Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
Langmuir ; 40(19): 10143-10156, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38690604

ABSTRACT

When placed in an ionic surfactant gradient, charged colloids will undergo diffusiophoresis at a velocity, uDP = MDP∇ ln S, where MDP is the diffusiophoretic mobility and S is the surfactant concentration. The diffusiophoretic mobility depends in part on the charges and diffusivities of the surfactants and their counterions. Since micellization decreases surfactant diffusivity and alters charge distributions in a surfactant solution, MDP of charged colloids in ionic surfactant gradients may differ significantly when surfactant concentrations are above or below the critical micelle concentration (CMC). The role of micelles in driving diffusiophoresis is unclear, and a previously published model that accounts for micellization suggests the possibility of a change in the sign of MDP above the CMC [Warren, P. B.; . Soft Matter 2019, 15, 278-288]. In the current study, microfluidic channels were used to measure the transport of negatively charged polystyrene colloids in sodium dodecyl sulfate (SDS) surfactant gradients established at SDS concentrations that are either fully above or fully below the CMC. Interpretation of diffusiophoresis was aided by measurements of the colloid electrophoretic mobility as a function of SDS concentration. A numerical transport model incorporating the prior diffusiophoretic mobility model for ionic surfactant gradients was implemented to elucidate signatures of positive and negative diffusiophoretic mobilities and compare with experiments. The theoretically predicted sign of the diffusiophoretic mobility below the CMC was determined to be particularly sensitive to uncertainty in colloid and surfactant properties, while above the CMC, the mobility was consistently predicted to be positive in the SDS concentration range considered in the experiments conducted here. In contrast, experiments only showed signatures of a negative diffusiophoretic mobility for these negatively charged colloids with no change of sign. Colloid diffusiophoretic transport measured in micellar solutions was more extensive than that below the CMC with the same ∇ ln S.

2.
J Colloid Interface Sci ; 642: 169-181, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37003011

ABSTRACT

HYPOTHESIS: A concentration gradient of surfactants in the presence of polymers that non-covalently associate with surfactants will exhibit a continually varying distribution of complexes with different composition, charge, and size. Since diffusiophoresis of colloids suspended in a solute concentration gradient depends on the relaxation of the gradient and on the interactions between solutes and particles, polymer/surfactant complexation will alter the rate of diffusiophoresis driven by surfactant gradients relative to that observed in the same concentration gradient in the absence of polymers. EXPERIMENTS: A microfluidic device was used to measure diffusiophoresis of colloids suspended in solutions containing a gradient of sodium dodecylsulfate (SDS) in the presence or absence of a uniform concentration of Pluronic P123 poly(ethylene oxide-b-propylene oxide-b-ethylene oxide) nonionic triblock copolymers. To interpret the effect of P123 on the rate of colloid diffusiophoresis, electrophoretic mobility and dynamic light scattering measurements of the colloid/solute systems were performed, and a numerical model was constructed to account for the effects of complexation on diffusiophoresis. FINDINGS: Polymer/surfactant complexation in solute gradients significantly enhanced diffusiophoretic transport of colloids. Large P123/SDS complexes formed at low SDS concentrations yielded low collective solute diffusion coefficients that prolonged the existence of strong concentration gradients relative to those without P123 to drive diffusiophoresis.

SELECTION OF CITATIONS
SEARCH DETAIL