Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Affiliation country
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(1): e2021450118, 2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33310900

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the virus responsible for COVID-19, employs two key host proteins to gain entry and replicate within cells, angiotensin-converting enzyme 2 (ACE2) and the cell surface transmembrane protease serine 2 (TMPRSS2). TMPRSS2 was first characterized as an androgen-regulated gene in the prostate. Supporting a role for sex hormones, males relative to females are disproportionately affected by COVID-19 in terms of mortality and morbidity. Several studies, including one employing a large epidemiological cohort, suggested that blocking androgen signaling is protective against COVID-19. Here, we demonstrate that androgens regulate the expression of ACE2, TMPRSS2, and androgen receptor (AR) in subsets of lung epithelial cells. AR levels are markedly elevated in males relative to females greater than 70 y of age. In males greater than 70 y old, smoking was associated with elevated levels of AR and ACE2 in lung epithelial cells. Transcriptional repression of the AR enhanceosome with AR or bromodomain and extraterminal domain (BET) antagonists inhibited SARS-CoV-2 infection in vitro. Taken together, these studies support further investigation of transcriptional inhibition of critical host factors in the treatment or prevention of COVID-19.

2.
Cell Rep Med ; 3(5): 100608, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35584629

ABSTRACT

Novel strategies for prostate cancer therapy are required to overcome resistance to abiraterone and enzalutamide. Here, we show that increasing 3ßHSD1 after abiraterone and enzalutamide treatment is essential for drug resistance, and biochanin A (BCA), as an inhibitor of 3ßHSD1, overcomes drug resistance. 3ßHSD1 activity increases in cell lines, biopsy samples, and patients after long-term treatment with enzalutamide or abiraterone. Enhanced steroidogenesis, mediated by 3ßHSD1, is sufficient to impair enzalutamide function. In patients, accelerated abiraterone metabolism results in a decline of plasma abiraterone as disease progresses. BCA inhibits 3ßHSD1 and suppresses prostate cancer development alone or together with abiraterone and enzalutamide. Daidzein, a BCA analog of dietary origin, is associated with higher plasma abiraterone concentrations and prevented prostate-specific antigen (PSA) increases in abiraterone-resistant patients. Overall, our results show that 3ßHSD1 is a promising target to overcome drug resistance, and BCA suppresses disease progression as a 3ßHSD1 inhibitor even after abiraterone and enzalutamide resistance.


Subject(s)
Prostatic Neoplasms, Castration-Resistant , Androstenes , Benzamides , Drug Resistance, Neoplasm , Humans , Male , Nitriles/therapeutic use , Phenylthiohydantoin/pharmacology , Prostatic Neoplasms, Castration-Resistant/drug therapy
3.
Cell Rep Med ; 3(3): 100561, 2022 03 15.
Article in English | MEDLINE | ID: mdl-35492874

ABSTRACT

Prostate cancer continuously progresses following deprivation of circulating androgens originating from the testis and adrenal glands, indicating the existence of oncometabolites beyond androgens. In this study, mass-spectrometry-based screening of clinical specimens and a retrospective analysis on the clinical data of prostate cancer patients indicate the potential oncogenic effects of progesterone in patients. High doses of progesterone activate canonical and non-canonical androgen receptor (AR) target genes. Physiological levels of progesterone facilitate cell proliferation via GATA2. Inhibitors of 3ß-hydroxysteroid dehydrogenase 1 (3ßHSD1) has been discovered and shown to suppress the generation of progesterone, eliminating its transient and accumulating oncogenic effects. An increase in progesterone is associated with poor clinical outcomes in patients and may be used as a predictive biomarker. Overall, we demonstrate that progesterone acts as an oncogenic hormone in prostate cancer, and strategies to eliminate its oncogenic effects may benefit prostate cancer patients.


Subject(s)
Androgens , Prostatic Neoplasms , Carcinogenesis , Humans , Male , Progesterone/pharmacology , Prostatic Neoplasms/drug therapy , Receptors, Androgen/genetics , Retrospective Studies
4.
J Steroid Biochem Mol Biol ; 210: 105859, 2021 06.
Article in English | MEDLINE | ID: mdl-33677016

ABSTRACT

Androgens are essential for prostate cancer development. However, steroidogenesis has mainly been investigated in a limited number of prostate cancer cell lines, leading to varied conclusions and elusive clinical significance. Here, we established an ex vivo research platform with fresh biopsy samples transiently cultured with tritium- labelled androgens to trace steroidogenesis in prostate tissues and investigate its potential clinical application. DHEA was confirmed as the major precursor for androgen synthesis in the prostate. Significant amounts of oxidized DHEA and 5α-androstanedione were generated from DHEA in prostate biopsy samples. Prostatic steroidogenesis was independent of other clinical factors. Furthermore, prostatic steroidogenesis was suppressed after androgen deprivation therapy but increased upon treatment resistance, indicating that prostatic steroidogenesis was affected by clinical treatments. Overall, we provide an accessible research platform to characterize steroidogenesis in prostate tissue and indicate the correlation between prostatic steroidogenesis and disease progression.


Subject(s)
Androgens/metabolism , Prostatic Neoplasms/metabolism , Steroids/metabolism , Aged , Aged, 80 and over , Biopsy , Cell Line, Tumor , Chromatography, High Pressure Liquid , Dehydroepiandrosterone/metabolism , Humans , Male , Mass Spectrometry , Pregnenolone/metabolism , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/pathology
SELECTION OF CITATIONS
SEARCH DETAIL