Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Genome Res ; 30(3): 459-471, 2020 03.
Article in English | MEDLINE | ID: mdl-32060051

ABSTRACT

A high-confidence map of the direct, functional targets of each transcription factor (TF) requires convergent evidence from independent sources. Two significant sources of evidence are TF binding locations and the transcriptional responses to direct TF perturbations. Systematic data sets of both types exist for yeast and human, but they rarely converge on a common set of direct, functional targets for a TF. Even the few genes that are both bound and responsive may not be direct functional targets. Our analysis shows that when there are many nonfunctional binding sites and many indirect targets, nonfunctional sites are expected to occur in the cis-regulatory DNA of indirect targets by chance. To address this problem, we introduce dual threshold optimization (DTO), a new method for setting significance thresholds on binding and perturbation-response data, and show that it improves convergence. It also enables comparison of binding data to perturbation-response data that have been processed by network inference algorithms, which further improves convergence. The combination of dual threshold optimization and network inference greatly expands the high-confidence TF network map in both yeast and human. Next, we analyze a comprehensive new data set measuring the transcriptional response shortly after inducing overexpression of a yeast TF. We also present a new yeast binding location data set obtained by transposon calling cards and compare it to recent ChIP-exo data. These new data sets improve convergence and expand the high-confidence network synergistically.


Subject(s)
Transcription Factors/metabolism , Algorithms , Binding Sites , Chromatin Immunoprecipitation Sequencing , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation , Gene Regulatory Networks , HEK293 Cells , Humans , K562 Cells , Transcription Factors/genetics , Transcription, Genetic , Yeasts/genetics , Yeasts/metabolism
2.
Mol Syst Biol ; 17(6): e10207, 2021 06.
Article in English | MEDLINE | ID: mdl-34096681

ABSTRACT

The ability to switch a gene from off to on and monitor dynamic changes provides a powerful approach for probing gene function and elucidating causal regulatory relationships. Here, we developed and characterized YETI (Yeast Estradiol strains with Titratable Induction), a collection in which > 5,600 yeast genes are engineered for transcriptional inducibility with single-gene precision at their native loci and without plasmids. Each strain contains SGA screening markers and a unique barcode, enabling high-throughput genetics. We characterized YETI using growth phenotyping and BAR-seq screens, and we used a YETI allele to identify the regulon of Rof1, showing that it acts to repress transcription. We observed that strains with inducible essential genes that have low native expression can often grow without inducer. Analysis of data from eukaryotic and prokaryotic systems shows that native expression is a variable that can bias promoter-perturbing screens, including CRISPRi. We engineered a second expression system, Z3 EB42, that gives lower expression than Z3 EV, a feature enabling conditional activation and repression of lowly expressed essential genes that grow without inducer in the YETI library.


Subject(s)
Genes, Essential , Saccharomyces cerevisiae , Gene Library , Plasmids , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics
3.
Mol Syst Biol ; 16(3): e9174, 2020 03.
Article in English | MEDLINE | ID: mdl-32181581

ABSTRACT

We present IDEA (the Induction Dynamics gene Expression Atlas), a dataset constructed by independently inducing hundreds of transcription factors (TFs) and measuring timecourses of the resulting gene expression responses in budding yeast. Each experiment captures a regulatory cascade connecting a single induced regulator to the genes it causally regulates. We discuss the regulatory cascade of a single TF, Aft1, in detail; however, IDEA contains > 200 TF induction experiments with 20 million individual observations and 100,000 signal-containing dynamic responses. As an application of IDEA, we integrate all timecourses into a whole-cell transcriptional model, which is used to predict and validate multiple new and underappreciated transcriptional regulators. We also find that the magnitudes of coefficients in this model are predictive of genetic interaction profile similarities. In addition to being a resource for exploring regulatory connectivity between TFs and their target genes, our modeling approach shows that combining rapid perturbations of individual genes with genome-scale time-series measurements is an effective strategy for elucidating gene regulatory networks.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Saccharomycetales/genetics , Transcription Factors/genetics , Algorithms , Databases, Genetic , Fungal Proteins/genetics , Gene Expression Regulation
4.
Proc Natl Acad Sci U S A ; 115(48): E11294-E11301, 2018 11 27.
Article in English | MEDLINE | ID: mdl-30425172

ABSTRACT

Anthozoa-class red fluorescent proteins (RFPs) are frequently used as biological markers, with far-red (λem ∼ 600-700 nm) emitting variants sought for whole-animal imaging because biological tissues are more permeable to light in this range. A barrier to the use of naturally occurring RFP variants as molecular markers is that all are tetrameric, which is not ideal for cell biological applications. Efforts to engineer monomeric RFPs have typically produced dimmer and blue-shifted variants because the chromophore is sensitive to small structural perturbations. In fact, despite much effort, only four native RFPs have been successfully monomerized, leaving the majority of RFP biodiversity untapped in biomarker development. Here we report the generation of monomeric variants of HcRed and mCardinal, both far-red dimers, and describe a comprehensive methodology for the monomerization of red-shifted oligomeric RFPs. Among the resultant variants is mKelly1 (emission maximum, λem = 656 nm), which, along with the recently reported mGarnet2 [Matela G, et al. (2017) Chem Commun (Camb) 53:979-982], forms a class of bright, monomeric, far-red FPs.


Subject(s)
Anthozoa/metabolism , Luminescent Proteins/chemistry , Animals , Anthozoa/chemistry , Anthozoa/genetics , Color , Crystallography, X-Ray , Fluorescence , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Models, Molecular , Protein Engineering , Red Fluorescent Protein
5.
Proc Natl Acad Sci U S A ; 111(36): 13034-9, 2014 Sep 09.
Article in English | MEDLINE | ID: mdl-25157169

ABSTRACT

Microbial rhodopsins are a diverse group of photoactive transmembrane proteins found in all three domains of life. A member of this protein family, Archaerhodopsin-3 (Arch) of halobacterium Halorubrum sodomense, was recently shown to function as a fluorescent indicator of membrane potential when expressed in mammalian neurons. Arch fluorescence, however, is very dim and is not optimal for applications in live-cell imaging. We used directed evolution to identify mutations that dramatically improve the absolute brightness of Arch, as confirmed biochemically and with live-cell imaging (in Escherichia coli and human embryonic kidney 293 cells). In some fluorescent Arch variants, the pK(a) of the protonated Schiff-base linkage to retinal is near neutral pH, a useful feature for voltage-sensing applications. These bright Arch variants enable labeling of biological membranes in the far-red/infrared and exhibit the furthest red-shifted fluorescence emission thus far reported for a fluorescent protein (maximal excitation/emission at ∼ 620 nm/730 nm).


Subject(s)
Archaeal Proteins/metabolism , Directed Molecular Evolution , Binding Sites , Cell Survival , Escherichia coli/metabolism , Fluorescence , Green Fluorescent Proteins/metabolism , HEK293 Cells , Halorubrum/metabolism , Humans , Mutant Proteins/metabolism , Mutation , Structural Homology, Protein
6.
Mamm Genome ; 27(7-8): 259-78, 2016 08.
Article in English | MEDLINE | ID: mdl-27364349

ABSTRACT

Animals have evolved to survive, and even thrive, in different environments. Genetic adaptations may have indirectly created phenotypes that also resulted in a longer lifespan. One example of this phenomenon is the preternaturally long-lived naked mole-rat. This strictly subterranean rodent tolerates hypoxia, hypercapnia, and soil-based toxins. Naked mole-rats also exhibit pronounced resistance to cancer and an attenuated decline of many physiological characteristics that often decline as mammals age. Elucidating mechanisms that give rise to their unique phenotypes will lead to better understanding of subterranean ecophysiology and biology of aging. Comparative genomics could be a useful tool in this regard. Since the publication of a naked mole-rat genome assembly in 2011, analyses of genomic and transcriptomic data have enabled a clearer understanding of mole-rat evolutionary history and suggested molecular pathways (e.g., NRF2-signaling activation and DNA damage repair mechanisms) that may explain the extraordinarily longevity and unique health traits of this species. However, careful scrutiny and re-analysis suggest that some identified features result from incorrect or imprecise annotation and assembly of the naked mole-rat genome: in addition, some of these conclusions (e.g., genes involved in cancer resistance and hairlessness) are rejected when the analysis includes additional, more closely related species. We describe how the combination of better study design, improved genomic sequencing techniques, and new bioinformatic and data analytical tools will improve comparative genomics and ultimately bridge the gap between traditional model and nonmodel organisms.


Subject(s)
Aging/genetics , Genome , Genomics , Longevity/genetics , Animals , Mammals/genetics , Mole Rats , Molecular Sequence Annotation , Rats , Species Specificity , Transcriptome/genetics
7.
FASEB J ; 29(11): 4555-67, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26195589

ABSTRACT

Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation.


Subject(s)
Cell Movement/physiology , Cell Polarity/physiology , Collagen/metabolism , Extracellular Matrix/metabolism , Fibroblasts/metabolism , Vinculin/metabolism , Animals , Collagen/genetics , Extracellular Matrix/genetics , Fibroblasts/cytology , Mice , Mice, Knockout , Myosin Type II/genetics , Myosin Type II/metabolism , Pseudopodia/genetics , Pseudopodia/metabolism , Vinculin/genetics
8.
Nucleic Acids Res ; 42(6): e48, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24445804

ABSTRACT

A conditional gene expression system that is fast-acting, is tunable and achieves single-gene specificity was recently developed for yeast. A gene placed directly downstream of a modified GAL1 promoter containing six Zif268 binding sequences (with single nucleotide spacing) was shown to be selectively inducible in the presence of ß-estradiol, so long as cells express the artificial transcription factor, Z3EV (a fusion of the Zif268 DNA binding domain, the ligand binding domain of the human estrogen receptor and viral protein 16). We show the strength of Z3EV-responsive promoters can be modified using straightforward design principles. By moving Zif268 binding sites toward the transcription start site, expression output can be nearly doubled. Despite the reported requirement of estrogen receptor dimerization for hormone-dependent activation, a single binding site suffices for target gene activation. Target gene expression levels correlate with promoter binding site copy number and we engineer a set of inducible promoter chassis with different input-output characteristics. Finally, the coupling between inducer identity and gene activation is flexible: the ligand specificity of Z3EV can be re-programmed to respond to a non-hormone small molecule with only five amino acid substitutions in the human estrogen receptor domain, which may prove useful for industrial applications.


Subject(s)
Gene Expression Regulation, Fungal , Genetic Engineering , Saccharomyces cerevisiae/genetics , 5' Untranslated Regions , Binding Sites , Estradiol/pharmacology , Galactokinase/genetics , Ligands , Promoter Regions, Genetic , Receptors, Estrogen/metabolism , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Synthetic Biology/methods , Transcription Factors/metabolism
9.
Nucleic Acids Res ; 41(4): e57, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23275543

ABSTRACT

A general method for the dynamic control of single gene expression in eukaryotes, with no off-target effects, is a long-sought tool for molecular and systems biologists. We engineered two artificial transcription factors (ATFs) that contain Cys(2)His(2) zinc-finger DNA-binding domains of either the mouse transcription factor Zif268 (9 bp of specificity) or a rationally designed array of four zinc fingers (12 bp of specificity). These domains were expressed as fusions to the human estrogen receptor and VP16 activation domain. The ATFs can rapidly induce a single gene driven by a synthetic promoter in response to introduction of an otherwise inert hormone with no detectable off-target effects. In the absence of inducer, the synthetic promoter is inactive and the regulated gene product is not detected. Following addition of inducer, transcripts are induced >50-fold within 15 min. We present a quantitative characterization of these ATFs and provide constructs for making their implementation straightforward. These new tools allow for the elucidation of regulatory network elements dynamically, which we demonstrate with a major metabolic regulator, Gcn4p.


Subject(s)
Early Growth Response Protein 1/chemistry , Gene Expression Regulation , Transcription, Genetic , Zinc Fingers , Animals , Basic-Leucine Zipper Transcription Factors/genetics , Binding Sites , Cell Proliferation , Early Growth Response Protein 1/genetics , Early Growth Response Protein 1/metabolism , Estradiol/pharmacology , Gene Regulatory Networks , Genetic Engineering/methods , Genome, Fungal , Herpes Simplex Virus Protein Vmw65/genetics , Herpes Simplex Virus Protein Vmw65/metabolism , Humans , Mice , Protein Structure, Tertiary , Receptors, Estrogen/genetics , Receptors, Estrogen/metabolism , Recombinant Fusion Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics
10.
PLoS Comput Biol ; 7(7): e1002109, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21779158

ABSTRACT

Although many of the core components of the embryonic cell-cycle network have been elucidated, the question of how embryos achieve robust, synchronous cellular divisions post-fertilization remains unexplored. What are the different schemes that could be implemented by the embryo to achieve synchronization? By extending a cell-cycle model previously developed for embryos of the frog Xenopus laevis to include the spatial dimensions of the embryo, we establish a novel role for the rapid, fertilization-initiated calcium wave that triggers cell-cycle oscillations. Specifically, in our simulations a fast calcium wave results in synchronized cell cycles, while a slow wave results in full-blown spatio-temporal chaos. We show that such chaos would ultimately lead to an unpredictable patchwork of cell divisions across the embryo. Given this potential for chaos, our results indicate a novel design principle whereby the fast calcium-wave trigger following embryo fertilization synchronizes cell divisions.


Subject(s)
Calcium Signaling/physiology , Cell Cycle/physiology , Cell Division/physiology , Xenopus laevis/embryology , Animals , Calcium/metabolism , Embryo, Nonmammalian/cytology , Fertilization/physiology , Models, Biological
11.
Mol Biol Cell ; 32(22): ar39, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34668730

ABSTRACT

The electron transport chain (ETC) is a well-studied and highly conserved metabolic pathway that produces ATP through generation of a proton gradient across the inner mitochondrial membrane coupled to oxidative phosphorylation. ETC mutations are associated with a wide array of human disease conditions and to aging-related phenotypes in a number of different organisms. In this study, we sought to better understand the role of the ETC in aging using a yeast model. A panel of ETC mutant strains that fail to survive starvation was used to isolate suppressor mutants that survive. These suppressors tend to fall into major nutrient sensing and signaling pathways, suggesting that the ETC is involved in proper starvation signaling to these pathways in yeast. These suppressors also partially restore ETC-associated gene expression and pH homeostasis defects, though it remains unclear whether these phenotypes directly cause the suppression or are simply effects. This work further highlights the complex cellular network connections between metabolic pathways and signaling events in the cell and their potential roles in aging and age-related diseases.


Subject(s)
Electron Transport/genetics , Mutation , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/physiology , Cytosol/chemistry , Cytosol/metabolism , Electron Transport/physiology , Gene Expression Regulation, Fungal , Genome, Mitochondrial , Glucose/metabolism , Hydrogen-Ion Concentration , Saccharomyces cerevisiae Proteins/genetics , Signal Transduction , Transcription Factors/genetics
12.
PLoS One ; 15(5): e0233779, 2020.
Article in English | MEDLINE | ID: mdl-32470059

ABSTRACT

Trehalose metabolism in yeast has been linked to a variety of phenotypes, including heat resistance, desiccation tolerance, carbon-source utilization, and sporulation. The relationships among the several phenotypes of mutants unable to synthesize trehalose are not understood, even though the pathway is highly conserved. One of these phenotypes is that tps1Δ strains cannot reportedly grow on media containing glucose or fructose, even when another carbon source they can use (e.g. galactose) is present. Here we corroborate the recent observation that a small fraction of yeast tps1Δ cells do grow on glucose, unlike the majority of the population. This is not due to a genetic alteration, but instead resembles the persister phenotype documented in many microorganisms and cancer cells undergoing lethal stress. We extend these observations to show that this phenomenon is glucose-specific, as it does not occur on another highly fermented carbon source, fructose. We further demonstrate that this phenomenon appears to be related to mitochondrial complex III function, but unrelated to inorganic phosphate levels in the cell, as had previously been suggested. Finally, we found that this phenomenon is specific to S288C-derived strains, and is the consequence of a variant in the MKT1 gene.


Subject(s)
Glucose/metabolism , Saccharomyces cerevisiae Proteins/physiology , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/metabolism , Electron Transport Complex III/metabolism , Fermentation , Fructose/metabolism , Glucosyltransferases/genetics , Loss of Function Mutation , Trehalose/biosynthesis
13.
Elife ; 72018 10 19.
Article in English | MEDLINE | ID: mdl-30334737

ABSTRACT

Replicative aging of Saccharomyces cerevisiae is an established model system for eukaryotic cellular aging. A limitation in yeast lifespan studies has been the difficulty of separating old cells from young cells in large quantities. We engineered a new platform, the Miniature-chemostat Aging Device (MAD), that enables purification of aged cells at sufficient quantities for genomic and biochemical characterization of aging yeast populations. Using MAD, we measured DNA accessibility and gene expression changes in aging cells. Our data highlight an intimate connection between aging, growth rate, and stress. Stress-independent genes that change with age are highly enriched for targets of the signal recognition particle (SRP). Combining MAD with an improved ATAC-seq method, we find that increasing proteasome activity reduces rDNA instability usually observed in aging cells and, contrary to published findings, provide evidence that global nucleosome occupancy does not change significantly with age.


Subject(s)
Chromatin/metabolism , DNA Replication , Microbiological Techniques/methods , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae/isolation & purification , Gene Expression Profiling , Sequence Analysis, RNA
14.
Ann N Y Acad Sci ; 1363: 155-70, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26995762

ABSTRACT

Methionine restriction is a widely reported intervention for increasing life span in several model organisms. Low circulating levels of methionine are evident in the long-lived naked mole-rat, suggesting that it naturally presents with a life-extending phenotype akin to that observed in methionine-restricted animals. Similarly, long-lived dwarf mice also appear to have altered methionine metabolism. The mechanisms underlying methionine-restriction effects on life-span extension, however, remain unknown, as do their potential connections with caloric restriction, another well-established intervention for prolonging life span. Paradoxically, methionine is enriched in proteins expressed in mitochondria and may itself serve an important role in the detoxification of reactive oxygen species and may thereby contribute to delayed aging. Collectively, we highlight the evidence that modulation of the methionine metabolic network can extend life span-from yeast to humans-and explore the evidence that sulfur amino acids and the concomitant transsulfuration pathway play a privileged role in this regard. However, systematic studies in single organisms (particularly those that exhibit extreme longevity) are still required to distinguish the fundamental principles concerning the role of methionine and other amino acids in regulating life span.


Subject(s)
Caloric Restriction , Life Expectancy , Longevity , Methionine/metabolism , Yeasts , Aging , Animals , Cysteine/metabolism , Eukaryotic Cells/physiology , Humans , Invertebrates , Metabolic Networks and Pathways , Models, Animal , Rodentia , Yeasts/physiology
15.
Curr Opin Struct Biol ; 33: 8-15, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26038227

ABSTRACT

Protein engineering of microbial rhodopsins has been successful in generating variants with improved properties for applications in optogenetics. Members of this membrane protein family can act as both actuators and sensors of neuronal activity. Chimeragenesis, structure-guided mutagenesis, and directed evolution have proven effective strategies for tuning absorption wavelength, altering ion specificity and increasing fluorescence. These approaches facilitate the development of useful optogenetic tools and, in some cases, have yielded insights into rhodopsin structure-function relationships.


Subject(s)
Optogenetics/methods , Protein Engineering , Rhodopsins, Microbial/chemistry , Animals , Biosensing Techniques , Electrophysiology , Mammals , Neurons/drug effects , Neurons/metabolism , Protein Conformation
16.
J Mol Biol ; 427(1): 205-20, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-24979679

ABSTRACT

Proton-pumping rhodopsins (PPRs) are photoactive retinal-binding proteins that transport ions across biological membranes in response to light. These proteins are interesting for light-harvesting applications in bioenergy production, in optogenetics applications in neuroscience, and as fluorescent sensors of membrane potential. Little is known, however, about how the protein sequence determines the considerable variation in spectral properties of PPRs from different biological niches or how to engineer these properties in a given PPR. Here we report a comprehensive study of amino acid substitutions in the retinal-binding pocket of Gloeobacter violaceus rhodopsin (GR) that tune its spectral properties. Directed evolution generated 70 GR variants with absorption maxima shifted by up to ±80nm, extending the protein's light absorption significantly beyond the range of known natural PPRs. While proton-pumping activity was disrupted in many of the spectrally shifted variants, we identified single tuning mutations that incurred blue and red shifts of 42nm and 22nm, respectively, that did not disrupt proton pumping. Blue-shifting mutations were distributed evenly along the retinal molecule while red-shifting mutations were clustered near the residue K257, which forms a covalent bond with retinal through a Schiff base linkage. Thirty eight of the identified tuning mutations are not found in known microbial rhodopsins. We discovered a subset of red-shifted GRs that exhibit high levels of fluorescence relative to the WT (wild-type) protein.


Subject(s)
Cyanobacteria/metabolism , Directed Molecular Evolution , Proton Pumps/metabolism , Rhodopsins, Microbial/chemistry , Rhodopsins, Microbial/metabolism , Amino Acid Sequence , Amino Acid Substitution , Cyanobacteria/genetics , Cyanobacteria/growth & development , Fluorescence , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation/genetics , Rhodopsins, Microbial/genetics , Sequence Homology, Amino Acid
17.
J Vis Exp ; (81): e51153, 2013 Nov 26.
Article in English | MEDLINE | ID: mdl-24300440

ABSTRACT

Synthetic biology aims to rationally design and build synthetic circuits with desired quantitative properties, as well as provide tools to interrogate the structure of native control circuits. In both cases, the ability to program gene expression in a rapid and tunable fashion, with no off-target effects, can be useful. We have constructed yeast strains containing the ACT1 promoter upstream of a URA3 cassette followed by the ligand-binding domain of the human estrogen receptor and VP16. By transforming this strain with a linear PCR product containing a DNA binding domain and selecting against the presence of URA3, a constitutively expressed artificial transcription factor (ATF) can be generated by homologous recombination. ATFs engineered in this fashion can activate a unique target gene in the presence of inducer, thereby eliminating both the off-target activation and nonphysiological growth conditions found with commonly used conditional gene expression systems. A simple method for the rapid construction of GFP reporter plasmids that respond specifically to a native or artificial transcription factor of interest is also provided.


Subject(s)
Green Fluorescent Proteins/genetics , Protein Engineering/methods , Synthetic Biology/methods , Transcription Factors/genetics , Base Sequence , Connexin 43/genetics , Flow Cytometry/methods , Green Fluorescent Proteins/biosynthesis , Green Fluorescent Proteins/chemistry , Humans , Molecular Sequence Data , Peptide Fragments/genetics , Plasmids/genetics , Transcription Factors/biosynthesis , Transcription Factors/chemistry , Yeasts/genetics , Yeasts/metabolism
18.
J Vis Exp ; (76): e50382, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23793137

ABSTRACT

The Fluorescence in situ Hybridization (FISH) method allows one to detect nucleic acids in the native cellular environment. Here we provide a protocol for using FISH to quantify the number of mRNAs in single yeast cells. Cells can be grown in any condition of interest and then fixed and made permeable. Subsequently, multiple single-stranded deoxyoligonucleotides conjugated to fluorescent dyes are used to label and visualize mRNAs. Diffraction-limited fluorescence from single mRNA molecules is quantified using a spot-detection algorithm to identify and count the number of mRNAs per cell. While the more standard quantification methods of northern blots, RT-PCR and gene expression microarrays provide information on average mRNAs in the bulk population, FISH facilitates both the counting and localization of these mRNAs in single cells at single-molecule resolution.


Subject(s)
In Situ Hybridization, Fluorescence/methods , RNA, Messenger/analysis , Saccharomyces cerevisiae/genetics , Algorithms , RNA, Fungal/analysis , RNA, Fungal/chemistry , RNA, Messenger/chemistry , Saccharomyces cerevisiae/chemistry
19.
Mol Biol Cell ; 23(15): 3008-24, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22696679

ABSTRACT

Methionine abundance affects diverse cellular functions, including cell division, redox homeostasis, survival under starvation, and oxidative stress response. Regulation of the methionine biosynthetic pathway involves three DNA-binding proteins-Met31p, Met32p, and Cbf1p. We hypothesized that there exists a "division of labor" among these proteins that facilitates coordination of methionine biosynthesis with diverse biological processes. To explore combinatorial control in this regulatory circuit, we deleted CBF1, MET31, and MET32 individually and in combination in a strain lacking methionine synthase. We followed genome-wide gene expression as these strains were starved for methionine. Using a combination of bioinformatic methods, we found that these regulators control genes involved in biological processes downstream of sulfur assimilation; many of these processes had not previously been documented as methionine dependent. We also found that the different factors have overlapping but distinct functions. In particular, Met31p and Met32p are important in regulating methionine metabolism, whereas p functions as a "generalist" transcription factor that is not specific to methionine metabolism. In addition, Met31p and Met32p appear to regulate iron-sulfur cluster biogenesis through direct and indirect mechanisms and have distinguishable target specificities. Finally, CBF1 deletion sometimes has the opposite effect on gene expression from MET31 and MET32 deletion.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors , DNA-Binding Proteins , Methionine , Saccharomyces cerevisiae Proteins , Sulfur/metabolism , Transcription Factors , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/deficiency , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , Gene Deletion , Gene Expression Profiling , Gene Expression Regulation, Fungal , Genome, Fungal , Methionine/biosynthesis , Methionine/genetics , Methionine/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/physiology , Sulfur/physiology , Transcription Factors/genetics , Transcription Factors/physiology
20.
Mol Biol Cell ; 23(15): 2993-3007, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22696683

ABSTRACT

In yeast, the pathways of sulfur assimilation are combinatorially controlled by five transcriptional regulators (three DNA-binding proteins [Met31p, Met32p, and Cbf1p], an activator [Met4p], and a cofactor [Met28p]) and a ubiquitin ligase subunit (Met30p). This regulatory system exerts combinatorial control not only over sulfur assimilation and methionine biosynthesis, but also on many other physiological functions in the cell. Recently we characterized a gene induction system that, upon the addition of an inducer, results in near-immediate transcription of a gene of interest under physiological conditions. We used this to perturb levels of single transcription factors during steady-state growth in chemostats, which facilitated distinction of direct from indirect effects of individual factors dynamically through quantification of the subsequent changes in genome-wide patterns of gene expression. We were able to show directly that Cbf1p acts sometimes as a repressor and sometimes as an activator. We also found circumstances in which Met31p/Met32p function as repressors, as well as those in which they function as activators. We elucidated and numerically modeled feedback relationships among the regulators, notably feedforward regulation of Met32p (but not Met31p) by Met4p that generates dynamic differences in abundance that can account for the differences in function of these two proteins despite their identical binding sites.


Subject(s)
Gene Expression Regulation, Fungal , Methionine , Saccharomyces cerevisiae , Sulfur/metabolism , 5-Methyltetrahydrofolate-Homocysteine S-Methyltransferase/deficiency , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/physiology , Binding Sites , DNA-Binding Proteins/genetics , DNA-Binding Proteins/physiology , F-Box Proteins/genetics , F-Box Proteins/metabolism , Genome, Fungal , Methionine/biosynthesis , Methionine/genetics , Methionine/metabolism , Protein Binding , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/physiology , Sulfur/physiology , Transcription Factors/genetics , Transcription Factors/physiology , Transcription, Genetic , Ubiquitin/metabolism , Ubiquitin-Protein Ligase Complexes/genetics , Ubiquitin-Protein Ligase Complexes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL