Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Int J Mol Sci ; 21(9)2020 Apr 25.
Article in English | MEDLINE | ID: mdl-32344909

ABSTRACT

The identification of biomarkers associated with major depressive disorder (MDD) holds great promise to develop an objective laboratory test. However, current biomarkers lack discriminative power due to the complex biological background, and not much is known about the influence of potential modifiers such as gender. We first performed a cross-sectional study on the discriminative power of biomarkers for MDD by investigating gender differences in biomarker levels. Out of 28 biomarkers, 21 biomarkers were significantly different between genders. Second, a novel statistical approach was applied to investigate the effect of gender on MDD disease classification using a panel of biomarkers. Eleven biomarkers were identified in men and eight in women, three of which were active in both genders. Gender stratification caused a (non-significant) increase of Area Under Curve (AUC) for men (AUC = 0.806) and women (AUC = 0.807) compared to non-stratification (AUC = 0.739). In conclusion, we have shown that there are differences in biomarker levels between men and women which may impact accurate disease classification of MDD when gender is not taken into account.


Subject(s)
Biomarkers , Depressive Disorder, Major/diagnosis , Sex Characteristics , Adult , Antidepressive Agents/therapeutic use , Area Under Curve , Biomarkers/blood , Biomarkers/urine , Blood Proteins/analysis , Comorbidity , Cross-Sectional Studies , Depressive Disorder, Major/blood , Depressive Disorder, Major/drug therapy , Depressive Disorder, Major/urine , Drug Therapy , Female , Humans , Male , Middle Aged , ROC Curve , Resistin/blood , Resistin/urine , Young Adult
2.
Microsc Microanal ; 19(1): 180-9, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23347434

ABSTRACT

Podosomes are cellular adhesion structures involved in matrix degradation and invasion that comprise an actin core and a ring of cytoskeletal adaptor proteins. They are most often identified by staining with phalloidin, which binds F-actin and therefore visualizes the core. However, not only podosomes, but also many other cytoskeletal structures contain actin, which makes podosome segmentation by automated image processing difficult. Here, we have developed a quantitative image analysis algorithm that is optimized to identify podosome cores within a typical sample stained with phalloidin. By sequential local and global thresholding, our analysis identifies up to 76% of podosome cores excluding other F-actin-based structures. Based on the overlap in podosome identifications and quantification of podosome numbers, our algorithm performs equally well compared to three experts. Using our algorithm we show effects of actin polymerization and myosin II inhibition on the actin intensity in both podosome core and associated actin network. Furthermore, by expanding the core segmentations, we reveal a previously unappreciated differential distribution of cytoskeletal adaptor proteins within the podosome ring. These applications illustrate that our algorithm is a valuable tool for rapid and accurate large-scale analysis of podosomes to increase our understanding of these characteristic adhesion structures.


Subject(s)
Automation/methods , Cell Surface Extensions , Image Processing, Computer-Assisted/methods , Microscopy, Fluorescence/methods , Actins/metabolism , Cells, Cultured , Dendritic Cells/cytology , Humans , Phalloidine/metabolism , Staining and Labeling/methods
3.
Int J Mol Sci ; 14(4): 6542-55, 2013 Mar 25.
Article in English | MEDLINE | ID: mdl-23528886

ABSTRACT

Many processes regulating immune responses are initiated by G-protein coupled receptors (GPCRs) and report biochemical changes in the microenvironment. Dendritic cells (DCs) are the most potent antigen-presenting cells and crucial for the regulation of innate and adaptive immune responses. The lipid mediator Prostaglandin E2 (PGE2) via four GPCR subtypes (EP1-4) critically regulates DC generation, maturation and migration. The role of PGE2 signaling in DC biology was unraveled by the characterization of EP receptor subtype expression in DC progenitor cells and DCs, the identification of the signaling pathways initiated by these GPCR subtypes and the classification of DC responses to PGE2 at different stages of differentiation. Here, we review the advances in PGE2 signaling in DCs and describe the efforts still to be made to understand the spatio-temporal fine-tuning of PGE2 responses by DCs.


Subject(s)
Cell Cycle , Dendritic Cells/cytology , Dendritic Cells/metabolism , Dinoprostone/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Humans , Models, Biological
4.
PLoS One ; 16(1): e0246138, 2021.
Article in English | MEDLINE | ID: mdl-33508018

ABSTRACT

Visualizing actin filaments in fixed cells is of great interest for a variety of topics in cell biology such as cell division, cell movement, and cell signaling. We investigated the possibility of replacing phalloidin, the standard reagent for super-resolution imaging of F-actin in fixed cells, with the actin binding peptide 'lifeact'. We compared the labels for use in single molecule based super-resolution microscopy, where AlexaFluor 647 labeled phalloidin was used in a dSTORM modality and Atto 655 labeled lifeact was used in a single molecule imaging, reversible binding modality. We found that imaging with lifeact had a comparable resolution in reconstructed images and provided several advantages over phalloidin including lower costs, the ability to image multiple regions of interest on a coverslip without degradation, simplified sequential super-resolution imaging, and more continuous labeling of thin filaments.


Subject(s)
Actin Cytoskeleton/pathology , Carbocyanines/chemistry , Phalloidine/chemistry , Actin Cytoskeleton/chemistry , HeLa Cells , Humans , Microscopy, Fluorescence
5.
Sci Rep ; 9(1): 13791, 2019 09 24.
Article in English | MEDLINE | ID: mdl-31551452

ABSTRACT

In single molecule localization-based super-resolution imaging, high labeling density or the desire for greater data collection speed can lead to clusters of overlapping emitter images in the raw super-resolution image data. We describe a Bayesian inference approach to multiple-emitter fitting that uses Reversible Jump Markov Chain Monte Carlo to identify and localize the emitters in dense regions of data. This formalism can take advantage of any prior information, such as emitter intensity and density. The output is both a posterior probability distribution of emitter locations that includes uncertainty in the number of emitters and the background structure, and a set of coordinates and uncertainties from the most probable model.


Subject(s)
Bayes Theorem , Markov Chains , Monte Carlo Method , Algorithms , Humans , Probability , Uncertainty
6.
Nat Commun ; 10(1): 5171, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31729386

ABSTRACT

Basement membrane transmigration during embryonal development, tissue homeostasis and tumor invasion relies on invadosomes, a collective term for invadopodia and podosomes. An adequate structural framework for this process is still missing. Here, we reveal the modular actin nano-architecture that enables podosome protrusion and mechanosensing. The podosome protrusive core contains a central branched actin module encased by a linear actin module, each harboring specific actin interactors and actin isoforms. From the core, two actin modules radiate: ventral filaments bound by vinculin and connected to the plasma membrane and dorsal interpodosomal filaments crosslinked by myosin IIA. On stiff substrates, the actin modules mediate long-range substrate exploration, associated with degradative behavior. On compliant substrates, the vinculin-bound ventral actin filaments shorten, resulting in short-range connectivity and a focally protrusive, non-degradative state. Our findings redefine podosome nanoscale architecture and reveal a paradigm for how actin modularity drives invadosome mechanosensing in cells that breach tissue boundaries.


Subject(s)
Actins/chemistry , Actins/metabolism , Podosomes/metabolism , Actins/genetics , Animals , Cell Adhesion , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Movement , Cells, Cultured , Dendritic Cells/chemistry , Dendritic Cells/cytology , Dendritic Cells/metabolism , Humans , Mechanotransduction, Cellular , Mice , Podosomes/chemistry , Podosomes/genetics
7.
Front Immunol ; 9: 2333, 2018.
Article in English | MEDLINE | ID: mdl-30356797

ABSTRACT

Activation of the T cell receptor (TCR) on the T cell through ligation with antigen-MHC complex of an antigen-presenting cell (APC) is an essential process in the activation of T cells and induction of the subsequent adaptive immune response. Upon activation, the TCR, together with its associated co-receptor CD3 complex, assembles in signaling microclusters that are transported to the center of the organizational structure at the T cell-APC interface termed the immunological synapse (IS). During IS formation, local cell surface receptors and associated intracellular molecules are reorganized, ultimately creating the typical bull's eye-shaped pattern of the IS. CD6 is a surface glycoprotein receptor, which has been previously shown to associate with CD3 and co-localize to the center of the IS in static conditions or stable T cell-APC contacts. In this study, we report the use of different experimental set-ups analyzed with microscopy techniques to study the dynamics and stability of CD6-TCR/CD3 interaction dynamics and stability during IS formation in more detail. We exploited antibody spots, created with microcontact printing, and antibody-coated beads, and could demonstrate that CD6 and the TCR/CD3 complex co-localize and are recruited into a stimulatory cluster on the cell surface of T cells. Furthermore, we demonstrate, for the first time, that CD6 forms microclusters co-localizing with TCR/CD3 microclusters during IS formation on supported lipid bilayers. These co-localizing CD6 and TCR/CD3 microclusters are both radially transported toward the center of the IS formed in T cells, in an actin polymerization-dependent manner. Overall, our findings further substantiate the role of CD6 during IS formation and provide novel insight into the dynamic properties of this CD6-TCR/CD3 complex interplay. From a methodological point of view, the biophysical approaches used to characterize these receptors are complementary and amenable for investigation of the dynamic interactions of other membrane receptors.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, T-Lymphocyte/metabolism , Biophysical Phenomena , CD3 Complex/metabolism , T-Lymphocytes/physiology , Actins/chemistry , Actins/metabolism , Antigens, CD/chemistry , Antigens, Differentiation, T-Lymphocyte/chemistry , Cell Line, Tumor , Fluorescent Antibody Technique , Humans , Immunological Synapses/physiology , Protein Binding , Protein Multimerization , Protein Transport , Receptor-CD3 Complex, Antigen, T-Cell/chemistry , Receptor-CD3 Complex, Antigen, T-Cell/metabolism
8.
Biomed Opt Express ; 7(6): 2219-36, 2016 Jun 01.
Article in English | MEDLINE | ID: mdl-27375939

ABSTRACT

We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.

9.
Nat Commun ; 7: 13127, 2016 10 10.
Article in English | MEDLINE | ID: mdl-27721497

ABSTRACT

Podosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive. By integrating a newly developed extension of Spatiotemporal Image Correlation Spectroscopy with novel image analysis, we demonstrate that F-actin, vinculin and talin exhibit directional and correlated flow patterns throughout podosome clusters. Pattern formation and magnitude depend on the cluster actomyosin machinery. Indeed, nanoscopy reveals myosin IIA-decorated actin filaments interconnecting multiple proximal podosomes. Extending well-beyond podosome nearest neighbours, the actomyosin-dependent dynamic spatial patterns reveal a previously unappreciated mesoscale connectivity throughout the podosome clusters. This directional transport and continuous redistribution of podosome components provides a mechanistic explanation of how podosome clusters function as coordinated mechanosensory area.


Subject(s)
Actomyosin/metabolism , Cytoskeleton/metabolism , Podosomes/metabolism , Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Surface Extensions/metabolism , Dendritic Cells/cytology , Dendritic Cells/metabolism , Humans , Models, Biological , Nonmuscle Myosin Type IIA/metabolism , Polymerization , Rheology , Talin/metabolism , Time Factors , Vinculin/metabolism
10.
Eur J Cell Biol ; 93(10-12): 380-7, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25454791

ABSTRACT

Podosomes are micrometer-sized, circular adhesions formed by cells such as osteoclasts, macrophages, dendritic cells, and endothelial cells. Because of their small size and the lack of methods to visualize individual proteins and protein complexes, podosomes have long been considered a simple two-module structure with a protrusive actin core and a surrounding adhesive ring composed of integrins and cytoskeletal adaptor proteins such as vinculin and talin. In the past decade, the applications of fluorescence based techniques that circumvent the diffraction limit of conventional light microscopy took a major leap forward. Podosomes have been imaged by a variety of these super-resolution methods, and in this concise review we discuss how these super-resolution data have increased our understanding of the podosome ultra-structure and function.


Subject(s)
Cell Surface Extensions/metabolism , Animals , Cell Surface Extensions/ultrastructure , Humans , Microscopy, Fluorescence/methods , Molecular Imaging/methods
11.
PLoS One ; 6(7): e22328, 2011.
Article in English | MEDLINE | ID: mdl-21799824

ABSTRACT

Phagocytosis is a complex process that involves membranelipid remodeling and the attraction and retention of key effector proteins. Phagosome phenotype depends on the type of receptor engaged and can be influenced by extracellular signals. Interleukin 4 (IL-4) is a cytokine that induces the alternative activation of macrophages (MΦs) upon prolonged exposure, triggering a different cell phenotype that has an altered phagocytic capacity. In contrast, the direct effects of IL-4 during phagocytosis remain unknown. Here, we investigate the impact of short-term IL-4 exposure (1 hour) during phagocytosis of IgG-opsonized yeast particles by MΦs. By time-lapse confocal microscopy of GFP-tagged lipid-sensing probes, we show that IL-4 increases the negative charge of the phagosomal membrane by prolonging the presence of the negatively charged second messenger PI(3,4,5)P3. Biochemical assays reveal an enhanced PI3K/Akt activity upon phagocytosis in the presence of IL-4. Blocking the specific class I PI3K after the onset of phagocytosis completely abrogates the IL-4-induced changes in lipid remodeling and concomitant membrane charge. Finally, we show that IL-4 direct signaling leads to a significantly prolonged retention profile of the signaling molecules Rac1 and Rab5 to the phagosomal membrane in a PI3K-dependent manner. This protracted early phagosome phenotype suggests an altered maturation, which is supported by the delayed phagosome acidification measured in the presence of IL-4. Our findings reveal that molecular differences in IL-4 levels, in the extracellular microenvironment, influence the coordination of lipid remodeling and protein recruitment, which determine phagosome phenotype and, eventually, fate. Endosomal and phagosomal membranes provide topological constraints to signaling molecules. Therefore, changes in the phagosome phenotype modulated by extracellular factors may represent an additional mechanism that regulates the outcome of phagocytosis and could have significant impact on the net biochemical output of a cell.


Subject(s)
Interleukin-4/pharmacology , Membrane Lipids/metabolism , Phagosomes/drug effects , Phagosomes/metabolism , Phenotype , Phosphatidylinositol 3-Kinases/metabolism , Animals , Cell Line , Hydrogen-Ion Concentration , Immunoglobulin G/immunology , Intracellular Membranes/drug effects , Intracellular Membranes/metabolism , Macrophages/cytology , Macrophages/drug effects , Macrophages/metabolism , Membrane Lipids/chemistry , Mice , Phagocytosis/drug effects , Phagosomes/enzymology , Phosphatidylinositols/metabolism , Protein Transport/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Time Factors , Zymosan/immunology
SELECTION OF CITATIONS
SEARCH DETAIL