Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Phytopathology ; 111(10): 1851-1861, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33736453

ABSTRACT

The transmission mode of grapevine red blotch virus (GRBV, genus Grablovirus, family Geminiviridae) by Spissistilus festinus, the three-cornered alfalfa hopper, is unknown. By analogy with other members in the family Geminiviridae, we hypothesized circulative, nonpropagative transmission. Time-course experiments revealed GRBV in dissected guts, hemolymph, and heads with salivary glands after a 5-, 8-, and 10-day exposure to infected grapevines, respectively. After a 15-day acquisition on infected grapevines and subsequent transfer on alfalfa, a nonhost of GRBV, the virus titer decreased over time in adult insects, as shown by quantitative PCR. Snap bean proved to be a feeding host of S. festinus and a pseudosystemic host of GRBV after Agrobacterium tumefaciens-mediated delivery of an infectious clone. The virus was efficiently transmitted by S. festinus from infected snap bean plants to excised snap bean trifoliates (90%) or grapevine leaves (100%) but less efficiently from infected grapevine plants to excised grapevine leaves (10%) or snap bean trifoliates (67%). Transmission of GRBV also occurred trans-stadially but not via seeds. The virus titer was significantly higher in (i) guts and hemolymph relative to heads with salivary glands, and (ii) adults emanating from third compared with first instars that emerged on infected grapevine plants and developed on snap bean trifoliates. This study demonstrated circulative, nonpropagative transmission of GRBV by S. festinus with an extended acquisition access period compared with other viruses in the family Geminiviridae and marked differences in transmission efficiency between grapevine, the natural host, and snap bean, an alternative herbaceous host.


Subject(s)
Geminiviridae , Medicago sativa , Geminiviridae/genetics , Plant Diseases
2.
Mol Plant Microbe Interact ; 23(8): 991-9, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20615110

ABSTRACT

Understanding the molecular basis of plant responses to pathogen-associated molecular patterns (PAMPs) is an active area of research in the field of plant-microbe interactions. A growing number of plant genes involved in various steps of PAMP-triggered immunity (PTI) pathways and microbial factors involved in the elicitation or suppression of PTI have been identified. These studies have largely relied on Arabidopsis thaliana and, therefore, most of the PTI assays have been developed and optimized for that model plant system. Although PTI is a conserved feature among plants, the response spectra vary across different species. Thus, there is a need for robust PTI assays in other pathosystems, such as those involving Solanaceae plant-pathogen interactions, which include many economically important plants and their diseases. We have optimized molecular, cellular, and whole-plant methods to measure PTI responses in two widely studied solanaceous species, tomato (Solanum lycopersicum) and Nicotiana benthamiana. Here, we provide detailed protocols for measuring various PTI-associated phenotypes, including bacterial populations after pretreatment of leaves with PAMPs, induction of reporter genes, callose deposition, activation of mitogen-activated protein kinases, and a luciferase-based reporter system. These methods will facilitate limited genetic screens and detailed characterization of potential PTI-related genes in model and economically important Solanaceae spp.-pathogen interactions.


Subject(s)
Nicotiana/immunology , Solanum lycopersicum/immunology , Solanum lycopersicum/microbiology , Arabidopsis/immunology , Arabidopsis/microbiology , Bacterial Infections/immunology , Bacterial Infections/pathology , Cell Wall/microbiology , Host-Pathogen Interactions , Immunity, Innate , Plant Diseases/immunology , Plant Leaves/microbiology , Protoplasts/microbiology , Nicotiana/microbiology
3.
J Feline Med Surg ; 10(2): 120-9, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17905624

ABSTRACT

The aim of this study was to determine the prevalence and risk factors for Mycoplasma haemofelis (Mhf) and 'Candidatus Mycoplasma haemominutum' (Mhm) infections in domestic cats tested for feline immunodeficiency virus (FIV) and feline leukemia virus (FeLV) with a commercial enzyme-linked immunosorbent assay (ELISA) kit. Based on serological testing, cats were grouped as i) FIV-positive (n=25); ii) FeLV-positive (n=39); iii) FIV/FeLV-positive (n=8); and iv) FIV/FeLV-negative (n=77). Complete blood counts were followed by DNA extraction, species-specific polymerase chain reaction (16S rRNA gene) for Mhf and Mhm and Southern blotting for all animals. Mhf DNA was found in 4.0, 2.6, 12.5 and 7.8% of the cats from groups i, ii, iii and iv, respectively, while 32, 5.1, 50 and 5.2% of these animals had an Mhm infection. Cats with FIV (OR=4.25, P=0.009) and both FIV and FeLV (OR=7.56, P=0.014) were at greater risk of being hemoplasma infected than retroviral-negative cats, mainly due to Mhm infection (OR=8.59, P=0.001 and OR=18.25, P=0.001, respectively). Among pure-breed cats, FIV-positive status was associated with hemoplasma infection (OR 45.0, P=0.001).


Subject(s)
Cat Diseases/epidemiology , Feline Acquired Immunodeficiency Syndrome/epidemiology , Leukemia, Feline/epidemiology , Mycoplasma Infections/veterinary , Animals , Blood Cell Count/veterinary , Blotting, Southern/veterinary , Brazil/epidemiology , Cats , Comorbidity , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Female , Male , Mycoplasma/isolation & purification , Mycoplasma Infections/epidemiology , Polymerase Chain Reaction/veterinary , Prevalence , Prospective Studies , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL