Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Bioorg Med Chem Lett ; 19(8): 2244-8, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-19285393

ABSTRACT

A pyrrolopyridinyl thiophene carboxamide 7 was discovered as a tractable starting point for a lead optimization effort in an AKT kinase inhibition program. SAR studies aided by a co-crystal structure of 7 in AKT2 led to the identification of AKT inhibitors with subnanomolar potency. Representative compounds showed antiproliferative activity as well as inhibition of phosphorylation of the downstream target GSK3beta.


Subject(s)
Drug Discovery , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Pyridines/chemical synthesis , Pyridines/pharmacology , Thiophenes/chemistry , Animals , Crystallography, X-Ray , Drug Discovery/methods , Humans , Mice , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Thienopyridines , Thiophenes/chemical synthesis , Thiophenes/pharmacology
2.
Bioorg Med Chem Lett ; 19(5): 1508-11, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19179070

ABSTRACT

AKT inhibitors containing an imidazopyridine aminofurazan scaffold have been optimized. We have previously disclosed identification of the AKT inhibitor GSK690693, which has been evaluated in clinical trials in cancer patients. Herein we describe recent efforts focusing on investigating a distinct region of this scaffold that have afforded compounds (30 and 32) with comparable activity profiles to that of GSK690693.


Subject(s)
Oxadiazoles/chemical synthesis , Protein Kinase Inhibitors/chemical synthesis , Proto-Oncogene Proteins c-akt/antagonists & inhibitors , Animals , Cell Line , Cell Line, Tumor , Crystallography, X-Ray , Humans , Oxadiazoles/chemistry , Oxadiazoles/pharmacology , Oxadiazoles/therapeutic use , Protein Kinase Inhibitors/pharmacology , Protein Structure, Secondary/physiology , Proto-Oncogene Proteins c-akt/metabolism , Structure-Activity Relationship
3.
Cancer Cell ; 28(1): 57-69, 2015 Jul 13.
Article in English | MEDLINE | ID: mdl-26175415

ABSTRACT

Epigenetic dysregulation has emerged as an important mechanism in cancer. Alterations in epigenetic machinery have become a major focus for targeted therapies. The current report describes the discovery and biological activity of a cyclopropylamine containing inhibitor of Lysine Demethylase 1 (LSD1), GSK2879552. This small molecule is a potent, selective, orally bioavailable, mechanism-based irreversible inactivator of LSD1. A proliferation screen of cell lines representing a number of tumor types indicated that small cell lung carcinoma (SCLC) is sensitive to LSD1 inhibition. The subset of SCLC lines and primary samples that undergo growth inhibition in response to GSK2879552 exhibit DNA hypomethylation of a signature set of probes, suggesting this may be used as a predictive biomarker of activity.


Subject(s)
Antineoplastic Agents/administration & dosage , Benzoates/administration & dosage , Cyclopropanes/administration & dosage , DNA Methylation/drug effects , Enzyme Inhibitors/administration & dosage , Histone Demethylases/antagonists & inhibitors , Lung Neoplasms/drug therapy , Small Cell Lung Carcinoma/drug therapy , Administration, Oral , Animals , Antineoplastic Agents/pharmacology , Benzoates/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Cyclopropanes/pharmacology , Enzyme Inhibitors/pharmacology , Epigenesis, Genetic/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Histone Demethylases/genetics , Humans , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Molecular Sequence Data , Small Cell Lung Carcinoma/genetics , Small Cell Lung Carcinoma/pathology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL