Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Brain Commun ; 3(1): fcaa235, 2021.
Article in English | MEDLINE | ID: mdl-33738444

ABSTRACT

Brain somatic mutations are an increasingly recognized cause of epilepsy, brain malformations and autism spectrum disorders and may be a hidden cause of other neurodevelopmental and neurodegenerative disorders. At present, brain mosaicism can be detected only in the rare situations of autopsy or brain biopsy. Liquid biopsy using cell-free DNA derived from cerebrospinal fluid has detected somatic mutations in malignant brain tumours. Here, we asked if cerebrospinal fluid liquid biopsy can be used to detect somatic mosaicism in non-malignant brain diseases. First, we reliably quantified cerebrospinal fluid cell-free DNA in 28 patients with focal epilepsy and 28 controls using droplet digital PCR. Then, in three patients we identified somatic mutations in cerebrospinal fluid: in one patient with subcortical band heterotopia the LIS1 p. Lys64* variant at 9.4% frequency; in a second patient with focal cortical dysplasia the TSC1 p. Phe581His*6 variant at 7.8% frequency; and in a third patient with ganglioglioma the BRAF p. Val600Glu variant at 3.2% frequency. To determine if cerebrospinal fluid cell-free DNA was brain-derived, whole-genome bisulphite sequencing was performed and brain-specific DNA methylation patterns were found to be significantly enriched (P = 0.03). Our proof of principle study shows that cerebrospinal fluid liquid biopsy is valuable in investigating mosaic neurological disorders where brain tissue is unavailable.

2.
Epilepsy Res ; 155: 106161, 2019 09.
Article in English | MEDLINE | ID: mdl-31295639

ABSTRACT

Over the past decade there has been a substantial increase in genetic studies of brain malformations, fueled by the availability of improved technologies to study surgical tissue to address the hypothesis that focal lesions arise from focal, post-zygotic genetic disruptions. Traditional genetic studies of patients with malformations utilized leukocyte-derived DNA to search for germline variants, which are inherited or arise de novo in parental gametes. Recent studies have demonstrated somatic variants that arise post-zygotically also underlie brain malformations, and that somatic mutation explains a larger proportion of focal malformations than previously thought. We now know from studies of non-diseased individuals that somatic variation occurs routinely during cell division, including during early brain development when the rapid proliferation of neuronal precursor cells provides the ideal environment for somatic mutation to occur and somatic variants to accumulate. When confined to brain, pathogenic variants contribute to the "hidden genetics" of neurological diseases. With burgeoning novel high-throughput genetic technologies, somatic genetic variations are increasingly being recognized. Here we discuss accumulating evidence for the presence of somatic variants in normal brain tissue, review our current understanding of somatic variants in brain malformations associated with lesional epilepsy, and provide strategies to identify the potential contribution of somatic mutation to non-lesional epilepsies. We also discuss technologies that may improve detection of somatic variants in the future in these and other neurological conditions.


Subject(s)
Epilepsies, Partial/genetics , Malformations of Cortical Development/genetics , Mutation , Brain/abnormalities , Humans , Mosaicism
3.
Neurol Genet ; 4(3): e236, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29725622

ABSTRACT

OBJECTIVE: To determine whether the GNAQ R183Q mutation is present in the forme fruste cases of Sturge-Weber syndrome (SWS) to establish a definitive molecular diagnosis. METHODS: We used sensitive droplet digital PCR (ddPCR) to detect and quantify the GNAQ mutation in tissues from epilepsy surgery in 4 patients with leptomeningeal angiomatosis; none had ocular or cutaneous manifestations. RESULTS: Low levels of the GNAQ mutation were detected in the brain tissue of all 4 cases-ranging from 0.42% to 7.1% frequency-but not in blood-derived DNA. Molecular evaluation confirmed the diagnosis in 1 case in which the radiologic and pathologic data were equivocal. CONCLUSIONS: We detected the mutation at low levels, consistent with mosaicism in the brain or skin (1.0%-18.1%) of classic cases. Our data confirm that the forme fruste is part of the spectrum of SWS, with the same molecular mechanism as the classic disease and that ddPCR is helpful where conventional diagnosis is uncertain.

SELECTION OF CITATIONS
SEARCH DETAIL