ABSTRACT
Leukodystrophies (LD) and genetic leukoencephalopathies (gLE) are disorders that result in white matter abnormalities in the central nervous system (CNS). Magnetic resonance (MR) imaging (MRI) has dramatically improved and systematized the diagnosis of LDs and gLEs, and in combination with specific clinical features, such as Addison's disease in Adrenoleukodystrophy or hypodontia in Pol-III related or 4H leukodystrophy, can often resolve a case with a minimum of testing. The diagnostic odyssey for the majority LD and gLE patients, however, remains extensive--many patients will wait nearly a decade for a definitive diagnosis and at least half will remain unresolved. The combination of MRI, careful clinical evaluation and next generation genetic sequencing holds promise for both expediting the diagnostic process and dramatically reducing the number of unresolved cases. Here we present a workflow detailing the Global Leukodystrophy Initiative (GLIA) consensus recommendations for an approach to clinical diagnosis, including salient clinical features suggesting a specific diagnosis, neuroimaging features and molecular genetic testing. We also discuss recommendations on the use of broad-spectrum next-generation sequencing in instances of ambiguous MRI or clinical findings. We conclude with a proposal for systematic trials of genome-wide agnostic testing as a first line diagnostic in LDs and gLEs given the increasing number of genes associated with these disorders.
Subject(s)
Demyelinating Diseases/diagnosis , Hereditary Central Nervous System Demyelinating Diseases/diagnosis , Lysosomal Storage Diseases/diagnosis , Adrenoleukodystrophy/diagnosis , Anodontia/diagnosis , Humans , Magnetic Resonance ImagingABSTRACT
We performed high-resolution in vitro proton nuclear magnetic resonance spectroscopy on cerebrospinal fluid and urine samples of 44 patients with leukodystrophies of unknown cause. Free sialic acid concentration was increased in cerebrospinal fluid of two siblings with mental retardation and mild hypomyelination. By contrast, urinary excretion of free sialic acid in urine was normal on repeated testing by two independent methods. Both patients were homozygous for the K136E mutation in SLC17A5, the gene responsible for the free sialic acid storage diseases. Our findings demonstrate that mutations in the SLC17A5 gene have to be considered in patients with hypomyelination, even in the absence of sialuria.
Subject(s)
N-Acetylneuraminic Acid/cerebrospinal fluid , Organic Anion Transporters/genetics , Sialic Acid Storage Disease/genetics , Symporters/genetics , Adolescent , Child , Diagnosis, Differential , Hereditary Central Nervous System Demyelinating Diseases/cerebrospinal fluid , Hereditary Central Nervous System Demyelinating Diseases/diagnosis , Hereditary Central Nervous System Demyelinating Diseases/genetics , Hereditary Central Nervous System Demyelinating Diseases/urine , Humans , N-Acetylneuraminic Acid/genetics , N-Acetylneuraminic Acid/urine , Nuclear Magnetic Resonance, Biomolecular/methods , Sialic Acid Storage Disease/cerebrospinal fluid , Sialic Acid Storage Disease/diagnosis , Sialic Acid Storage Disease/urine , Young AdultABSTRACT
Established adriamycin cardiomyopathy is a lethal disease. When congestive heart failure develops, mortality is approximately 50% in a year. It has been known that ANGPTLs has various functions in lipid metabolism, inflammation, cancer cell invasion, hematopoietic stem activity and diabetes. We hypothesized that ANGPTL8 is capable of maintaining heart function by stimulating adult cardiac progenitor cells to initiate myocardial regeneration. We employed UTMD to deliver piggybac transposon plasmids with the human ANGPTL8 gene to the liver of rats with adriamycin cardiomyopathy. After ANGPTL8 gene liver delivery, overexpression of transgenic human ANGPTL8 was found in rat liver cells and blood. UTMD- ANGPTL8 gene therapy restored LV mass, fractional shortening index, and LV posterior wall diameter to nearly normal. Our results also showed that ANGPTL8 reversed established ADM cardiomyopathy. This was associated with activation of ISL-1 positive cardiac progenitor cells in the epicardium. A time-course experiment shown that ISL-1 cardiac progenitor cells proliferated and formed a niche in the epicardial layer and then migrated into sub-epicardium. The observed myocardial regeneration accompanying reversal of adriamycin cardiomyopathy was associated with upregulation of PirB expression on the cell membrane of cardiac muscle cells or progenitor cells stimulated by ANGPTL8.