Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Peripher Nerv Syst ; 28(1): 17-31, 2023 03.
Article in English | MEDLINE | ID: mdl-36710500

ABSTRACT

The major determinant of poor outcome in Guillain-Barré syndrome (GBS) is axonal degeneration. Pathways leading to primary axonal injury in the motor axonal variant are well established, whereas mechanisms of secondary axonal injury in acute inflammatory demyelinating polyneuropathy (AIDP) are unknown. We recently developed an autoantibody-and complement-mediated model of murine AIDP, in which prominent injury to glial membranes at the node of Ranvier results in severe disruption to paranodal components. Acutely, axonal integrity was maintained, but over time secondary axonal degeneration occurred. Herein, we describe the differential mechanisms underlying acute glial membrane injury and secondary axonal injury in this model. Ex vivo nerve-muscle explants were injured for either acute or extended periods with an autoantibody-and complement-mediated injury to glial paranodal membranes. This model was used to test several possible mechanisms of axon degeneration including calpain activation, and to monitor live axonal calcium signalling. Glial calpains induced acute disruption of paranodal membrane proteins in the absence of discernible axonal injury. Over time, we observed progressive axonal degeneration which was markedly attenuated by axon-specific calpain inhibition. Injury was unaffected by all other tested methods of protection. Trans-axolemmal diffusion of fluorescent proteins  and live calcium imaging studies indirectly demonstrated the presence of nanoruptures in the axon membrane. This study outlines one mechanism by which secondary axonal degeneration arises in the AIDP variant of GBS where acute paranodal loop injury is prominent. The data also support the development of calpain inhibitors to attenuate both primary and secondary axonal degeneration in GBS.


Subject(s)
Guillain-Barre Syndrome , Humans , Mice , Animals , Calcium , Calpain , Axons , Autoantibodies
2.
J Peripher Nerv Syst ; 28(1): 4-16, 2023 03.
Article in English | MEDLINE | ID: mdl-36335586

ABSTRACT

Axon degeneration accounts for the poor clinical outcome in Guillain-Barré syndrome (GBS), yet no treatments target this key pathogenic stage. Animal models demonstrate anti-ganglioside antibodies (AGAb) induce axolemmal complement pore formation through which calcium flux activates the intra-axonal calcium-dependent proteases, calpains. We previously showed protection of axonal components using soluble calpain inhibitors in ex vivo GBS mouse models, and herein, we assess the potential of axonally-restricted calpain inhibition as a neuroprotective therapy operating in vivo. Using transgenic mice that over-express the endogenous human calpain inhibitor calpastatin (hCAST) neuronally, we assessed distal motor nerve integrity in our established GBS models. We induced immune-mediated injury with monoclonal AGAb plus a source of human complement. The calpain substrates neurofilament and AnkyrinG, nerve structural proteins, were assessed by immunolabelling and in the case of neurofilament, by single-molecule arrays (Simoa). As the distal intramuscular portion of the phrenic nerve is prominently targeted in our in vivo model, respiratory function was assessed by whole-body plethysmography as the functional output in the acute and extended models. hCAST expression protects distal nerve structural integrity both ex and in vivo, as shown by attenuation of neurofilament breakdown by immunolabelling and Simoa. In an extended in vivo model, while mice still initially undergo respiratory distress owing to acute conduction failure, the recovery phase was accelerated by hCAST expression. Axonal calpain inhibition can protect the axonal integrity of the nerve in an in vivo GBS paradigm and hasten recovery. These studies reinforce the strong justification for developing further animal and human clinical studies using exogenous calpain inhibitors.


Subject(s)
Guillain-Barre Syndrome , Mice , Humans , Animals , Calpain/metabolism , Calcium/metabolism , Axons/pathology , Mice, Transgenic
3.
J Anat ; 241(5): 1259-1271, 2022 11.
Article in English | MEDLINE | ID: mdl-34605014

ABSTRACT

Gangliosides are a family of sialic acid containing glycosphingolipids highly enriched in plasma membranes of the vertebrate nervous system. They are functionally diverse in modulating nervous system integrity, notably at the node of Ranvier, and also act as receptors for many ligands including toxins and autoantibodies. They are synthesised in a stepwise manner by groups of glycosyl- and sialyltransferases in a developmentally and tissue regulated manner. In this review, we summarise and discuss data derived from transgenic mice with different transferase deficiencies that have been used to determine the role of glycolipids in the organisation of the node of Ranvier. Understanding their role at this specialised functional site is crucial to determining differential pathophysiology following directed genetic or autoimmune injury to peripheral nerve nodal or paranodal domains, and revealing the downstream consequences of axo-glial disruption.


Subject(s)
Axons , Gangliosides , Animals , Autoantibodies/metabolism , Axons/metabolism , Gangliosides/metabolism , Glycolipids/metabolism , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Ligands , Mice , Mice, Transgenic , N-Acetylneuraminic Acid/metabolism , Sialyltransferases/genetics , Sialyltransferases/metabolism
4.
J Neurochem ; 158(2): 217-232, 2021 07.
Article in English | MEDLINE | ID: mdl-33864399

ABSTRACT

Gangliosides are expressed on plasma membranes throughout the body and enriched in the nervous system. A critical role for complex a- and b-series gangliosides in central and peripheral nervous system ageing has been established through transgenic manipulation of enzymes in ganglioside biosynthesis. Disrupting GalNAc-transferase (GalNAc-T), thus eliminating all a- and b-series complex gangliosides (with consequent over-expression of GM3 and GD3) leads to an age-dependent neurodegeneration. Mice that express only GM3 ganglioside (double knockout produced by crossing GalNAc-T-/- and GD3 synthase-/- mice, Dbl KO) display markedly accelerated neurodegeneration with reduced survival. Degenerating axons and disrupted node of Ranvier architecture are key features of complex ganglioside-deficient mice. Previously, we have shown that reintroduction of both a- and b-series gangliosides into neurons on a global GalNAcT-/- background is sufficient to rescue this age-dependent neurodegenerative phenotype. To determine the relative roles of a- and b-series gangliosides in this rescue paradigm, we herein reintroduced GalNAc-T into neurons of Dbl KO mice, thereby reconstituting a-series but not b-series complex gangliosides. We assessed survival, axon degeneration, axo-glial integrity, inflammatory markers and lipid-raft formation in these Rescue mice compared to wild-type and Dbl KO mice. We found that this neuronal reconstitution of a-series complex gangliosides abrogated the adult lethal phenotype in Dbl KO mice, and partially attenuated the neurodegenerative features. This suggests that whilst neuronal expression of a-series gangliosides is critical for survival during ageing, it is not entirely sufficient to restore complete nervous system integrity in the absence of either b-series or glial a-series gangliosides.


Subject(s)
G(M3) Ganglioside/metabolism , Gangliosides/metabolism , Genes, Lethal/genetics , Neurons/metabolism , Animals , Axons/pathology , Heredodegenerative Disorders, Nervous System/genetics , Heredodegenerative Disorders, Nervous System/pathology , Inflammation/metabolism , Membrane Microdomains/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , N-Acetylgalactosaminyltransferases/genetics , Phenotype , Ranvier's Nodes/pathology , Sialyltransferases/genetics , Survival Analysis , Polypeptide N-acetylgalactosaminyltransferase
5.
J Neurosci ; 39(1): 63-77, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30446529

ABSTRACT

Sulfatides and gangliosides are raft-associated glycolipids essential for maintaining myelinated nerve integrity. Mice deficient in sulfatide (cerebroside sulfotransferase knock-out, CST-/-) or complex gangliosides (ß-1,4-N-acetylegalactosaminyltransferase1 knock-out, GalNAc-T-/-) display prominent disorganization of proteins at the node of Ranvier (NoR) in early life and age-dependent neurodegeneration. Loss of neuronal rather than glial complex gangliosides underpins the GalNAc-T-/- phenotype, as shown by neuron- or glial-specific rescue, whereas sulfatide is principally expressed and functional in glial membranes. The similarities in NoR phenotype of CST-/-, GalNAc-T-/-, and axo-glial protein-deficient mice suggests that these glycolipids stabilize membrane proteins including neurofascin155 (NF155) and myelin-associated glycoprotein (MAG) at axo-glial junctions. To assess the functional interactions between sulfatide and gangliosides, CST-/- and GalNAc-T-/- genotypes were interbred. CST-/-× GalNAc-T-/- mice develop normally to postnatal day 10 (P10), but all die between P20 and P25, coinciding with peak myelination. Ultrastructural, immunohistological, and biochemical analysis of either sex revealed widespread axonal degeneration and disruption to the axo-glial junction at the NoR. In addition to sulfatide-dependent loss of NF155, CST-/- × GalNAc-T-/- mice exhibited a major reduction in MAG protein levels in CNS myelin compared with WT and single-lipid-deficient mice. The CST-/- × GalNAc-T-/- phenotype was fully restored to that of CST-/- mice by neuron-specific expression of complex gangliosides, but not by their glial-specific expression nor by the global expression of a-series gangliosides. These data indicate that sulfatide and complex b-series gangliosides on the glial and neuronal membranes, respectively, act in concert to promote NF155 and MAG in maintaining the stable axo-glial interactions essential for normal nerve function.SIGNIFICANCE STATEMENT Sulfatides and complex gangliosides are membrane glycolipids with important roles in maintaining nervous system integrity. Node of Ranvier maintenance in particular requires stable compartmentalization of multiple membrane proteins. The axo-glial adhesion molecules neurofascin155 (NF155) and myelin-associated glycoprotein (MAG) require membrane microdomains containing either sulfatides or complex gangliosides to localize and function effectively. The cooperative roles of these microdomains and associated proteins are unknown. Here, we show vital interdependent roles for sulfatides and complex gangliosides because double (but not single) deficiency causes a rapidly lethal phenotype at an early age. These findings suggest that sulfatides and complex gangliosides on opposing axo-glial membranes are responsible for essential tethering of the axo-glial junction proteins NF155 and MAG, which interact to maintain the nodal complex.


Subject(s)
Axons/physiology , Gangliosides/metabolism , Gangliosides/physiology , Myelin Sheath/physiology , Neuroglia/physiology , Neurons/physiology , Sulfoglycosphingolipids/metabolism , Animals , Cell Adhesion Molecules/genetics , Female , Genotype , Life Expectancy , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Myelin-Associated Glycoprotein/genetics , Myelin-Associated Glycoprotein/physiology , N-Acetylgalactosaminyltransferases/genetics , Nerve Growth Factors/genetics , Neuroglia/metabolism , Neurons/metabolism , Ranvier's Nodes/physiology , Sulfotransferases/genetics , Sulfotransferases/physiology
6.
J Peripher Nerv Syst ; 25(2): 143-151, 2020 06.
Article in English | MEDLINE | ID: mdl-32250537

ABSTRACT

In mouse models of acute motor axonal neuropathy, anti-ganglioside antibodies (AGAbs) bind to motor axons, notably the distal nerve, and activate the complement cascade. While complement activation is well studied in this model, the role of inflammatory cells is unknown. Herein we aimed to investigate the contribution of phagocytic cells including macrophages, neutrophils and perisynaptic Schwann cells (pSCs) to distal nerve pathology. To observe this, we first created a subacute injury model of sufficient duration to allow inflammatory cell recruitment. Mice were injected intraperitoneally with an anti-GD1b monoclonal antibody that binds strongly to mouse motor nerve axons. Subsequently, mice received normal human serum as a source of complement. Dosing was titrated to allow humane survival of mice over a period of 3 days, yet still induce the characteristic neurological impairment. Behaviour and pathology were assessed in vivo using whole-body plethysmography and post-sacrifice by immunofluorescence and flow cytometry. ex vivo nerve-muscle preparations were used to investigate the acute phagocytic role of pSCs following distal nerve injury. Following complement activation at distal intramuscular nerve sites in the diaphragm macrophage localisation or numbers are not altered, nor do they shift to a pro- or anti-inflammatory phenotype. Similarly, neutrophils are not significantly recruited. Instead, ex vivo nerve-muscle preparations exposed to AGAb plus complement reveal that pSCs rapidly become phagocytic and engulf axonal debris. These data suggest that pSCs, rather than inflammatory cells, are the major cellular vehicle for axonal debris clearance following distal nerve injury, in contrast to larger nerve bundles where macrophage-mediated clearance predominates.


Subject(s)
Antibodies, Monoclonal/pharmacology , Gangliosides/immunology , Guillain-Barre Syndrome , Motor Neurons , Neuromuscular Junction , Phagocytosis/physiology , Presynaptic Terminals , Schwann Cells/physiology , Animals , Antibodies, Monoclonal/administration & dosage , Behavior, Animal/physiology , Complement Activation/immunology , Disease Models, Animal , Female , Guillain-Barre Syndrome/immunology , Guillain-Barre Syndrome/pathology , Humans , Male , Mice , Mice, Transgenic , Motor Neurons/immunology , Motor Neurons/pathology , Neuromuscular Junction/immunology , Neuromuscular Junction/pathology , Presynaptic Terminals/immunology , Presynaptic Terminals/pathology
7.
Brain ; 139(Pt 6): 1657-65, 2016 06.
Article in English | MEDLINE | ID: mdl-27017187

ABSTRACT

SEE VAN DOORN AND JACOBS DOI101093/BRAIN/AWW078 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE : In axonal forms of Guillain-Barré syndrome, anti-ganglioside antibodies bind gangliosides on nerve surfaces, thereby causing injury through complement activation and immune cell recruitment. Why some nerve regions are more vulnerable than others is unknown. One reason may be that neuronal membranes with high endocytic activity, including nerve terminals involved in neurotransmitter recycling, are able to endocytose anti-ganglioside antibodies from the cell surface so rapidly that antibody-mediated injury is attenuated. Herein we investigated whether endocytic clearance of anti-ganglioside antibodies by nerve terminals might also be of sufficient magnitude to deplete circulating antibody levels. Remarkably, systemically delivered anti-ganglioside antibody in mice was so avidly cleared from the circulation by endocytosis at ganglioside-expressing plasma membranes that it was rapidly rendered undetectable in serum. A major component of the clearance occurred at motor nerve terminals of neuromuscular junctions, from where anti-ganglioside antibody was retrogradely transported to the motor neuron cell body in the spinal cord, recycled to the plasma membrane, and secreted into the surrounding spinal cord. Uptake at the neuromuscular junction represents a major unexpected pathway by which pathogenic anti-ganglioside antibodies, and potentially other ganglioside binding proteins, are cleared from the systemic circulation and also covertly delivered to the central nervous system.


Subject(s)
Antibodies/metabolism , Endocytosis/immunology , Gangliosides/immunology , Presynaptic Terminals/metabolism , Animals , Antibodies/blood , Cell Membrane/metabolism , Disease Models, Animal , Female , Male , Mice , Mice, Knockout , N-Acetylgalactosaminyltransferases/genetics , Neuromuscular Junction/metabolism , Polypeptide N-acetylgalactosaminyltransferase
8.
J Neurosci ; 34(3): 880-91, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24431446

ABSTRACT

Gangliosides are widely expressed sialylated glycosphingolipids with multifunctional properties in different cell types and organs. In the nervous system, they are highly enriched in both glial and neuronal membranes. Mice lacking complex gangliosides attributable to targeted ablation of the B4galnt1 gene that encodes ß-1,4-N-acetylegalactosaminyltransferase 1 (GalNAc-transferase; GalNAcT(-/-)) develop normally before exhibiting an age-dependent neurodegenerative phenotype characterized by marked behavioral abnormalities, central and peripheral axonal degeneration, reduced myelin volume, and loss of axo-glial junction integrity. The cell biological substrates underlying this neurodegeneration and the relative contribution of either glial or neuronal gangliosides to the process are unknown. To address this, we generated neuron-specific and glial-specific GalNAcT rescue mice crossed on the global GalNAcT(-/-) background [GalNAcT(-/-)-Tg(neuronal) and GalNAcT(-/-)-Tg(glial)] and analyzed their behavioral, morphological, and electrophysiological phenotype. Complex gangliosides, as assessed by thin-layer chromatography, mass spectrometry, GalNAcT enzyme activity, and anti-ganglioside antibody (AgAb) immunohistology, were restored in both neuronal and glial GalNAcT rescue mice. Behaviorally, GalNAcT(-/-)-Tg(neuronal) retained a normal "wild-type" (WT) phenotype throughout life, whereas GalNAcT(-/-)-Tg(glial) resembled GalNAcT(-/-) mice, exhibiting progressive tremor, weakness, and ataxia with aging. Quantitative electron microscopy demonstrated that GalNAcT(-/-) and GalNAcT(-/-)-Tg(glial) nerves had significantly increased rates of axon degeneration and reduced myelin volume, whereas GalNAcT(-/-)-Tg(neuronal) and WT appeared normal. The increased invasion of the paranode with juxtaparanodal Kv1.1, characteristically seen in GalNAcT(-/-) and attributed to a breakdown of the axo-glial junction, was normalized in GalNAcT(-/-)-Tg(neuronal) but remained present in GalNAcT(-/-)-Tg(glial) mice. These results indicate that neuronal rather than glial gangliosides are critical to the age-related maintenance of nervous system integrity.


Subject(s)
Aging/metabolism , Gangliosides/deficiency , Gene Expression Regulation, Enzymologic , N-Acetylgalactosaminyltransferases/genetics , Neurodegenerative Diseases/metabolism , Neurons/metabolism , Phenotype , Aging/genetics , Aging/pathology , Animals , Axons/metabolism , Axons/pathology , Gangliosides/genetics , Male , Mice , Mice, Knockout , Mice, Transgenic , N-Acetylgalactosaminyltransferases/biosynthesis , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons/pathology , Polypeptide N-acetylgalactosaminyltransferase
9.
Hippocampus ; 24(4): 455-65, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24375790

ABSTRACT

Wnt proteins have emerged as transmembrane signaling molecules that regulate learning and memory as well as synaptic plasticity at central synapses (Inestrosa and Arenas (2010) Nat Rev Neurosci 11:77-86; Maguschak and Ressler (2011) J Neurosci 31:13057-13067; Tabatadze et al. (2012) Hippocampus 22: 1228-1241; Fortress et al. (2013) J Neurosci 33:12619-12626). For example, there is both a training-selective and Wnt isoform-specific increase in Wnt 7 levels in hippocampus seven days after spatial learning in rats (Tabatadze et al. (2012) Hippocampus 22: 1228-1241). Despite growing interest in Wnt signaling pathways in the adult brain, intracellular distribution and release of Wnt molecules from synaptic compartments as well as their influence on synaptic strength and connectivity remain less well understood. As a first step in such an analysis, we show here that Wnt 7 levels in primary hippocampal cells are elevated by potassium or glutamate activation in a time-dependent manner. Subsequent Wnt 7 elevation in dendrites suggests selective somato-dendritic trafficking followed by transport from dendrites to their spines. Wnt 7 elevation is also TTX-reversible, establishing that its elevation is indeed an activity-dependent process. A second stimulation given 6 h after the first significantly reduces Wnt 7 levels in dendrites 3 h later as compared to non-stimulated controls suggesting activity-dependent Wnt 7 release from dendrites and spines. In a related experiment designed to mimic the release of Wnt 7, exogenous recombinant Wnt 7 increased the number of active zones in presynaptic terminals as indexed by bassoon. This suggests the formation of new presynaptic release sites and/or presynaptic terminals. Wnt signaling inhibitor sFRP-1 completely blocked this Wnt 7-induced elevation of bassoon cluster number and cluster area. We suggest that Wnt 7 is a plasticity-related protein involved in the regulation of presynaptic plasticity via a retrograde signaling mechanism as previously proposed (Routtenberg (1999) Trends in Neuroscience 22:255-256). These findings provide support for this proposal, which offers a new perspective on the synaptic tagging mechanism (Redondo and Morris (2011) Nat Rev Neurosci 12:17-30).


Subject(s)
Dendrites/physiology , Hippocampus/physiology , Neurons/physiology , Synaptic Transmission/physiology , Wnt Proteins/metabolism , Animals , Cells, Cultured , Dendrites/drug effects , Dendritic Spines/drug effects , Dendritic Spines/physiology , Glutamic Acid/metabolism , Hippocampus/drug effects , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Models, Neurological , Neuronal Plasticity/drug effects , Neuronal Plasticity/physiology , Neurons/drug effects , Potassium Chloride/metabolism , Presynaptic Terminals/drug effects , Presynaptic Terminals/physiology , Rats , Rats, Sprague-Dawley , Signal Transduction/drug effects , Signal Transduction/physiology , Sodium Channel Blockers/pharmacology , Synaptic Transmission/drug effects , Tetrodotoxin/pharmacology , Time Factors
10.
J Peripher Nerv Syst ; 18(1): 75-88, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23521648

ABSTRACT

Acute canine polyradiculoneuritis (ACP) is considered to be the canine equivalent of the human peripheral nerve disorder Guillain-Barré syndrome (GBS); an aetiological relationship, however, remains to be demonstrated. In GBS, anti-glycolipid antibodies (Abs) are considered as important disease mediators. To address the possibility of common Ab biomarkers, the sera of 25 ACP dogs, 19 non-neurological, and 15 epileptic control dogs were screened for IgG Abs to 10 glycolipids and their 1 : 1 heteromeric complexes using combinatorial glycoarrays. Anti-GM2 ganglioside Abs were detected in 14/25 ACP dogs, and anti-GA1 Abs in one further dog. All controls except for one were negative for anti-glycolipid Abs. In this cohort of cases and controls, the glycoarray screen reached a diagnostic sensitivity of 60% and a specificity of 97%; a lower sensitivity (32%) was reported using a conventional glycolipid ELISA. To address the possible pathogenic role for anti-GM2 Abs in ACP, we identified GM2 in canine sciatic nerve by both mass spectrometry and thin layer chromatography overlay. In immunohistological studies, GM2 was localized predominantly to the abaxonal Schwann cell membrane. The presence of anti-GM2 Abs in ACP suggests that it may share a similar pathophysiology with GBS, for which it could thus be considered a naturally occurring animal model.


Subject(s)
Biomarkers/blood , G(M2) Ganglioside/immunology , Immunoglobulin G/blood , Polyradiculoneuropathy/blood , Polyradiculoneuropathy/veterinary , Acute Disease , Animals , Chromatography, Thin Layer , Diagnostic Imaging , Dogs , Electric Stimulation , Electromyography , Enzyme-Linked Immunosorbent Assay , Evoked Potentials, Motor/physiology , Female , Magnetic Resonance Imaging , Male , Neurologic Examination , Polyradiculoneuropathy/diagnosis , Polyradiculoneuropathy/physiopathology , Sciatic Nerve/pathology , Spinal Cord/pathology , Statistics as Topic
11.
12.
Hippocampus ; 22(6): 1228-41, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22180023

ABSTRACT

Transmembrane signaling mechanisms are critical for regulating the plasticity of neuronal connections underlying the establishment of long-lasting memory (e.g., Linden and Routtenberg (1989) Brain Res Rev 14:279-296; Sossin (1996) Trends Neurosci 19:215-218; Mayr and Montminy (2001) Nat Rev Mol Cell Biol 2:599-609; Chen et al. (2011) Nature 469:491-497). One signaling mechanism that has received surprisingly little attention in this regard is the well-known Wnt transmembrane signaling pathway even though this pathway in the adult plays a significant role, for example, in postsynaptic dendritic spine morphogenesis and presynaptic terminal neurotransmitter release (Inestrosa and Arenas (2010) Nat Rev Neurosci 11:77-86). The present report now provides the first evidence of Wnt signaling in spatial information storage processes. Importantly, this Wnt participation is specific and selective. Thus, spatial, but not cued, learning in a water maze selectively elevates the levels in hippocampus of Wnt 7 and Wnt 5a, but not the Wnt 3 isoform, indicating behavioral selectivity and isoform specificity. Wnt 7 elevation is subfield-specific: granule cells show an increase with no detectable change in CA3 neurons. Wnt 7 elevation is temporally specific: increased Wnt signaling is not observed during training, but is seen 7 days and, unexpectedly, 30 days later. If the Wnt elevation after learning is activity-dependent, then it may be possible to model this effect in primary hippocampal neurons in culture. Here, we evaluate the consequence of potassium or glutamate depolarization on Wnt signaling. This represents, to our knowledge, the first demonstration of an activation-dependent elevation of Wnt levels and surprisingly an increased number of Wnt-stained puncta in neurites suggestive of trafficking from the cell body to neuronal processes, probably dendrites. It is proposed that Wnt signaling pathways regulate long-term information storage in a behavioral-, cellular-, and isoform-specific manner.


Subject(s)
Membrane Potentials/physiology , Memory, Long-Term/physiology , Spatial Behavior/physiology , Wnt Proteins/biosynthesis , Wnt Signaling Pathway/physiology , Animals , Cells, Cultured , Hippocampus/metabolism , Male , Rats , Rats, Sprague-Dawley , Rats, Wistar
13.
Exp Neurol ; 355: 114127, 2022 09.
Article in English | MEDLINE | ID: mdl-35640716

ABSTRACT

The acute motor axonal variant of Guillain-Barré syndrome is associated with the attack of motor axons by anti-ganglioside antibodies which activate complement on the axonal plasma membrane. Animal models have indirectly implicated complement pore-mediated calcium influx as a trigger of axonal damage, through the activation of the protease calpain. However, this calcium influx has never been imaged directly. Herein we describe a method to detect changes in intra-axonal calcium in an ex vivo mouse model of axonal Guillain-Barré syndrome and describe the influence of calcium on axonal injury and the effects of calpain inhibition on axonal outcome. Using ex vivo nerve-muscle explants from Thy1-TNXXL mice which axonally express a genetically encoded calcium indicator, we studied the effect of the binding and activation of complement by an anti-GD1b ganglioside antibody which targets the motor axon. Using live multiphoton imaging, we found that a wave of calcium influx extends retrogradely from the motor nerve terminal as far back as the large bundles within the muscle explant. Despite terminal complement pores being detectable only at the motor nerve terminal and, to a lesser degree, the most distal node of Ranvier, disruption of axonal proteins occurred at more proximal sites implicating the intra-axonal calcium wave. Morphological analysis indicated two different types of calcium-induced changes: acutely, distal axons showed swelling and breakdown at sites where complement pores were present. Distally, in areas of raised calcium which lacked detectable complement pores, axons developed a spindly, vacuolated appearance suggestive of early signs of degeneration. All morphological changes were prevented with treatment with a calpain inhibitor. This is the first investigation of axonal calcium dynamics in a mouse model of Guillain-Barré syndrome and demonstrates the proximal reach of calcium influx following an injury which is confined to the most distal parts of the motor axon. We also demonstrate that calpain inhibition remains a promising candidate for both acute and sub-acute consequences of calcium-induced calpain activation.


Subject(s)
Calcium , Guillain-Barre Syndrome , Animals , Axons , Calpain , Complement System Proteins , Disease Models, Animal , Gangliosides , Mice
14.
J Clin Invest ; 132(14)2022 07 15.
Article in English | MEDLINE | ID: mdl-35671105

ABSTRACT

In Guillain-Barré syndrome (GBS), both axonal and demyelinating variants can be mediated by complement-fixing anti-GM1 ganglioside autoantibodies that target peripheral nerve axonal and Schwann cell (SC) membranes, respectively. Critically, the extent of axonal degeneration in both variants dictates long-term outcome. The differing pathomechanisms underlying direct axonal injury and the secondary bystander axonal degeneration following SC injury are unresolved. To investigate this, we generated glycosyltransferase-disrupted transgenic mice that express GM1 ganglioside either exclusively in neurons [GalNAcT-/--Tg(neuronal)] or glia [GalNAcT-/--Tg(glial)], thereby allowing anti-GM1 antibodies to solely target GM1 in either axonal or SC membranes, respectively. Myelinated-axon integrity in distal motor nerves was studied in transgenic mice exposed to anti-GM1 antibody and complement in ex vivo and in vivo injury paradigms. Axonal targeting induced catastrophic acute axonal disruption, as expected. When mice with GM1 in SC membranes were targeted, acute disruption of perisynaptic glia and SC membranes at nodes of Ranvier (NoRs) occurred. Following glial injury, axonal disruption at NoRs also developed subacutely, progressing to secondary axonal degeneration. These models differentiate the distinctly different axonopathic pathways under axonal and glial membrane targeting conditions, and provide insights into primary and secondary axonal injury, currently a major unsolved area in GBS research.


Subject(s)
Gangliosides , Guillain-Barre Syndrome , Animals , Autoantibodies , Disease Models, Animal , G(M1) Ganglioside , Guillain-Barre Syndrome/genetics , Mice , Mice, Transgenic , Schwann Cells
15.
Brain Commun ; 4(6): fcac306, 2022.
Article in English | MEDLINE | ID: mdl-36523267

ABSTRACT

The involvement of the complement pathway in Guillain-Barré syndrome pathogenesis has been demonstrated in both patient biosamples and animal models. One proposed mechanism is that anti-ganglioside antibodies mediate neural membrane injury through the activation of complement and the formation of membrane attack complex pores, thereby allowing the uncontrolled influx of ions, including calcium, intracellularly. Calcium influx activates the calcium-dependent protease calpain, leading to the cleavage of neural cytoskeletal and transmembrane proteins and contributing to subsequent functional failure. Complement inhibition has been demonstrated to provide effective protection from injury in anti-ganglioside antibody-mediated mouse models of axonal variants of Guillain-Barré syndrome; however, the role of complement in the pathogenesis of demyelinating variants has yet to be established. Thus, it is currently unknown whether complement inhibition would be an effective therapeutic for Guillain-Barré syndrome patients with injuries to the Schwann cell membrane. To address this, we recently developed a mouse model whereby the Schwann cell membrane was selectively targeted with an anti-GM1 antibody resulting in significant disruption to the axo-glial junction and cytoplasmic paranodal loops, presenting as conduction block. Herein, we utilize this Schwann cell nodal membrane injury model to determine the relevance of inhibiting complement activation. We addressed the early complement component C2 as the therapeutic target within the complement cascade by using the anti-C2 humanized monoclonal antibody, ARGX-117. This anti-C2 antibody blocks the formation of C3 convertase, specifically inhibiting the classical and lectin complement pathways and preventing the production of downstream harmful anaphylatoxins (C3a and C5a) and membrane attack complexes. Here, we demonstrate that C2 inhibition significantly attenuates injury to paranodal proteins at the node of Ranvier and improves respiratory function in ex vivo and in vivo Schwann cell nodal membrane injury models. In parallel studies, C2 inhibition also protects axonal integrity in our well-established model of acute motor axonal neuropathy mediated by both mouse and human anti-GM1 antibodies. These data demonstrate that complement inhibition prevents injury in a Schwann cell nodal membrane injury model, which is representative of neuropathies associated with anti-GM1 antibodies, including Guillain-Barré syndrome and multifocal motor neuropathy. This outcome suggests that both the motor axonal and demyelinating variants of Guillain-Barré syndrome should be included in future complement inhibition clinical trials.

16.
Brain ; 133(Pt 7): 1944-60, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20513658

ABSTRACT

The motor axonal variant of Guillain-Barré syndrome is associated with anti-GD1a immunoglobulin antibodies, which are believed to be the pathogenic factor. In previous studies we have demonstrated the motor terminal to be a vulnerable site. Here we show both in vivo and ex vivo, that nodes of Ranvier in intramuscular motor nerve bundles are also targeted by anti-GD1a antibody in a gradient-dependent manner, with greatest vulnerability at distal nodes. Complement deposition is associated with prominent nodal injury as monitored with electrophysiological recordings and fluorescence microscopy. Complete loss of nodal protein staining, including voltage-gated sodium channels and ankyrin G, occurs and is completely protected by both complement and calpain inhibition, although the latter provides no protection against electrophysiological dysfunction. In ex vivo motor and sensory nerve trunk preparations, antibody deposits are only observed in experimentally desheathed nerves, which are thereby rendered susceptible to complement-dependent morphological disruption, nodal protein loss and reduced electrical activity of the axon. These studies provide a detailed mechanism by which loss of axonal conduction can occur in a distal dominant pattern as observed in a proportion of patients with motor axonal Guillain-Barré syndrome, and also provide an explanation for the occurrence of rapid recovery from complete paralysis and electrophysiological in-excitability. The study also identifies therapeutic approaches in which nodal architecture can be preserved.


Subject(s)
Autoantibodies/toxicity , Calpain/metabolism , Complement Activation/immunology , Gangliosides/immunology , Motor Neurons/immunology , Motor Neurons/pathology , Ranvier's Nodes/immunology , Ranvier's Nodes/pathology , Animals , Autoantibodies/metabolism , Axons/immunology , Axons/pathology , Binding Sites, Antibody , Guillain-Barre Syndrome/immunology , Guillain-Barre Syndrome/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred DBA , Mice, Knockout , Mice, Transgenic , Motor Neurons/metabolism , Ranvier's Nodes/metabolism
17.
Sci Rep ; 8(1): 5219, 2018 03 26.
Article in English | MEDLINE | ID: mdl-29581478

ABSTRACT

Axon degeneration underlies many nervous system diseases; therefore understanding the regulatory signalling pathways is fundamental to identifying potential therapeutics. Previously, we demonstrated heparan sulphates (HS) as a potentially new target for promoting CNS repair. HS modulate cell signalling by both acting as cofactors in the formation of ligand-receptor complexes and in sequestering ligands in the extracellular matrix. The enzyme heparanase (Hpse) negatively regulates these processes by cleaving HS and releasing the attached proteins, thereby attenuating their ligand-receptor interaction. To explore a comparative role for HS in PNS axon injury/repair we data mined published microarrays from distal sciatic nerve injury. We identified Hpse as a previously unexplored candidate, being up-regulated following injury. We confirmed these results and demonstrated inhibition of Hpse led to an acceleration of axonal degeneration, accompanied by an increase in ß-catenin. Inhibition of ß-catenin and the addition of Heparinase I both attenuated axonal degeneration. Furthermore the inhibition of Hpse positively regulates transcription of genes associated with peripheral neuropathies and Schwann cell de-differentiation. Thus, we propose Hpse participates in the regulation of the Schwann cell injury response and axo-glia support, in part via the regulation of Schwann cell de-differentiation and is a potential therapeutic that warrants further investigation.


Subject(s)
Glucuronidase/genetics , Peripheral Nerve Injuries/genetics , Sciatic Nerve/metabolism , Sciatic Neuropathy/genetics , beta Catenin/genetics , Animals , Axons/metabolism , Axons/pathology , Cell Membrane/genetics , Cell Membrane/pathology , Extracellular Matrix/genetics , Extracellular Matrix/pathology , Gene Expression Regulation/genetics , Glucuronidase/metabolism , Heparitin Sulfate/genetics , Heparitin Sulfate/metabolism , Humans , Nerve Regeneration , Neuroglia/metabolism , Neuroglia/pathology , Peripheral Nerve Injuries/physiopathology , Peripheral Nerve Injuries/therapy , Rats , Schwann Cells/metabolism , Schwann Cells/pathology , Sciatic Nerve/growth & development , Sciatic Nerve/injuries , Sciatic Nerve/pathology , Sciatic Neuropathy/physiopathology , Sciatic Neuropathy/therapy , Signal Transduction/genetics
18.
J Neuroimmunol ; 323: 28-35, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30196830

ABSTRACT

Sulfatide is a major glycosphingolipid in myelin and a target for autoantibodies in autoimmune neuropathies. However neuropathy disease models have not been widely established, in part because currently available monoclonal antibodies to sulfatide may not represent the diversity of anti-sulfatide antibody binding patterns found in neuropathy patients. We sought to address this issue by generating and characterising a panel of new anti-sulfatide monoclonal antibodies. These antibodies have sulfatide reactivity distinct from existing antibodies in assays and in binding to peripheral nerve tissues and can be used to provide insights into the pathophysiological roles of anti-sulfatide antibodies in demyelinating neuropathies.


Subject(s)
Autoantibodies/blood , Cell Membrane/metabolism , Neuroglia/metabolism , Sulfoglycosphingolipids/metabolism , Animals , Cell Line, Tumor , Cell Membrane/pathology , Cells, Cultured , Demyelinating Diseases/blood , Demyelinating Diseases/metabolism , Demyelinating Diseases/pathology , Mice , Mice, Inbred DBA , Mice, Knockout , Neuroglia/pathology , Protein Binding/physiology
19.
Neuroscience ; 358: 261-268, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28687309

ABSTRACT

Rett syndrome (RTT) is a neurological disorder characterized by motor and cognitive impairment, autonomic dysfunction and a loss of purposeful hand skills. In the majority of cases, typical RTT is caused by de novo mutations in the X-linked gene, MECP2. Alterations in the structure and function of neurons within the central nervous system of RTT patients and Mecp2-null mouse models are well established. In contrast, few studies have investigated the effects of MeCP2-deficiency on peripheral nerves. In this study, we conducted detailed morphometric as well as functional analysis of the sciatic nerves of symptomatic adult female Mecp2+/- mice. We observed a significant reduction in the mean diameter of myelinated nerve fibers in Mecp2+/- mice. In myelinated fibers, mitochondrial densities per unit area of axoplasm were significantly altered in Mecp2+/- mice. However, conduction properties of the sciatic nerve of Mecp2 knockout mice were not different from control. These subtle changes in myelinated peripheral nerve fibers in heterozygous Mecp2 knockout mice could potentially explain some RTT phenotypes.


Subject(s)
Axons/pathology , Nerve Fibers, Myelinated/pathology , Rett Syndrome/pathology , Sciatic Nerve/pathology , Action Potentials/genetics , Animals , Axons/ultrastructure , Biophysics , Disease Models, Animal , Electric Stimulation , Female , Methyl-CpG-Binding Protein 2/genetics , Methyl-CpG-Binding Protein 2/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microscopy, Electron, Transmission , Mitochondria/pathology , Mitochondria/ultrastructure , Neural Conduction/genetics , Rett Syndrome/genetics
20.
Elife ; 62017 05 04.
Article in English | MEDLINE | ID: mdl-28470148

ABSTRACT

Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific Pex5 mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy. In search for a molecular mechanism, we revealed enhanced abundance and internodal expression of axonal membrane proteins normally restricted to juxtaparanodal lipid-rafts. Gangliosides were altered and enriched within an expanded lysosomal compartment of paranodal loops. We revealed the same pathological features in a mouse model of human Adrenomyeloneuropathy, preceding disease-onset by one year. Thus, peroxisomal dysfunction causes secondary failure of local lysosomes, thereby impairing the turnover of gangliosides in myelin. This reveals a new aspect of axon-glia interactions, with Schwann cell lipid metabolism regulating the anchorage of juxtaparanodal Kv1-channels.


Subject(s)
Axons/enzymology , Lipid Metabolism , Lysosomes/metabolism , Neuroglia/metabolism , Peripheral Nervous System Diseases/physiopathology , Peroxisomes/metabolism , Potassium Channels, Voltage-Gated/analysis , Adrenoleukodystrophy/pathology , Animals , Axons/ultrastructure , Disease Models, Animal , Humans , Mice , Microscopy, Electron , Peroxisome-Targeting Signal 1 Receptor/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL