16.
Article in English | MEDLINE | ID: mdl-18021395

ABSTRACT

BACKGROUND: The hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis show how mitochondria can evolve into hydrogenosomes because they possess a mitochondrial genome and parts of an electron-transport chain on the one hand, and a hydrogenase on the other hand. The hydrogenase permits direct reoxidation of NADH because it consists of a [FeFe] hydrogenase module that is fused to two modules, which are homologous to the 24 kDa and the 51 kDa subunits of a mitochondrial complex I. RESULTS: The [FeFe] hydrogenase belongs to a clade of hydrogenases that are different from well-known eukaryotic hydrogenases. The 24 kDa and the 51 kDa modules are most closely related to homologous modules that function in bacterial [NiFe] hydrogenases. Paralogous, mitochondrial 24 kDa and 51 kDa modules function in the mitochondrial complex I in N. ovalis. The different hydrogenase modules have been fused to form a polyprotein that is targeted into the hydrogenosome. CONCLUSION: The hydrogenase and their associated modules have most likely been acquired by independent lateral gene transfer from different sources. This scenario for a concerted lateral gene transfer is in agreement with the evolution of the hydrogenosome from a genuine ciliate mitochondrion by evolutionary tinkering.


Subject(s)
Chimera/genetics , Ciliophora/enzymology , Hydrogenase/genetics , Iron-Sulfur Proteins/genetics , Animals , Ciliophora/genetics , Electron Transport Complex I/genetics , Evolution, Molecular , Gene Transfer, Horizontal , Genome, Mitochondrial , Genome, Protozoan , Phylogeny , Sequence Alignment , Sequence Homology, Amino Acid
19.
FEMS Microbiol Lett ; 272(2): 144-53, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17498210

ABSTRACT

The effect feeding antibiotics has on the bacterial population of the rabbit caecum was investigated. No changes in total volatile fatty acid production or total bacterial counts were observed compared with nonantibiotic treated controls. However, treatment with chlortetracycline resulted in an increase of propionate at the apparent cost of butyrate (P<0.05). Denaturing gradient gel electrophoresis analysis indicated that the two antibiotics that inhibit protein synthesis (chlortetracycline and tiamulin) exerted the most similar changes on the bacterial population structure, decreasing the diversity of the profiles. Sequence analysis of DNA from excised denaturing gradient gel electrophoresis bands was carried out. The majority of the sequences observed were most similar to bacterial sequences previously described in other gut environments, with 11% being most similar to those previously reported from the rabbit, and 95% of the sequences having 95% or greater identity to sequences already in GenBank.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Cecum/microbiology , Animals , Bacteria/classification , Bacteria/isolation & purification , Biodiversity , Butyrates/analysis , Colony Count, Microbial , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Electrophoresis, Polyacrylamide Gel , Fatty Acids, Volatile/biosynthesis , Feces/chemistry , Feces/microbiology , Models, Animal , Molecular Sequence Data , Nucleic Acid Denaturation , Phylogeny , Polymerase Chain Reaction , Propionates/analysis , Rabbits , Sequence Analysis, DNA
20.
Eur J Protistol ; 57: 38-49, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28011297

ABSTRACT

This study aimed to quantify the engulfed starch and reserve α-glucans (glycogen) in the cells of the ciliates Eudiplodinium maggii, as well the α-glucans in defaunated and selectively faunated sheep. The content of starch inside the cell of ciliates varied from 21 to 183mg/g protozoal DM relative to the rumen fauna composition whereas, the glycogen fluctuated between 17 and 126mg/g dry matter (DM) of this ciliate species. Establishment of the population Entodinium caudatum in the rumen of sheep already faunated with E. maggii caused a drop in both types of quantified carbohydrates. The content of α-glucans in the rumen of defaunated sheep varied from 4.4 to 19.9mg/g DM and increased to 7.4-29.9 or 11.8-33.9mg/g DM of rumen contents in the presence of only E. maggii or E. maggii and E. caudatum, respectively. The lowest content of the carbohydrates was always found just before feeding and the highest at 4h thereafter. The α-glucans in the reticulum varied 7.5-40.1, 14.3-76.8 or 21.9-106.1mg/g DM of reticulum content for defaunated, monofaunated or bifaunated sheep, respectively. The results indicated that both ciliate species engulf starch granules and convert the digestion products to the glycogen, diminishing the pool of starch available for amylolytic bacteria.


Subject(s)
Ciliophora/metabolism , Glycogen/metabolism , Reticulum/parasitology , Rumen/parasitology , Starch/metabolism , Animals , Bacteria/metabolism , Carbohydrate Metabolism , Gastrointestinal Contents/parasitology , Reticulum/metabolism , Rumen/metabolism , Sheep
SELECTION OF CITATIONS
SEARCH DETAIL