Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Gels ; 7(4)2021 Sep 27.
Article in English | MEDLINE | ID: mdl-34698125

ABSTRACT

Delivering a drug to the target site with minimal-to-no off-target cytotoxicity is the major determinant for the success of disease therapy. While the therapeutic efficacy and cytotoxicity of the drug play the main roles, the use of a suitable drug delivery system (DDS) is important to protect the drug along the administration route and release it at the desired target site. Polysaccharides have been extensively studied as a biomaterial for DDS development due to their high biocompatibility. More usefully, polysaccharides can be crosslinked with various molecules such as micro/nanoparticles and hydrogels to form a modified DDS. According to IUPAC, hydrogel is defined as the structure and processing of sols, gels, networks and inorganic-organic hybrids. This 3D network which often consists of a hydrophilic polymer can drastically improve the physical and chemical properties of DDS to increase the biodegradability and bioavailability of the carrier drugs. The advancement of nanotechnology also allows the construction of hydrogel DDS with enhanced functionalities such as stimuli-responsiveness, target specificity, sustained drug release, and therapeutic efficacy. This review provides a current update on the use of hydrogel DDS derived from polysaccharide-based materials in delivering various therapeutic molecules and drugs. We also highlighted the factors that affect the efficacy of these DDS and the current challenges of developing them for clinical use.

2.
J Clin Microbiol ; 48(10): 3698-702, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20660217

ABSTRACT

Loop-mediated isothermal amplification (LAMP), a rapid nucleic acid amplification method, was developed for the clinical diagnosis of toxoplasmosis. Three LAMP assays based on the SAG1, SAG2, and B1 genes of Toxoplasma gondii were developed. The sensitivities and specificities of the LAMP assays were evaluated by comparison with the results of conventional nested PCR. The LAMP assays were highly sensitive and had a detection limit of 0.1 tachyzoite, and no cross-reactivity with the DNA of other parasites was observed. Blood was collected from 105 individuals to test the LAMP assays: 40 patients with active toxoplasmosis, 40 negative controls, and 25 patients with other parasitic infections. The SAG2-based LAMP (SAG2-LAMP) had a greater sensitivity (87.5%) than the SAG1-LAMP (80%), B1-LAMP (80%), and nested PCR (62.5%). All the LAMP assays and nested PCR were 100% specific. This is the first report of a study which applied the LAMP method to diagnose toxoplasmosis from human blood samples. Due to its simplicity, sensitivity, and specificity, LAMP is suggested as an appropriate method for routine diagnosis of active toxoplasmosis in humans.


Subject(s)
Blood/parasitology , Nucleic Acid Amplification Techniques/methods , Parasitology/methods , Toxoplasma/isolation & purification , Toxoplasmosis/diagnosis , Antigens, Protozoan/genetics , Humans , Protozoan Proteins/genetics , Sensitivity and Specificity , Toxoplasma/genetics
3.
Article in English | MEDLINE | ID: mdl-20578507

ABSTRACT

Detection of Toxoplasma gondii in blood by means of the polymerase chain reaction (PCR) may facilitate early diagnosis of toxoplasmosis in different groups of patients. We evaluated this approach in 42 patients presenting with ocular or psychotic diseases by comparing the sensitivity and specificity of PCR after heat treatment using a microwave oven with a standard genomic DNA extraction method for paired serum and whole blood samples. The presence of serum IgM and IgG antibodies against T. gondii was detected using a standard commercial enzyme-linked immunosorbent assay and enzyme immunoassay for IgG avidity test. Of 42 whole blood samples, PCR after microwave treatment was positive in 8 samples with a sensitivity of 73% and specificity of 100% compared to 11 samples positive by the extraction method. Although none of 42 sera samples was PCR positive by the extraction method, 7 specimens were positive after microwave treatment. This is the first study to use a microwave heat treatment, which is simple, rapid and a promising alternative method, in detecting small amounts of T. gondii DNA in human blood. Furthermore, irradiation of blood samples with microwaves allows incorporation of PCR into a practical tool for routine clinical assessment of patients with Toxoplasma infection.


Subject(s)
DNA, Protozoan/blood , Microwaves , Toxoplasma/immunology , Toxoplasmosis/blood , Toxoplasmosis/diagnosis , Adult , Aged , Aged, 80 and over , DNA Primers , DNA, Protozoan/genetics , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoenzyme Techniques , Immunoglobulin G/blood , Immunoglobulin M/blood , Male , Middle Aged , Polymerase Chain Reaction , Sensitivity and Specificity , Toxoplasma/genetics , Toxoplasmosis/genetics , Toxoplasmosis, Ocular/blood , Toxoplasmosis, Ocular/diagnosis , Toxoplasmosis, Ocular/genetics
SELECTION OF CITATIONS
SEARCH DETAIL