Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters

Publication year range
1.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-22269189

ABSTRACT

The SARS-CoV-2 vaccine BBV152/Covaxin is well-tolerated and was shown to be 77.8% efficacious against symptomatic and 93.4% efficacious against severe symptomatic COVID-19 disease in adults. Previous studies have shown that sera from Covaxin vaccinated individuals have neutralizing activity against B.1.1.7 (Alpha), B.1.351 (Beta), B.1.617.2 (Delta), B.1.1.28 (Zeta), and B.1.617.1 (Kappa) SARS-CoV-2 variants. The B.1.1.529 variant (Omicron) recently emerged in November 2021 and has spread throughout the world. The Omicron variant has more than 30 mutations within the spike protein that could impact vaccine-mediated immunity. We used a live virus neutralization assay to evaluate the neutralizing activity against the Omicron variant of sera collected from subjects who received a booster dose (6-month after primary series last dose) of Covaxin. We found that sera from Covaxin boosted individuals showed neutralizing activity against D614G (vaccine strain), Delta, and Omicron variants. One hundred percent of boosted subjects showed neutralizing activity against the Delta variant while over 90% of boosted subjects showed neutralizing activity against the Omicron variant. These findings show that a booster dose of Covaxin can generate robust neutralizing antibody responses against the Omicron variant.

2.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-21256344

ABSTRACT

BackgroundThe effects of pre-existing endemic human coronavirus (HCoV) immunity on SARS-CoV-2 serologic and clinical responses are incompletely understood. ObjectivesWe sought to determine the effects of prior exposure to HCoV Betacoronavirus HKU1 spike protein on serologic responses to SARS-CoV-2 spike protein after intramuscular administration in mice. We also sought to understand the baseline seroprevalence of HKU1 spike antibodies in healthy children and to measure their correlation with SARS-CoV-2 binding and neutralizing antibodies in children hospitalized with acute coronavirus disease 2019 (COVID-19) or multisystem inflammatory syndrome (MIS-C). MethodsGroups of 5 mice were injected intramuscularly with two doses of alum-adjuvanted HKU1 spike followed by SARS-CoV-2 spike; or the reciprocal regimen of SARS-Cov-2 spike followed by HKU1 spike. Sera collected 21 days following each injection was analyzed for IgG antibodies to HKU1 spike, SARS-CoV-2 spike, and SARS-CoV-2 neutralization. Sera from children hospitalized with acute COVID-19, MIS-C or healthy controls (n=14 per group) were analyzed for these same antibodies. ResultsMice primed with SARS-CoV-2 spike and boosted with HKU1 spike developed high titers of SARS-CoV-2 binding and neutralizing antibodies; however, mice primed with HKU1 spike and boosted with SARS-CoV-2 spike were unable to mount neutralizing antibodies to SARS-CoV-2. HKU1 spike antibodies were detected in all children with acute COVID-19, MIS-C, and healthy controls. Although children with MIS-C had significantly higher HKU1 spike titers than healthy children (GMT 37239 vs. 7551, P=0.012), these titers correlated positively with both SARS-CoV-2 binding (r=0.7577, P<0.001) and neutralizing (r=0.6201, P=0.001) antibodies. ConclusionsPrior murine exposure to HKU1 spike protein completely impeded the development of neutralizing antibodies to SARS-CoV-2, consistent with original antigenic sin. In contrast, the presence of HKU1 spike IgG antibodies in children with acute COVID-19 or MIS-C was not associated with diminished neutralizing antibody responses to SARS-CoV-2.

3.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-471873

ABSTRACT

Transmission efficiency is a critical factor determining the size of an outbreak of infectious disease. Indeed, the propensity of SARS-CoV-2 to transmit among humans precipitated and continues to sustain the COVID-19 pandemic. Nevertheless, the number of new cases among contacts is highly variable and underlying reasons for wide-ranging transmission outcomes remain unclear. Here, we evaluated viral spread in golden Syrian hamsters to define the impact of temporal and environmental conditions on the efficiency of SARS-CoV-2 transmission through the air. Our data show that exposure periods as brief as one hour are sufficient to support robust transmission. However, the timing after infection is critical for transmission success, with the highest frequency of transmission to contacts occurring at times of peak viral load in the donor animals. Relative humidity and temperature had no detectable impact on transmission when exposures were carried out with optimal timing. However, contrary to expectation, trends observed with sub-optimal exposure timing suggest improved transmission at high relative humidity or high temperature. In sum, among the conditions tested, our data reveal the timing of exposure to be the strongest determinant of SARS-CoV-2 transmission success and implicate viral load as an important driver of transmission.

4.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-443948

ABSTRACT

Infection with SARS-CoV-2 has caused a pandemic of unprecedented dimensions. SARS-CoV-2 infects airway and lung cells causing viral pneumonia. The importance of type I interferon (IFN) production for the control of SARS-CoV-2 infection is highlighted by the increased severity of COVID-19 in patients with inborn errors of type I IFN response or auto-antibodies against IFN-. Plasmacytoid dendritic cells (pDCs) are a unique immune cell population specialized in recognizing and controlling viral infections through the production of high concentrations of type I IFN. In this study, we isolated pDCs from healthy donors and showed that pDCs are able to recognize SARS-CoV-2 and rapidly produce large amounts of type I IFN. Sensing of SARS-CoV-2 by pDCs was independent of viral replication since pDCs were also able to recognize UV-inactivated SARS-CoV-2 and produce type I IFN. Transcriptional profiling of SARS-CoV-2 and UV-SARS-CoV-2 stimulated pDCs also showed a rapid type I and III IFN response as well as induction of several chemokines, and the induction of apoptosis in pDCs. Moreover, we modeled SARS-CoV-2 infection in the lung using primary human airway epithelial cells (pHAEs) and showed that co-culture of pDCs with SARS-CoV-2 infected pHAEs induces an antiviral response and upregulation of antigen presentation in pHAE cells. Importantly, the presence of pDCs in the co-culture results in control of SARS-CoV-2 replication in pHAEs. Our study identifies pDCs as one of the key cells that can recognize SARS-CoV-2 infection, produce type I and III IFN and control viral replication in infected cells. ImportanceType I interferons (IFNs) are a major part of the innate immune defense against viral infections. The importance of type I interferon (IFN) production for the control of SARS-CoV-2 infection is highlighted by the increased severity of COVID-19 in patients with defects in the type I IFN response. Interestingly, many cells are not able to produce type I IFN after being infected with SARS-CoV-2 and cannot control viral infection. In this study we show that plasmacytoid dendritic cells are able to recognize SARS-CoV-2 and produce type I IFN, and that pDCs are able to help control viral infection in SARS-CoV-2 infected airway epithelial cells.

5.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-21250799

ABSTRACT

Antibody responses against the SARS-CoV-2 Spike protein correlate with protection against COVID-19. Serum neutralizing antibodies appear early after symptom onset following SARS-CoV-2 infection and can last for several months. Similarly, the messenger RNA vaccine, mRNA-1273, generates serum neutralizing antibodies that are detected through at least day 119. However, the recent emergence of the B.1.1.7 variant has raised significant concerns about the breadth of these neutralizing antibody responses. In this study, we used a live virus neutralization assay to compare the neutralization potency of sera from infected and vaccinated individuals against a panel of SARS-CoV-2 variants, including SARS-CoV-2 B.1.1.7. We found that both infection- and vaccine-induced antibodies were effective at neutralizing the SARS-CoV-2 B.1.1.7 variant. These findings support the notion that in the context of the UK variant, vaccine-induced immunity can provide protection against COVID-19. As additional SARS-CoV-2 viral variants continue to emerge, it is crucial to monitor their impact on neutralizing antibody responses following infection and vaccination.

6.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-175166

ABSTRACT

There is a great need for the development of vaccines for preventing SARS-CoV-2 infection and mitigating the COVID-19 pandemic. Here, we developed two modified vaccinia Ankara (MVA) based vaccines which express either a membrane anchored full-length spike protein (MVA/S) stabilized in a prefusion state or the S1 region of the spike (MVA/S1) which forms trimers and is secreted. Both immunogens contained the receptor-binding domain (RBD) which is a known target of antibody-mediated neutralization. Following immunizations with MVA/S or MVA/S1, both spike protein recombinants induced strong IgG antibodies to purified full-length SARS-CoV-2 spike protein. The MVA/S induced a robust antibody response to purified RBD, S1 and S2 whereas MVA/S1 induced an antibody response to the S1 region outside of the RBD region. Both vaccines induced an antibody response in the lung and that was associated with induction of bronchus-associated lymphoid tissue. MVA/S but not MVA/S1 vaccinated mice generated robust neutralizing antibody responses against SARS-CoV-2 that strongly correlated with RBD antibody binding titers. Mechanistically, S1 binding to ACE-2 was strong but reduced following prolonged pre-incubation at room temperature suggesting confirmation changes in RBD with time. These results demonstrate MVA/S is a potential vaccine candidate against SARS-CoV-2 infection.Competing Interest StatementThe authors have declared no competing interest.View Full Text

7.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-105437

ABSTRACT

Predicting a multicellular organisms phenotype quantitatively from its genotype is challenging, as genetic effects must propagate across scales. Circadian clocks are intracellular regulators that control temporal gene expression patterns and hence metabolism, physiology and behaviour. Here we explain and predict canonical phenotypes of circadian timing in a multicellular, model organism. We used diverse metabolic and physiological data to combine and extend mathematical models of rhythmic gene expression, photoperiod-dependent flowering, elongation growth and starch metabolism within a Framework Model for the vegetative growth of Arabidopsis thaliana, sharing the model and data files in a structured, public resource. The calibrated model predicted the effect of altered circadian timing upon each particular phenotype in clock-mutant plants under standard laboratory conditions. Altered night-time metabolism of stored starch accounted for most of the decrease in whole-plant biomass, as previously proposed. Mobilisation of a secondary store of malate and fumarate was also mis-regulated, accounting for any remaining biomass defect. We test three candidate mechanisms for the accumulation of these organic acids. Our results link genotype through specific processes to higher-level phenotypes, formalising our understanding of a subtle, pleiotropic syndrome at the whole-organism level, and validating the systems approach to understand complex traits starting from intracellular circuits. This work updates the first biorXiv version, February 2017, https://doi.org/10.1101/105437, with an expanded description and additional analysis of the same core data sets and the same FMv2 model, summary tables and supporting, follow-on data from three further studies with further collaborators. This biorXiv revision constitutes the second version of this report.

8.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-22269808

ABSTRACT

NDV-HXP-S is a recombinant Newcastle disease virus based-vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which expresses an optimized (HexaPro) spike protein on its surface. The vaccine can be produced in embryonated chicken eggs using the same process as that employed for the production of influenza virus vaccines. Here we performed a secondary analysis of the antibody responses after vaccination with inactivated NDV-HXP-S in a Phase I clinical study in Thailand. The SARS-CoV-2 neutralizing and spike binding activity of NDV-HXP-S post-vaccination serum samples was compared to that of matched samples from mRNA BNT162b2 (Pfizer) vaccinees. Neutralizing activity of sera from NDV-HXP-S vaccinees was comparable to that of individuals vaccinated with BNT162b2. Interstingly, the spike binding activity of the NDV-HXP-S vaccinee samples was lower than that of sera obtained from individuals vaccinated with the mRNA vaccine. This let us to calculate ratios between binding and neutralizing antibody titers. Samples from NDV-HXP-S vaccinees had binding to neutralizing activity ratios similar to those of convalescent sera suggesting a very high proportion of neutralizing antibodies and low non-neutralizing antibody titers. Further analysis showed that, in contrast to mRNA vaccination, which induces strong antibody titers to the receptor binding domain (RBD), the N-terminal domain, and the S2 domain, NDV-HXP-S vaccination induces a very RBD focused response with little reactivity to S2. This explains the high proportion of neutralizing antibodies since most neutralizing epitopes are located in the RBD. In conclusion, vaccination with inactivated NDV-HXP-S induces a high proportion of neutralizing antibodies and absolute neutralizing antibody titers comparable to those after mRNA vaccination.

9.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-22278552

ABSTRACT

Neutralizing antibody plays a key role in protective immunity against COVID-19. As increasingly distinct variants circulate, debate continues regarding the value of adding novel variants to SARS-CoV-2 vaccines. In this study, we have analyzed live virus neutralization titers against WA1, Delta, BA.1, BA.2, and BA.5 in 187 hospitalized patients infected with Delta or Omicron strains. This information will be useful in selection of the SARS-CoV-2 strains to include in an updated vaccine. Our results show that unvaccinated Delta infected patients made a highly biased neutralizing antibody response towards the infecting Delta strain with slightly lower responses against the WA1 strain, but with strikingly lower titers against BA.1, BA.2, and BA.5. Delta infected patients that had been previously vaccinated with the WA1 containing COVID vaccine made equivalent responses to WA1 and Delta strains, but still had very low neutralizing antibody responses to Omicron strains. In striking contrast, both unvaccinated and vaccinated Omicron patients exhibited a more balanced ratio of Omicron virus neutralization compared to neutralization of ancestral strains. Interestingly, Omicron patients infected with BA.1 or BA.2 had detectable neutralizing antibody titers to BA.5, but these titers were lower than neutralization titers to BA.1 and BA.2. Taken together, these results suggest that inclusion of the Omicron BA.5 strain in a SARS-CoV-2 vaccine would be beneficial in protection against the widely circulating BA.5 variant. DisclaimerThe findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

10.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-22282921

ABSTRACT

Waning immunity to vaccination represents a major challenge in vaccinology. Whether booster vaccination improves the durability of immune responses is unknown. Here we show, using a cohort of 55 adult vaccinees who received the BNT162b2 (Pfizer-BioNTech) or mRNA-1273 (Moderna) vaccine against SARS-CoV-2, that a booster (i.e., 3rd immunization) dose at 6 - 10 months increased the half-life of serum neutralizing antibody (nAb) titers to 76 days from 56 - 66 days estimated after the primary two-dose vaccination series. A second booster dose (i.e., 4th immunization) more than a year after the primary vaccination increased the half-life further to 88 days. However, despite this modestly improved durability in nAb responses against the Wuhan strain, there was a loss in neutralization capacity against Omicron subvariants, especially the recently emerged variants, BA.2.75.2 and BQ.1.1 (35 and 50-fold drop in titers respectively, relative to the ancestral (WA.1) strain. While only 55 - 65% of participants demonstrated a detectable nAb titer against the newer variants after the booster (3rd dose), the response declined to below the detection limit in almost all individuals by 6 months. Notably, even against BA.1 and BA.5, the titers declined rapidly in a third of the vaccinees and were below the detection limit at 6 months. In contrast, booster vaccination induced antigen-specific memory B and T cells that persisted for at least 6 months. Collectively, our data show that the durability of immune responses improves following subsequent booster immunizations; however, the emergence of immune evasive variants reduces the effectiveness of booster doses in preventing infection.

11.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-20150755

ABSTRACT

ObjectivesWe aimed to measure SARS-CoV-2 serologic responses in children hospitalized with multisystem inflammatory syndrome (MIS-C) compared to COVID-19, Kawasaki Disease (KD) and other hospitalized pediatric controls. MethodsFrom March 17, 2020 - May 26, 2020, we prospectively identified hospitalized children at Childrens Healthcare of Atlanta with MIS-C (n=10), symptomatic PCR-confirmed COVID-19 (n=10), KD (n=5), and hospitalized controls (n=4). With IRB approval, we obtained prospective and residual blood samples from these children and measured SARS-CoV-2 spike (S) receptor binding domain (RBD) IgM and IgG binding antibodies by quantitative ELISA and SARS-CoV-2 neutralizing antibodies by live-virus focus reduction neutralization assay. We statistically compared the log-transformed antibody titers among groups and performed correlation analyses using linear regression. ResultsAll children with MIS-C had high titers of SARS-CoV-2 RBD IgG antibodies, which correlated strongly with neutralizing antibodies (R2=0.667, P<0.001). Children with MIS-C had significantly higher SARS-CoV-2 RBD IgG antibody titers (geometric mean titer [GMT] 6800, 95%CI 3495-13231) than children with COVID-19 (GMT 626, 95%CI 251-1563, P<0.001), children with KD (GMT 124, 95%CI 91-170, P<0.001) and other hospitalized pediatric controls (GMT 85 [all below assay limit of detection], P<0.001). All children with MIS-C also had detectable RBD IgM antibodies, indicating recent SARS-CoV-2 infection. RBD IgG titers correlated with erythrocyte sedimentation rate (ESR) (R2=0.512, P<0.046) and with hospital and ICU lengths of stay (R2=0.590, P=0.010). ConclusionQuantitative SARS-CoV-2 RBD antibody titers may have a role in establishing the diagnosis of MIS-C, distinguishing it from other similar clinical entities, and stratifying risk for adverse outcomes. Table of Contents SummaryChildren with MIS-C have high antibody titers to the SARS-CoV-2 spike protein receptor binding domain, which correlate with neutralization, systemic inflammation, and clinical outcomes. Whats Known on This SubjectAlthough the clinical features of a multisystem inflammatory syndrome in children (MIS-C) associated with COVID-19 have been recently described, the serologic features of MIS-C are unknown. What This Study AddsIn this case series, all hospitalized children with MIS-C had significantly higher SARS-CoV-2 binding and neutralizing antibodies than children with COVID-19 or Kawasaki Disease. SARS-CoV-2 antibodies correlated with metrics of systemic inflammation and clinical outcomes, suggesting diagnostic and prognostic value.

12.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-442538

ABSTRACT

SARS-CoV-2 has caused a historic pandemic of respiratory disease (COVID-19) and current evidence suggests severe disease is associated with dysregulated immunity within the respiratory tract. However, the innate immune mechanisms that mediate protection during COVID-19 are not well defined. Here we characterize a mouse model of SARS-CoV-2 infection and find that early CCR2-dependent infiltration of monocytes restricts viral burden in the lung. We find that a recently developed mouse-adapted MA-SARS-CoV-2 strain, as well as the emerging B. 1.351 variant, trigger an inflammatory response in the lung characterized by expression of pro-inflammatory cytokines and interferon-stimulated genes. scRNA-seq analysis of lung homogenates identified a hyper-inflammatory monocyte profile. Using intravital antibody labeling, we demonstrate that MA-SARS-CoV-2 infection leads to increases in circulating monocytes and an influx of CD45+ cells into the lung parenchyma that is dominated by monocyte-derived cells. We utilize this model to demonstrate that mechanistically, CCR2 signaling promotes infiltration of classical monocytes into the lung and expansion of monocyte-derived cells. Parenchymal monocyte-derived cells appear to play a protective role against MA-SARS-CoV-2, as mice lacking CCR2 showed higher viral loads in the lungs, increased lung viral dissemination, and elevated inflammatory cytokine responses. These studies have identified a CCR2-monocyte axis that is critical for promoting viral control and restricting inflammation within the respiratory tract during SARS-CoV-2 infection.

13.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-442357

ABSTRACT

The emergence of SARS-CoV-2 has resulted in a worldwide pandemic causing significant damage to public health and the economy. Efforts to understand the mechanisms of COVID-19 disease have been hampered by the lack of robust mouse models. To overcome this barrier, we utilized a reverse genetic system to generate a mouse-adapted strain of SARS-CoV-2. Incorporating key mutations found in SARSCoV-2 variants, this model recapitulates critical elements of human infection including viral replication in the lung, immune cell infiltration, and significant in vivo disease. Importantly, mouse-adaptation of SARS-CoV-2 does not impair replication in human airway cells and maintains antigenicity similar to human SARS-CoV-2 strains. Utilizing this model, we demonstrate that SARS-CoV-2 infected mice are protected from lethal challenge with the original SARS-CoV, suggesting immunity from heterologous CoV strains. Together, the results highlight the utility of this mouse model for further study of SARS-CoV-2 infection and disease.

14.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-478657

ABSTRACT

Several approaches have produced an effective vaccine against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the influence of immune responses induced by other vaccinations on the durability and efficacy of the immune response to SARS-CoV-2 vaccine is still unknown. We have developed a hybrid vaccine for SARS-CoV-2 and influenza viruses using influenza virus-like particles (VLP) incorporated by protein transfer with glycosylphosphatidylinositol (GPI)-anchored SARS-CoV-2 S1 RBD fused to GM-CSF as an adjuvant. GPI-RBD-GM-CSF fusion protein was expressed in CHO-S cells, purified and incorporated onto influenza VLPs to develop the hybrid vaccine. Our results show that the hybrid vaccine induced a strong antibody response and protected mice from both influenza virus and mouse-adapted SARS-CoV-2 challenges, with vaccinated mice having significantly lower lung viral titers compared to naive mice. These results suggest that the hybrid vaccine strategy is a promising approach for developing multivalent vaccines to prevent influenza A and SARS-CoV-2 infections.

15.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-514636

ABSTRACT

The emergence of the highly divergent SARS-CoV-2 Omicron variant has jeopardized the efficacy of vaccines based on the ancestral spike. The bivalent COVID-19 mRNA booster vaccine within the United States is comprised of the ancestral and the Omicron BA.5 spike. Since its approval and distribution, additional Omicron subvariants have been identified with key mutations within the spike protein receptor binding domain that are predicted to escape vaccine sera. Of particular concern is the R346T mutation which has arisen in multiple subvariants, including BA.2.75.2 and BQ.1.1. Using a live virus neutralization assay, we evaluated serum samples from individuals who had received either one or two monovalent boosters or the bivalent booster to determine neutralizing activity against wild-type (WA1/2020) virus and Omicron subvariants BA.1, BA.5, BA.2.75.2, and BQ.1.1. In the one monovalent booster cohort, relative to WA1/2020, we observed a reduction in neutralization titers of 9-15-fold against BA.1 and BA.5 and 28-39-fold against BA.2.75.2 and BQ.1.1. In the BA.5-containing bivalent booster cohort, the neutralizing activity improved against all the Omicron subvariants. Relative to WA1/2020, we observed a reduction in neutralization titers of 3.7- and 4-fold against BA.1 and BA.5, respectively, and 11.5- and 21-fold against BA.2.75.2 and BQ.1.1, respectively. These data suggest that the bivalent mRNA booster vaccine broadens humoral immunity against the Omicron subvariants.

16.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-22276354

ABSTRACT

ImportanceCOVID-19 vaccination is recommended during pregnancy for the protection of the mother. Little is known about the immune response to booster vaccinations during pregnancy. ObjectiveTo measure immune responses to COVID-19 primary and booster mRNA vaccination during pregnancy and transplacental antibody transfer to the newborn. DesignProspective cohort study of pregnant participants enrolled from July 2021 to January 2022, with follow up through and up to 12 months after delivery. SettingMulticenter study conducted at 9 academic sites. ParticipantsPregnant participants who received COVID-19 vaccination during pregnancy and their newborns. Exposure(s)Primary or booster COVID-19 mRNA vaccination during pregnancy. Main Outcome(s) and Measure(s)SARS-CoV-2 binding and neutralizing antibody (nAb) titers after primary or booster COVID-19 mRNA vaccination during pregnancy and antibody transfer to the newborn. Immune responses were compared between primary and booster vaccine recipients in maternal sera at delivery and in cord blood, after adjusting for days since last vaccination. ResultsIn this interim analysis, 167 participants received a primary 2-dose series and 73 received a booster dose of mRNA vaccine during pregnancy. Booster vaccination resulted in significantly higher binding and nAb titers, including to the Omicron BA.1 variant, in maternal serum at delivery and cord blood compared to a primary 2-dose series (range 0.55 to 0.88 log10 higher, p<0.0001 for all comparisons). Although levels were significantly lower than to the prototypical D614G variant, nAb to Omicron were present at delivery in 9% (GMT ID50 12.7) of Pfizer and 22% (GMT ID50 14.7) of Moderna recipients, and in 73% (GMT ID50 60.2) of boosted participants (p<0.0001). Transplacental antibody transfer was efficient regardless of vaccination regimen (median transfer ratio range: 1.55-1.77 for binding IgG and 1.00-1.78 for nAb). Conclusions and RelevanceCOVID-19 mRNA vaccination during pregnancy elicited robust immune responses in mothers and efficient transplacental antibody transfer to the newborn. A booster dose during pregnancy significantly increased maternal and cord blood antibody levels, including against Omicron. Findings support continued use of COVID-19 vaccines during pregnancy, including booster doses. Trial Registrationclinical trials.gov; Registration Number: NCT05031468; https://clinicaltrials.gov/ct2/show/NCT05031468 Key PointsO_ST_ABSQuestionC_ST_ABSWhat is the immune response after COVID-19 booster vaccination during pregnancy and how does receipt of a booster dose impact transplacental antibody transfer to the newborn? FindingsReceipt of COVID-19 mRNA vaccines during pregnancy elicited robust binding and neutralizing antibody responses in the mother and in the newborn. Booster vaccination during pregnancy elicited significantly higher antibody levels in mothers at delivery and cord blood than 2-dose vaccination, including against the Omicron BA.1 variant. MeaningCOVID-19 vaccines, especially booster doses, should continue to be strongly recommended during pregnancy.

17.
Preprint in English | PREPRINT-MEDRXIV | ID: ppmedrxiv-20084442

ABSTRACT

SARS-CoV-2 is currently causing a devastating pandemic and there is a pressing need to understand the dynamics, specificity, and neutralizing potency of the humoral immune response during acute infection. Herein, we report the dynamics of antibody responses to the receptor-binding domain (RBD) of the spike protein and virus neutralization activity in 44 COVID-19 patients. RBD-specific IgG responses were detectable in all patients 6 days after PCR confirmation. Using a clinical isolate of SARS-CoV-2, neutralizing antibody titers were also detectable in all patients 6 days after PCR confirmation. The magnitude of RBD-specific IgG binding titers correlated strongly with viral neutralization. In a clinical setting, the initial analysis of the dynamics of RBD-specific IgG titers was corroborated in a larger cohort of PCR-confirmed patients (n=231). These findings have important implications for our understanding of protective immunity against SARS-CoV-2, the use of immune plasma as a therapy, and the development of much-needed vaccines.

18.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-432046

ABSTRACT

The emergence of SARS-CoV-2 variants with mutations in the spike protein is raising concerns about the efficacy of infection- or vaccine-induced antibodies to neutralize these variants. We compared antibody binding and live virus neutralization of sera from naturally infected and spike mRNA vaccinated individuals against a circulating SARS-CoV-2 B.1 variant and the emerging B.1.351 variant. In acutely-infected (5-19 days post-symptom onset), convalescent COVID-19 individuals (through 8 months post-symptom onset) and mRNA-1273 vaccinated individuals (day 14 post-second dose), we observed an average 4.3-fold reduction in antibody titers to the B.1.351-derived receptor binding domain of the spike protein and an average 3.5-fold reduction in neutralizing antibody titers to the SARS-CoV-2 B.1.351 variant as compared to the B.1 variant (spike D614G). However, most acute and convalescent sera from infected and all vaccinated individuals neutralize the SARS-CoV-2 B.1.351 variant, suggesting that protective immunity is retained against COVID-19.

19.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-491770

ABSTRACT

The SARS-CoV-2 BA.1 and BA.2 (Omicron) variants contain more than 30 mutations within the spike protein and evade therapeutic monoclonal antibodies (mAbs). Here, we report a receptor-binding domain (RBD) targeting human antibody (002-S21F2) that effectively neutralizes live viral isolates of SARS-CoV-2 variants of concern (VOCs) including Alpha, Beta, Gamma, Delta, and Omicron (BA.1 and BA.2) with IC50 ranging from 0.02 - 0.05 g/ml. This near germline antibody 002-S21F2 has unique genetic features that are distinct from any reported SARS-CoV-2 mAbs. Structural studies of the full-length IgG in complex with spike trimers (Omicron and WA.1) reveal that 002-S21F2 recognizes an epitope on the outer face of RBD (class-3 surface), outside the ACE2 binding motif and its unique molecular features enable it to overcome mutations found in the Omicron variants. The discovery and comprehensive structural analysis of 002-S21F2 provide valuable insight for broad and potent neutralization of SARS-CoV-2 Omicron variants BA.1 and BA.2.

20.
Preprint in English | PREPRINT-BIORXIV | ID: ppbiorxiv-473557

ABSTRACT

The BNT162b2 (Pfizer-BioNTech) and mRNA-1273 (Moderna) vaccines generate potent neutralizing antibodies against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the global emergence of SARS-CoV-2 variants with mutations in the spike protein, the principal antigenic target of these vaccines, has raised concerns over the neutralizing activity of vaccine-induced antibody responses. The Omicron variant, which emerged in November 2021, consists of over 30 mutations within the spike protein. Here, we used an authentic live virus neutralization assay to examine the neutralizing activity of the SARS-CoV-2 Omicron variant against mRNA vaccine-induced antibody responses. Following the 2nd dose, we observed a 30-fold reduction in neutralizing activity against the omicron variant. Through six months after the 2nd dose, none of the sera from naive vaccinated subjects showed neutralizing activity against the Omicron variant. In contrast, recovered vaccinated individuals showed a 22-fold reduction with more than half of the subjects retaining neutralizing antibody responses. Following a booster shot (3rd dose), we observed a 14-fold reduction in neutralizing activity against the omicron variant and over 90% of boosted subjects showed neutralizing activity against the omicron variant. These findings show that a 3rd dose is required to provide robust neutralizing antibody responses against the Omicron variant.

SELECTION OF CITATIONS
SEARCH DETAIL