Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 235
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(1): e2214874120, 2023 01 03.
Article in English | MEDLINE | ID: mdl-36574710

ABSTRACT

Adequate mass and function of adipose tissues (ATs) play essential roles in preventing metabolic perturbations. The pathological reduction of ATs in lipodystrophy leads to an array of metabolic diseases. Understanding the underlying mechanisms may benefit the development of effective therapies. Several cellular processes, including autophagy and vesicle trafficking, function collectively to maintain AT homeostasis. Here, we investigated the impact of adipocyte-specific deletion of the lipid kinase phosphatidylinositol 3-kinase catalytic subunit type 3 (PIK3C3) on AT homeostasis and systemic metabolism in mice. We report that PIK3C3 functions in all ATs and that its absence disturbs adipocyte autophagy and hinders adipocyte differentiation, survival, and function with differential effects on brown and white ATs. These abnormalities cause loss of white ATs, whitening followed by loss of brown ATs, and impaired "browning" of white ATs. Consequently, mice exhibit compromised thermogenic capacity and develop dyslipidemia, hepatic steatosis, insulin resistance, and type 2 diabetes. While these effects of PIK3C3 largely contrast previous findings with the autophagy-related (ATG) protein ATG7 in adipocytes, mice with a combined deficiency in both factors reveal a dominant role of the PIK3C3-deficient phenotype. We have also found that dietary lipid excess exacerbates AT pathologies caused by PIK3C3 deficiency. Surprisingly, glucose tolerance is spared in adipocyte-specific PIK3C3-deficient mice, a phenotype that is more evident during dietary lipid excess. These findings reveal a crucial yet complex role for PIK3C3 in ATs, with potential therapeutic implications.


Subject(s)
Diabetes Mellitus, Type 2 , Insulin Resistance , Animals , Mice , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Diabetes Mellitus, Type 2/metabolism , Adipocytes/metabolism , Lipids , Adipose Tissue, Brown/metabolism , Adipocytes, Brown/metabolism
2.
Am J Physiol Cell Physiol ; 327(3): C571-C586, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38981605

ABSTRACT

Glutamine is a critical amino acid that serves as an energy source, building block, and signaling molecule for the heart tissue and the immune system. However, the role of glutamine metabolism in regulating cardiac remodeling following myocardial infarction (MI) is unknown. In this study, we show in adult male mice that glutamine metabolism is altered both in the remote (contractile) area and in infiltrating macrophages in the infarct area after permanent left anterior descending artery occlusion. We found that metabolites related to glutamine metabolism were differentially altered in macrophages at days 1, 3, and 7 after MI using untargeted metabolomics. Glutamine metabolism in live cells was increased after MI relative to no MI controls. Gene expression in the remote area of the heart indicated a loss of glutamine metabolism. Glutamine administration improved left ventricle (LV) function at days 1, 3, and 7 after MI, which was associated with improved contractile and metabolic gene expression. Conversely, administration of BPTES, a pharmacological inhibitor of glutaminase-1, worsened LV function after MI. Neither glutamine nor BPTES administration impacted gene expression or bioenergetics of macrophages isolated from the infarct area. Our results indicate that glutamine metabolism plays a critical role in maintaining LV contractile function following MI and that glutamine administration improves LV function. Glutamine metabolism may also play a role in regulating macrophage function, but macrophages are not responsive to exogenous pharmacological manipulation of glutamine metabolism.NEW & NOTEWORTHY Glutamine metabolism is altered in both infarct macrophages and the remote left ventricle (LV) following myocardial infarction (MI). Supplemental glutamine improves LV function following MI while inhibiting glutamine metabolism with BPTES worsens LV function. Supplemental glutamine or BPTES does not impact macrophage immunometabolic phenotypes after MI.


Subject(s)
Glutamine , Macrophages , Mice, Inbred C57BL , Myocardial Infarction , Ventricular Function, Left , Animals , Glutamine/metabolism , Myocardial Infarction/metabolism , Myocardial Infarction/pathology , Macrophages/metabolism , Macrophages/immunology , Male , Ventricular Function, Left/drug effects , Mice , Ventricular Remodeling/drug effects , Glutaminase/metabolism , Glutaminase/antagonists & inhibitors , Glutaminase/genetics , Myocardium/metabolism , Myocardium/pathology , Myocardium/immunology , Inflammation/metabolism , Inflammation/pathology , Energy Metabolism/drug effects
3.
Infect Immun ; 92(8): e0022424, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38975764

ABSTRACT

Colonization of the human stomach with Helicobacter pylori strains producing active forms of the secreted toxin VacA is associated with an increased risk of peptic ulcer disease and gastric cancer, compared with colonization with strains producing hypoactive forms of VacA. Previous studies have shown that active s1m1 forms of VacA cause cell vacuolation and mitochondrial dysfunction. In this study, we sought to define the cellular metabolic consequences of VacA intoxication. Untargeted metabolomic analyses revealed that several hundred metabolites were significantly altered in VacA-treated gastroduodenal cells (AGS and AZ-521) compared with control cells. Pathway analysis suggested that VacA caused alterations in taurine and hypotaurine metabolism. Treatment of cells with the purified active s1m1 form of VacA, but not hypoactive s2m1 or Δ6-27 VacA-mutant proteins (defective in membrane channel formation), caused reductions in intracellular taurine and hypotaurine concentrations. Supplementation of the tissue culture medium with taurine or hypotaurine protected AZ-521 cells against VacA-induced cell death. Untargeted global metabolomics of VacA-treated AZ-521 cells or AGS cells in the presence or absence of extracellular taurine showed that taurine was the main intracellular metabolite significantly altered by extracellular taurine supplementation. These results indicate that VacA causes alterations in cellular taurine metabolism and that repletion of taurine is sufficient to attenuate VacA-induced cell death. We discuss these results in the context of previous literature showing the important role of taurine in cell physiology and the pathophysiology or treatment of multiple pathologic conditions, including gastric ulcers, cardiovascular disease, malignancy, inflammatory diseases, and other aging-related disorders.


Subject(s)
Bacterial Proteins , Helicobacter pylori , Taurine , Taurine/metabolism , Taurine/analogs & derivatives , Humans , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Helicobacter pylori/metabolism , Helicobacter Infections/microbiology , Helicobacter Infections/metabolism , Cell Line , Host-Pathogen Interactions , Metabolomics
4.
Anal Chem ; 96(31): 12892-12900, 2024 08 06.
Article in English | MEDLINE | ID: mdl-39051631

ABSTRACT

Drug enantiomers can possess vastly different pharmacological properties, yet they are identical in their chemical composition and structural connectivity. Thus, resolving enantiomers poses a great challenge in the field of separation science. Enantiomer separations necessitate interaction of the analyte with a chiral environment─in mass spectrometry-based analysis, a common approach is through a three-point interaction with a chiral selector commonly introduced during sample preparation. In select cases, the structural difference imparted through noncovalent complexation results in enantiomer-specific structural differences, facilitating measurement using a structurally selective analytical technique such as ion mobility-mass spectrometry (IM-MS). In this work, we investigate the direct IM-MS differentiation of chiral drug compounds using mononuclear copper complexes incorporating an amino acid chiral selector. A panel of 20 chiral drugs and drug-like compounds were investigated for separation, and four l-amino acids (l-histidine, l-tryptophan, l-proline, and l-tyrosine) were evaluated as chiral selectors (CS) to provide the chiral environment necessary for differentiation. Enantiomer differentiation was achieved for four chiral molecule pairs (R/S-thalidomide, R/S-baclofen, R/S-metoprolol, and d/l-panthenol) with two-peak resolution (Rp-p) values ranging from 0.7 (>10% valley) to 1.5 (baseline separation). Calibration curves relating IM peak areas to enantiomeric concentrations enabled enantiomeric excess quantitation of racemic thalidomide and metoprolol with residuals of 5.7 and 2.5%, respectively. Theoretical models suggest that CuII and l-histidine complexation around the analyte chiral center is important for gas-phase stereoselectivity. This study demonstrates the potential of combining enantioselective noncovalent copper complexation with structurally selective IM-MS for differentiating chiral drugs and drug-like compounds.


Subject(s)
Amino Acids , Copper , Ion Mobility Spectrometry , Copper/chemistry , Stereoisomerism , Amino Acids/chemistry , Amino Acids/analysis , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods , Pharmaceutical Preparations/chemistry , Pharmaceutical Preparations/analysis , Coordination Complexes/chemistry , Molecular Structure
5.
Anal Chem ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39012783

ABSTRACT

Structural mass spectrometry (MS) techniques are fast and sensitive analytical methods to identify noncovalent guest/host complexation phenomena for desirable solution-phase properties. Current MS-based studies on guest/host complexes of drug and drug-like molecules are sparse, and there is limited guidance on how to interpret MS information in the context of host nanoencapsulation and inclusion. Here, we use structural MS strategies, combining energy-resolved MS (ERMS), ion mobility-MS (IM-MS), and computational modeling, to characterize 14 chemically distinct drug and drug-like compounds for their propensity to form guest/host complexes with the widely used excipient, beta-cyclodextrin (ßCD). The majority (11/14) yielded a 1:1 guest/host complex, and ion mobility collision cross section (CCS) analysis provided subtle evidence of gas-phase compaction of complexes in both polarities. The three distinct dissociation channels observed in ERMS (i.e., charged ßCD, charged guest, and partial guest loss) were used to direct charge-site assignments for computational modeling, and structural candidates were prioritized using helium-derived CCS measurements combined with root-mean-square distance analysis. The combined analytical information from ERMS, IM-MS, and computational modeling suggested that the majority of anhydrous complexes are inclusion complexes with ßCD. Taken together, this work demonstrates a roadmap for how multiple MS-based analytical measurements can be combined to interpret the structures that guest/host complexes adopt in the absence of water.

6.
Anal Bioanal Chem ; 416(25): 5473-5483, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38935144

ABSTRACT

High-resolution ion mobility (resolving power > 200) coupled with mass spectrometry (MS) is a powerful analytical tool for resolving isobars and isomers in complex samples. High-resolution ion mobility is capable of discerning additional structurally distinct features, which are not observed with conventional resolving power ion mobility (IM, resolving power ~ 50) techniques such as traveling wave IM and drift tube ion mobility (DTIM). DTIM in particular is considered to be the "gold standard" IM technique since collision cross section (CCS) values are directly obtained through a first-principles relationship, whereas traveling wave IM techniques require an additional calibration strategy to determine accurate CCS values. In this study, we aim to evaluate the separation capabilities of a traveling wave ion mobility structures for lossless ion manipulation platform integrated with mass spectrometry analysis (SLIM IM-MS) for both lipid isomer standards and complex lipid samples. A cross-platform investigation of seven subclass-specific lipid extracts examined by both DTIM-MS and SLIM IM-MS showed additional features were observed for all lipid extracts when examined under high resolving power IM conditions, with the number of CCS-aligned features that resolve into additional peaks from DTIM-MS to SLIM IM-MS analysis varying between 5 and 50%, depending on the specific lipid sub-class investigated. Lipid CCS values are obtained from SLIM IM (TW(SLIM)CCS) through a two-step calibration procedure to align these measurements to within 2% average bias to reference values obtained via DTIM (DTCCS). A total of 225 lipid features from seven lipid extracts are subsequently identified in the high resolving power IM analysis by a combination of accurate mass-to-charge, CCS, retention time, and linear mobility-mass correlations to curate a high-resolution IM lipid structural atlas. These results emphasize the high isomeric complexity present in lipidomic samples and underscore the need for multiple analytical stages of separation operated at high resolution.


Subject(s)
Ion Mobility Spectrometry , Lipids , Mass Spectrometry , Lipids/analysis , Mass Spectrometry/methods , Ion Mobility Spectrometry/methods , Isomerism
7.
Proc Natl Acad Sci U S A ; 118(49)2021 12 07.
Article in English | MEDLINE | ID: mdl-34857637

ABSTRACT

Reading and writing DNA were once the rate-limiting step in synthetic biology workflows. This has been replaced by the search for the optimal target sequences to produce systems with desired properties. Directed evolution and screening mutant libraries are proven technologies for isolating strains with enhanced performance whenever specialized assays are available for rapidly detecting a phenotype of interest. Armed with technologies such as CRISPR-Cas9, these experiments are capable of generating libraries of up to 1010 genetic variants. At a rate of 102 samples per day, standard analytical methods for assessing metabolic phenotypes represent a major bottleneck to modern synthetic biology workflows. To address this issue, we have developed a desorption electrospray ionization-imaging mass spectrometry screening assay that directly samples microorganisms. This technology increases the throughput of metabolic measurements by reducing sample preparation and analyzing organisms in a multiplexed fashion. To further accelerate synthetic biology workflows, we utilized untargeted acquisitions and unsupervised analytics to assess multiple targets for future engineering strategies within a single acquisition. We demonstrate the utility of the developed method using Escherichia coli strains engineered to overproduce free fatty acids. We determined discrete metabolic phenotypes associated with each strain, which include the primary fatty acid product, secondary products, and additional metabolites outside the engineered product pathway. Furthermore, we measured changes in amino acid levels and membrane lipid composition, which affect cell viability. In sum, we present an analytical method to accelerate synthetic biology workflows through rapid, untargeted, and multiplexed metabolomic analyses.


Subject(s)
Metabolomics/methods , Microbiota/physiology , Spectrometry, Mass, Electrospray Ionization/methods , Biological Variation, Population , Fatty Acids/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Synthetic Biology/methods
8.
J Neurosci ; 42(25): 5085-5101, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35589390

ABSTRACT

Endosomal sorting plays a fundamental role in directing neural development. By altering the temporal and spatial distribution of membrane receptors, endosomes regulate signaling pathways that control the differentiation and function of neural cells. Several genes linked to inherited demyelinating peripheral neuropathies, known as Charcot-Marie-Tooth (CMT) disease, encode proteins that directly interact with components of the endosomal sorting complex required for transport (ESCRT). Our previous studies demonstrated that a point mutation in the ESCRT component hepatocyte growth-factor-regulated tyrosine kinase substrate (HGS), an endosomal scaffolding protein that identifies internalized cargo to be sorted by the endosome, causes a peripheral neuropathy in the neurodevelopmentally impaired teetering mice. Here, we constructed a Schwann cell-specific deletion of Hgs to determine the role of endosomal sorting during myelination. Inactivation of HGS in Schwann cells resulted in motor and sensory deficits, slowed nerve conduction velocities, delayed myelination and hypomyelinated axons, all of which occur in demyelinating forms of CMT. Consistent with a delay in Schwann cell maturation, HGS-deficient sciatic nerves displayed increased mRNA levels for several promyelinating genes and decreased mRNA levels for genes that serve as markers of myelinating Schwann cells. Loss of HGS also altered the abundance and activation of the ERBB2/3 receptors, which are essential for Schwann cell development. We therefore hypothesize that HGS plays a critical role in endosomal sorting of the ERBB2/3 receptors during Schwann cell maturation, which further implicates endosomal dysfunction in inherited peripheral neuropathies.SIGNIFICANCE STATEMENT Schwann cells myelinate peripheral axons, and defects in Schwann cell function cause inherited demyelinating peripheral neuropathies known as CMT. Although many CMT-linked mutations are in genes that encode putative endosomal proteins, little is known about the requirements of endosomal sorting during myelination. In this study, we demonstrate that loss of HGS disrupts the endosomal sorting pathway in Schwann cells, resulting in hypomyelination, aberrant myelin sheaths, and impairment of the ERBB2/3 receptor pathway. These findings suggest that defective endosomal trafficking of internalized cell surface receptors may be a common mechanism contributing to demyelinating CMT.


Subject(s)
Charcot-Marie-Tooth Disease , Animals , Charcot-Marie-Tooth Disease/metabolism , Endosomal Sorting Complexes Required for Transport , Endosomes/metabolism , Mice , Peripheral Nervous System Diseases , RNA, Messenger , Schwann Cells/metabolism
9.
Anal Chem ; 95(21): 8180-8188, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37184072

ABSTRACT

Cyclodextrins (CDs) are a family of macrocyclic oligosaccharides with amphiphilic properties, which can improve the stability, solubility, and bioavailability of therapeutic compounds. There has been growing interest in the advancement of efficient and reliable analytical methods that assist with elucidating CD host-guest drug complexation. In this study, we investigate the noncovalent ion complexes formed between naturally occurring dextrins (αCD, ßCD, γCD, and maltohexaose) with the poorly water-soluble antimalarial drug, artemisinin, using a combination of ion mobility-mass spectrometry (IM-MS), tandem MS/MS, and theoretical modeling approaches. This study aims to determine if the drug can complex within the core dextrin cavity forming an inclusion complex or nonspecifically bind to the periphery of the dextrins. We explore the use of group I alkali earth metal additives to promote the formation of various noncovalent gas-phase ion complexes with different drug/dextrin stoichiometries (1:1, 1:2, 1:3, 1:4, and 2:1). Broad IM-MS collision cross section (CCS) mapping (n > 300) and power-law regression analysis were used to confirm the stoichiometric assignments. The 1:1 drug:αCD and drug:ßCD complexes exhibited strong preferences for Li+ and Na+ charge carriers, whereas drug:γCD complexes preferred forming adducts with the larger alkali metals, K+, Rb+, and Cs+. Although the ion-measured CCS increased with cation size for the unbound artemisinin and CDs, the 1:1 drug:dextrin complexes exhibit near-identical CCS values regardless of the cation, suggesting these are inclusion complexes. Tandem MS/MS survival yield curves of the [artemisinin:ßCD + X]+ ion (X = H, Li, Na, K) showed a decreased stability of the ion complex with increasing cation size. Empirical CCS measurements of the [artemisinin:ßCD + Li]+ ion correlated with predicted CCS values from the low-energy theoretical structures of the drug incorporated within the ßCD cavity, providing further evidence that gas-phase inclusion complexes are formed in these experiments. Taken together, this work demonstrates the utility of combining analytical information from IM-MS, MS/MS, and computational approaches in interpreting the presence of gas-phase inclusion phenomena.


Subject(s)
Artemisinins , Cyclodextrins , Dextrins , Tandem Mass Spectrometry , Cyclodextrins/chemistry , Cations/chemistry
10.
Bioinformatics ; 38(10): 2872-2879, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35561172

ABSTRACT

MOTIVATION: Mass spectrometry-based untargeted lipidomics aims to globally characterize the lipids and lipid-like molecules in biological systems. Ion mobility increases coverage and confidence by offering an additional dimension of separation and a highly reproducible metric for feature annotation, the collision cross-section (CCS). RESULTS: We present a data processing workflow to increase confidence in molecular class annotations based on CCS values. This approach uses class-specific regression models built from a standardized CCS repository (the Unified CCS Compendium) in a parallel scheme that combines a new annotation filtering approach with a machine learning class prediction strategy. In a proof-of-concept study using murine brain lipid extracts, 883 lipids were assigned higher confidence identifications using the filtering approach, which reduced the tentative candidate lists by over 50% on average. An additional 192 unannotated compounds were assigned a predicted chemical class. AVAILABILITY AND IMPLEMENTATION: All relevant source code is available at https://github.com/McLeanResearchGroup/CCS-filter. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Lipidomics , Machine Learning , Animals , Lipids/analysis , Mass Spectrometry , Mice , Regression Analysis
11.
Analyst ; 148(2): 391-401, 2023 Jan 16.
Article in English | MEDLINE | ID: mdl-36537590

ABSTRACT

Native ion mobility-mass spectrometry (IM-MS) has emerged as an information-rich technique for gas phase protein structure characterization; however, IM resolution is currently insufficient for the detection of subtle structural differences in large biomolecules. This challenge has spurred the development of collision-induced unfolding (CIU) which utilizes incremental gas phase activation to unfold a protein in order to expand the number of measurable descriptors available for native protein ions. Although CIU is now routinely used in native mass spectrometry studies, the interlaboratory reproducibility of CIU has not been established. Here we evaluate the reproducibility of the CIU data produced across three laboratories (University of Michigan, Texas A&M University, and Vanderbilt University). CIU data were collected for a variety of protein ions ranging from 8.6-66 kDa. Within the same laboratory, the CIU fingerprints were found to be repeatable with root mean square deviation (RMSD) values of less than 5%. Collision cross section (CCS) values of the CIU intermediates were consistent across the laboratories, with most features exhibiting an interlaboratory reproducibility of better than 1%. In contrast, the activation potentials required to induce protein CIU transitions varied between the three laboratories. To address these differences, three source assemblies were constructed with an updated ion activation hardware design utilizing higher mechanical tolerance specifications. The production-grade assemblies were found to produce highly consistent CIU data for intact antibodies, exhibiting high precision ion CCS and CIU transition values, thus opening the door to establishing databases of CIU fingerprints to support future biomolecular classification efforts.


Subject(s)
Protein Unfolding , Proteins , Humans , Reproducibility of Results , Proteins/chemistry , Mass Spectrometry/methods , Ions/chemistry
12.
Learn Mem ; 29(9): 321-331, 2022 09.
Article in English | MEDLINE | ID: mdl-36206387

ABSTRACT

Age, genetics, and chromosomal sex have been identified as critical risk factors for late-onset Alzheimer's disease (LOAD). The predominant genetic risk factor for LOAD is the apolipoprotein E ε4 allele (APOE4), and the prevalence of LOAD is higher in females. However, the translational validity of APOE4 mouse models for AD-related cognitive impairment remains to be fully determined. The present study investigated the role of both sex and genotype on learning and memory in aged, humanized APOE knock-in mice. Aged (23.27 mo ± 1.21 mo; 39 male/37 female) APOE3/3, APOE3/4, and APOE4/4 mice performed a novel object recognition (NOR) assay. Task-related metrics were analyzed using two-way sex by genotype ANOVAs. Sex differences were more prominent relative to APOE genotype. Prior to NOR, female mice exhibited thigmotaxic center zone avoidance during the open field task relative to males, regardless of genotype. Within object familiarization and NOR tasks, females had greater object interaction and locomotion. Interestingly, only APOE4/4 females on average recognized the novel object. These results suggest that APOE4, although strongly related to LOAD pathogenesis, does not drive cognitive decline in the absence of other risk factors even in very aged mice. Chromosomal sex is a key driver of behavioral phenotypes and thus is a critical variable for translatability of interventions designed to preserve learning and memory in animal models of LOAD. Last, there was a very high degree of variability in behavioral performance across APOE genotypes. A cluster analysis of the behavioral data revealed a low-activity and a high-activity cluster. APOE4 carriers were overrepresented in the low-activity cluster, while male:female distributions did not differ. Collectively, the behavioral data indicate that chromosomal sex has the greatest impact on behavioral phenotype, and APOE4 carrier status may confer greater risk for cognitive decline in some animals.


Subject(s)
Alzheimer Disease , Apolipoprotein E4 , Alzheimer Disease/genetics , Animals , Apolipoprotein E3/genetics , Apolipoprotein E4/genetics , Disease Models, Animal , Exploratory Behavior , Female , Genotype , Male , Mice , Mice, Transgenic
13.
Expert Rev Proteomics ; 19(1): 17-31, 2022 01.
Article in English | MEDLINE | ID: mdl-34986717

ABSTRACT

INTRODUCTION: Ion mobility-mass spectrometry is an emerging technology in the clinical setting for high throughput and high confidence molecular characterization from complex biological samples. Ion mobility spectrometry can provide isomer separations on the basis of molecular structure, the ability of which is increasing through technological developments that afford enhanced resolving power. Integrating multiple separation dimensions, such as liquid chromatography-ion mobility-mass spectrometry (LC-IM-MS) provide dramatic enhancements in the mitigation of molecular interferences for high accuracy clinical measurements. AREAS COVERED: Multidimensional separations with LC-IM-MS provide better selectivity and sensitivity in molecular analysis. Mass spectrometry imaging of tissues to inform spatial molecular distribution is improved by complementary ion mobility analyses. Biomarker identification in surgical environments is enhanced by intraoperative biochemical analysis with mass spectrometry and holds promise for integration with ion mobility spectrometry. New prospects in high resolving power ion mobility are enhancing analysis capabilities, such as distinguishing isomeric compounds. EXPERT OPINION: Ion mobility-mass spectrometry holds many prospects for the field of isomer identification, molecular imaging, and intraoperative tumor margin delineation in clinical settings. These advantages are afforded while maintaining fast analysis times and subsequently high throughput. High resolving power ion mobility will enhance these advantages further, in particular for analyses requiring high confidence isobaric selectivity and detection.


Subject(s)
Chemistry, Clinical , Ion Mobility Spectrometry , Biomarkers , Chromatography, Liquid/methods , Humans , Ion Mobility Spectrometry/methods , Mass Spectrometry/methods
14.
Metabolomics ; 18(12): 104, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36472678

ABSTRACT

BACKGROUND: Ion mobility (IM) separation capabilities are now widely available to researchers through several commercial vendors and are now being adopted into many metabolomics workflows. The added peak capacity that ion mobility offers with minimal compromise to other analytical figures-of-merit has provided real benefits to sensitivity and structural selectivity and have allowed more specific metabolite annotations to be assigned in untargeted workflows. One of the greatest promises of contemporary IM-enabled instrumentation is the capability of operating multiple analytical dimensions inline with minimal sample volumes, which has the potential to address many grand challenges currently faced in the omics fields. However, comprehensive operation of multidimensional mass spectrometry comes with its own inherent challenges that, beyond operational complexity, may not be immediately obvious to practitioners of these techniques. AIM OF REVIEW: In this review, we outline the strengths and considerations for incorporating IM analysis in metabolomics workflows and provide a critical but forward-looking perspective on the contemporary challenges and prospects associated with interpreting IM data into chemical knowledge. KEY SCIENTIFIC CONCEPTS OF REVIEW: We outline a strategy for unifying IM-derived collision cross section (CCS) measurements obtained from different IM techniques and discuss the emerging field of high resolution ion mobility (HRIM) that is poised to address many of the contemporary challenges associated with ion mobility metabolomics. Whereas the LC step limits the throughput of comprehensive LC-IM-MS, the higher peak capacity of HRIM can allow fast LC gradients or rapid sample cleanup via solid-phase extraction (SPE) to be utilized, significantly improving the sample throughput.


Subject(s)
Metabolomics
15.
Mol Psychiatry ; 26(12): 7346-7354, 2021 12.
Article in English | MEDLINE | ID: mdl-34535766

ABSTRACT

Inflammation is associated with depressive symptoms and innate immune mechanisms are likely causal in some cases of major depression. Systemic inflammation also perturbs brain function and microstructure, though how these are related remains unclear. We recruited N = 46 healthy controls, and N = 83 depressed cases stratified by CRP (> 3 mg/L: N = 33; < 3 mg/L: N = 50). All completed clinical assessment, venous blood sampling for C-reactive protein (CRP) assay, and brain magnetic resonance imaging (MRI). Micro-structural MRI parameters including proton density (PD), a measure of tissue water content, were measured at 360 cortical and 16 subcortical regions. Resting-state fMRI time series were correlated to estimate functional connectivity between individual regions, as well as the sum of connectivity (weighted degree) of each region. Multiple tests for regional analysis were controlled by the false discovery rate (FDR = 5%). We found that CRP was significantly associated with PD in precuneus, posterior cingulate cortex (pC/pCC) and medial prefrontal cortex (mPFC); and with functional connectivity between pC/pCC, mPFC and hippocampus. Depression was associated with reduced weighted degree of pC/pCC, mPFC, and other nodes of the default mode network (DMN). Thus CRP-related increases in proton density-a plausible marker of extracellular oedema-and changes in functional connectivity were anatomically co-localised with DMN nodes that also demonstrated significantly reduced hubness in depression. We suggest that effects of peripheral inflammation on DMN node micro-structure and connectivity may mediate inflammatory effects on depression.


Subject(s)
Brain , Depression , Brain Mapping , Humans , Inflammation , Magnetic Resonance Imaging/methods , Neural Pathways
16.
J Lipid Res ; 62: 100081, 2021.
Article in English | MEDLINE | ID: mdl-33933440

ABSTRACT

Nuclear receptors are transcription factors that bind lipids, an event that induces a structural conformation of the receptor that favors interaction with transcriptional coactivators. The nuclear receptor steroidogenic factor-1 (SF-1, NR5A1) binds the signaling phosphoinositides PI(4,5)P2 (PIP2) and PI(3,4,5)P3 (PIP3), and our previous crystal structures showed how the phosphoinositide headgroups regulate SF-1 function. However, what role the acyl chains play in regulating SF-1 structure remains unaddressed. Here, we used X-ray crystallography with in vitro binding and functional assays to examine how the acyl chains of PIP3 regulate human SF-1 ligand-binding domain structure and function. Altering acyl chain length and unsaturation regulates apparent binding of all tested phosphoinositides to SF-1. Mass spectrometry-based lipidomics data suggest C16 and C18 phospholipids preferentially associate with SF-1 expressed ectopically in bacteria. We then solved the 2.5 Å crystal structure of SF-1 bound to dioleoyl PIP3(18:1/18:1) to compare it with a matched structure of SF-1 bound to dipalmitoyl PIP3(16:0/16:0). The dioleoyl-bound structure was severely disordered in a specific SF-1 region associated with pathogenic human polymorphisms and within the coactivator-binding region critical for SF-1 function while inducing increased sensitivity to protease digestion in solution. Validating these structural observations, in vitro functional studies showed dioleoyl PIP3 induced 6-fold poorer affinity of a peroxisome proliferator-activated receptor gamma coactivator 1-alpha coactivator peptide for SF-1 compared with dipalmitoyl PIP3. Together, these data suggest the chemical nature of the phosphoinositide acyl chains controls the ordered state of specific, clinically important structural regions in SF-1, regulating SF-1 function in vitro.


Subject(s)
Phosphatidylinositols
17.
J Proteome Res ; 20(9): 4405-4414, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34382806

ABSTRACT

Recent research regarding amino acid metabolism has shown that there may be a link between obesity and Alzheimer's disease (AD). This work reports a metabolomics study using targeted and untargeted mass spectrometry-based metabolomic strategies to investigate this link. Targeted hydrophilic interaction liquid chromatography-triple quadrupole mass spectrometry and untargeted reversed-phase liquid chromatography-high resolution tandem mass spectrometry assays were developed to analyze the metabolic changes that occur in AD and obesity. APPSwe/PS1ΔE9 (APP/PSEN1) transgenic mice (to represent familial or early-onset AD) and wild-type littermate controls were fed either a high-fat diet (HFD, 60% kcal from lard) or a low-fat diet (LFD, 10% kcal from lard) from 2 months of age or a reversal diet (HFD, followed by LFD from 9.5 months). For targeted analyses, we applied the guidelines outlined in the Clinical and Laboratory Standards Institute (CLSI) LC-MS C62-A document and the U.S. Food and Drug Administration (FDA) bioanalytical method validation guidance for industry to evaluate the figures of merit of the assays. Our targeted and untargeted metabolomics results suggest that numerous peripheral pathways, specifically amino acid metabolism and fatty acid metabolism, were significantly affected by AD and diet. Multiple amino acids (including alanine, glutamic acid, leucine, isoleucine, and phenylalanine), carnitines, and members of the fatty acid oxidation pathway were significantly increased in APP/PSEN1 mice on HFD compared to those on LFD. More substantial effects and changes were observed in the APP/PSEN1 mice than in the WT mice, suggesting that they were more sensitive to an HFD. These dysregulated peripheral pathways include numerous amino acid pathways and fatty acid beta oxidation and suggest that obesity combined with AD further enhances cognitive impairment, possibly through aggravated mitochondrial dysfunction. Furthermore, partial reversibility of many altered pathways was observed, which highlights that diet change can mitigate the metabolic effects of AD. The same trends in individual amino acids were observed in both strategies, highlighting the biological validity of the results.


Subject(s)
Alzheimer Disease , Amino Acids , Animals , Diet, High-Fat/adverse effects , Mass Spectrometry , Metabolomics , Mice , Mice, Inbred C57BL , Mice, Transgenic
18.
J Neurochem ; 156(3): 309-323, 2021 02.
Article in English | MEDLINE | ID: mdl-32901953

ABSTRACT

Strategies for enhancing protein degradation have been proposed for treating neurological diseases associated with a decline in proteasome activity. A proteasomal deubiquitinating enzyme that controls substrate entry into proteasomes, ubiquitin-specific protease 14 (USP14), is an attractive candidate for therapies that modulate proteasome activity. This report tests the validity of genetic and pharmacological tools to study USP14's role in regulating protein abundance. Although previous studies implicated USP14 in the degradation of microtubule associate protein tau, tar DNA binding protein, and prion protein, the levels of these proteins were similar in our neurons cultured from wild type and USP14-deficient mice. Neither loss nor over-expression of USP14 affected the levels of these proteins in mice, implying that modifying the amount of USP14 is not sufficient to alter their steady-state levels. However, neuronal over-expression of a catalytic mutant of USP14 showed that manipulating USP14's ubiquitin-hydrolase activity altered the levels of specific proteins in vivo. Although pharmacological inhibitors of USP14's ubiquitin-hydrolase activity reduced microtubule associate protein tau, tar DNA binding protein, and prion protein in culture, the effect was similar in wild type and USP14-deficient neurons, thus impacting their use for specifically evaluating USP14 in a therapeutic manner. While examining how targeting USP14 may affect other proteins in vivo, this report showed that fatty acid synthase, v-rel reticuloendotheliosis viral oncogene homolog, CTNNB1, and synaptosome associated protein 23 are reduced in USP14-deficient mice; however, loss of USP14 differentially altered the levels of these proteins in the liver and brain. As such, it is critical to more thoroughly examine how inhibiting USP14 alters protein abundance to determine if targeting USP14 will be a beneficial strategy for treating neurodegenerative diseases.


Subject(s)
Brain/enzymology , Liver/enzymology , Neurons/enzymology , Ubiquitin Thiolesterase/metabolism , Animals , Female , Genetic Techniques , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
19.
Anal Chem ; 93(31): 10990-10998, 2021 08 10.
Article in English | MEDLINE | ID: mdl-34319704

ABSTRACT

The detection and unambiguous identification of anabolic-androgenic steroid metabolites are essential in clinical, forensic, and antidoping analyses. Recently, sulfate phase II steroid metabolites have received increased attention in steroid metabolism and drug testing. In large part, this is because phase II steroid metabolites are excreted for an extended time, making them a potential long-term chemical marker of choice for tracking steroid misuse in sports. Comprehensive analytical methods, such as liquid chromatography-tandem mass spectrometry (LC-MS/MS), have been used to detect and identify glucuronide and sulfate steroids in human urine with high sensitivity and reliability. However, LC-MS/MS identification strategies can be hindered by the fact that phase II steroid metabolites generate nonselective ion fragments across the different metabolite markers, limiting the confidence in metabolite identifications that rely on exact mass measurement and MS/MS information. Additionally, liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is sometimes insufficient at fully resolving the analyte peaks from the sample matrix (commonly urine) chemical noise, further complicating accurate identification efforts. Therefore, we developed a liquid chromatography-ion mobility-high resolution mass spectrometry (LC-IM-HRMS) method to increase the peak capacity and utilize the IM-derived collision cross section (CCS) values as an additional molecular descriptor for increased selectivity and to improve identifications of intact steroid analyses at low concentrations.


Subject(s)
Steroids , Tandem Mass Spectrometry , Chromatography, Liquid , Humans , Reproducibility of Results , Steroids/urine , Substance Abuse Detection
20.
Learn Mem ; 27(5): 209-221, 2020 05.
Article in English | MEDLINE | ID: mdl-32295841

ABSTRACT

In the olfactory bulb, a cAMP/PKA/CREB-dependent form of learning occurs in the first week of life that provides a unique mammalian model for defining the epigenetic role of this evolutionarily ancient plasticity cascade. Odor preference learning in the week-old rat pup is rapidly induced by a 10-min pairing of odor and stroking. Memory is demonstrable at 24 h, but not 48 h, posttraining. Using this paradigm, pups that showed peppermint preference 30 min posttraining were sacrificed 20 min later for laser microdissection of odor-encoding mitral cells. Controls were given odor only. Microarray analysis revealed that 13 nonprotein-coding mRNAs linked to mRNA translation and splicing and 11 protein-coding mRNAs linked to transcription differed with odor preference training. MicroRNA23b, a translation inhibitor of multiple plasticity-related mRNAs, was down-regulated. Protein-coding transcription was up-regulated for Sec23b, Clic2, Rpp14, Dcbld1, Magee2, Mstn, Fam229b, RGD1566265, and Mgst2. Gng12 and Srcg1 mRNAs were down-regulated. Increases in Sec23b, Clic2, and Dcbld1 proteins were confirmed in mitral cells in situ at the same time point following training. The protein-coding changes are consistent with extracellular matrix remodeling and ryanodine receptor involvement in odor preference learning. A role for CREB and AP1 as triggers of memory-related mRNA regulation is supported. The small number of gene changes identified in the mitral cell input/output link for 24 h memory will facilitate investigation of the nature, and reversibility, of changes supporting temporally restricted long-term memory.


Subject(s)
Behavior, Animal/physiology , Learning/physiology , Olfactory Bulb/metabolism , Olfactory Perception/physiology , RNA, Messenger/metabolism , Touch Perception/physiology , Animals , Animals, Newborn , Choice Behavior/physiology , Down-Regulation , Female , Male , Memory, Long-Term/physiology , Olfactory Bulb/cytology , Rats , Rats, Sprague-Dawley
SELECTION OF CITATIONS
SEARCH DETAIL