ABSTRACT
In mammals, the enzyme cGAS senses the presence of cytosolic DNA and synthesizes the cyclic dinucleotide (CDN) 2'3'-cGAMP, which triggers STING-dependent immunity. In Drosophila melanogaster, two cGAS-like receptors (cGLRs) produce 3'2'-cGAMP and 2'3'-cGAMP to activate STING. We explored CDN-mediated immunity in 14 Drosophila species covering 50 million years of evolution and found that 2'3'-cGAMP and 3'2'-cGAMP failed to control infection by Drosophila C virus in D. serrata and two other species. We discovered diverse CDNs produced in a cGLR-dependent manner in response to viral infection in D. melanogaster, including 2'3'-c-di-GMP. This CDN was a more potent STING agonist than cGAMP in D. melanogaster and it also activated a strong antiviral transcriptional response in D. serrata. Our results shed light on the evolution of cGLRs in flies and provide a basis for understanding the function and regulation of this emerging family of pattern recognition receptors in animal innate immunity.
Subject(s)
Antiviral Agents , Drosophila , Animals , Drosophila melanogaster , Cyclic GMP , MammalsABSTRACT
Fighting viral infections is hampered by the scarcity of viral targets and their variability, resulting in development of resistance. Viruses depend on cellular molecules-which are attractive alternative targets-for their life cycle, provided that they are dispensable for normal cell functions. Using the model organism Drosophila melanogaster, we identify the ribosomal protein RACK1 as a cellular factor required for infection by internal ribosome entry site (IRES)-containing viruses. We further show that RACK1 is an essential determinant for hepatitis C virus translation and infection, indicating that its function is conserved for distantly related human and fly viruses. Inhibition of RACK1 does not affect Drosophila or human cell viability and proliferation, and RACK1-silenced adult flies are viable, indicating that this protein is not essential for general translation. Our findings demonstrate a specific function for RACK1 in selective mRNA translation and uncover a target for the development of broad antiviral intervention.
Subject(s)
Dicistroviridae/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/virology , GTP-Binding Proteins/metabolism , Hepatocytes/virology , Insect Viruses/metabolism , Neoplasm Proteins/metabolism , Receptors, Cell Surface/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Animals , Cell Line, Tumor , Drosophila melanogaster/metabolism , Hepacivirus/metabolism , Hepatocytes/metabolism , Humans , Models, Molecular , Peptide Initiation Factors/metabolism , Protein Biosynthesis , Receptors for Activated C Kinase , Regulatory Sequences, Ribonucleic Acid , Virus ReplicationABSTRACT
Antiviral immunity in Drosophila involves RNA interference and poorly characterized inducible responses. Here, we showed that two components of the IMD pathway, the kinase dIKKß and the transcription factor Relish, were required to control infection by two picorna-like viruses. We identified a set of genes induced by viral infection and regulated by dIKKß and Relish, which included an ortholog of STING. We showed that dSTING participated in the control of infection by picorna-like viruses, acting upstream of dIKKß to regulate expression of Nazo, an antiviral factor. Our data reveal an antiviral function for STING in an animal model devoid of interferons and suggest an evolutionarily ancient role for this molecule in antiviral immunity.
Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/immunology , Drosophila melanogaster/virology , I-kappa B Kinase/metabolism , Membrane Proteins/metabolism , Peptide Initiation Factors/metabolism , Picornaviridae Infections/immunology , Animals , Cell Line , Dicistroviridae/immunology , Drosophila Proteins/genetics , I-kappa B Kinase/genetics , Membrane Proteins/genetics , Peptide Initiation Factors/genetics , RNA Interference , Transcription Factors/metabolismABSTRACT
piRNAs silence transposons during germline development. In Drosophila, transcripts from heterochromatic clusters are processed into primary piRNAs in the perinuclear nuage. The nuclear DEAD box protein UAP56 has been previously implicated in mRNA splicing and export, whereas the DEAD box protein Vasa has an established role in piRNA production and localizes to nuage with the piRNA binding PIWI proteins Ago3 and Aub. We show that UAP56 colocalizes with the cluster-associated HP1 variant Rhino, that nuage granules containing Vasa localize directly across the nuclear envelope from cluster foci containing UAP56 and Rhino, and that cluster transcripts immunoprecipitate with both Vasa and UAP56. Significantly, a charge-substitution mutation that alters a conserved surface residue in UAP56 disrupts colocalization with Rhino, germline piRNA production, transposon silencing, and perinuclear localization of Vasa. We therefore propose that UAP56 and Vasa function in a piRNA-processing compartment that spans the nuclear envelope.
Subject(s)
DEAD-box RNA Helicases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Germ Cells/metabolism , RNA, Small Interfering/metabolism , Animals , DNA Damage , DNA Transposable Elements , Female , Germ Cells/cytology , Male , Nuclear Envelope/metabolismABSTRACT
Viruses represent a major threat to all animals, which defend themselves through induction of a large set of virus-stimulated genes that collectively control the infection. In vertebrates, these genes include interferons that play a critical role in the amplification of the response to infection. Virus- and interferon-stimulated genes include restriction factors targeting the different steps of the viral replication cycle, in addition to molecules associated with inflammation and adaptive immunity. Predictably, antiviral genes evolve dynamically in response to viral pressure. As a result, each animal has a unique arsenal of antiviral genes. Here, we exploit the capacity to experimentally activate the evolutionarily conserved stimulator of IFN genes (STING) signaling pathway by injection of the cyclic dinucleotide 2'3'-cyclic guanosine monophosphate-adenosine monophosphate into flies to define the repertoire of STING-regulated genes in 10 Drosophila species, spanning 40 million years of evolution. Our data reveal a set of conserved STING-regulated factors, including STING itself, a cGAS-like-receptor, the restriction factor pastel, and the antiviral protein Vago, but also 2 key components of the antiviral RNA interference pathway, Dicer-2, and Argonaute2. In addition, we identify unknown species- or lineage-specific genes that have not been previously associated with resistance to viruses. Our data provide insight into the core antiviral response in Drosophila flies and pave the way for the characterization of previously unknown antiviral effectors.
Subject(s)
Drosophila , Immunity, Innate , Animals , Nucleotides, Cyclic , Antiviral Agents/pharmacologyABSTRACT
The mechanisms by which transposable elements (TEs) can be horizontally transferred between animals are unknown, but viruses are possible candidate vectors. Here, we surveyed the presence of host-derived TEs in viral genomes in 35 deep sequencing data sets produced from 11 host-virus systems, encompassing nine arthropod host species (five lepidopterans, two dipterans, and two crustaceans) and six different double-stranded (ds) DNA viruses (four baculoviruses and two iridoviruses). We found evidence of viral-borne TEs in 14 data sets, with frequencies of viral genomes carrying a TE ranging from 0.01% to 26.33% for baculoviruses and from 0.45% to 7.36% for iridoviruses. The analysis of viral populations separated by a single replication cycle revealed that viral-borne TEs originating from an initial host species can be retrieved after viral replication in another host species, sometimes at higher frequencies. Furthermore, we detected a strong increase in the number of integrations in a viral population for a TE absent from the hosts' genomes, indicating that this TE has undergone intense transposition within the viral population. Finally, we provide evidence that many TEs found integrated in viral genomes (15/41) have been horizontally transferred in insects. Altogether, our results indicate that multiple large dsDNA viruses have the capacity to shuttle TEs in insects and they underline the potential of viruses to act as vectors of horizontal transfer of TEs. Furthermore, the finding that TEs can transpose between viral genomes of a viral species sets viruses as possible new niches in which TEs can persist and evolve.
Subject(s)
Arthropods , Viruses , Animals , Arthropods/genetics , Baculoviridae/genetics , DNA Transposable Elements/genetics , Evolution, Molecular , Insecta/genetics , Viruses/geneticsABSTRACT
In vitro, Drosophila melanogaster Dicer-2 (Dcr-2) uses its helicase domain to initiate processing of dsRNA with blunt (BLT) termini, and its Platformâ¢PAZ domain to initiate processing of dsRNA with 3' overhangs (ovrs). To understand the relationship of these in vitro observations to roles of Dcr-2 in vivo, we compared in vitro effects of two helicase mutations to their impact on production of endogenous and viral siRNAs in flies. Consistent with the importance of the helicase domain in processing BLT dsRNA, both point mutations eliminated processing of BLT, but not 3'ovr, dsRNA in vitro. However, the mutations had different effects in vivo. A point mutation in the Walker A motif of the Hel1 subdomain, G31R, largely eliminated production of siRNAs in vivo, while F225G, located in the Hel2 subdomain, showed reduced levels of endogenous siRNAs, but did not significantly affect virus-derived siRNAs. In vitro assays monitoring dsRNA cleavage, dsRNA binding, ATP hydrolysis, and binding of the accessory factor Loquacious-PD provided insight into the different effects of the mutations on processing of different sources of dsRNA in flies. Our in vitro studies suggest effects of the mutations in vivo relate to their effects on ATPase activity, dsRNA binding, and interactions with Loquacious-PD. Our studies emphasize the importance of future studies to characterize dsRNA termini as they exist in Drosophila and other animals.
Subject(s)
Adenosine Triphosphate/metabolism , DNA Helicases/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Mutation , RNA Helicases/metabolism , RNA, Double-Stranded/metabolism , Ribonuclease III/metabolism , Animals , DNA Helicases/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/enzymology , Drosophila melanogaster/growth & development , Female , In Vitro Techniques , Male , MicroRNAs/genetics , RNA Helicases/genetics , RNA, Double-Stranded/genetics , RNA, Small Interfering/genetics , Ribonuclease III/geneticsABSTRACT
Insects, the most diverse group of animals, can be infected by an extraordinary diversity of viruses. Among them, arthropod-borne viruses can be transmitted to humans, while bee and silkworm viruses cause important economic losses. Like all invertebrates, insects rely solely on innate immunity to counter viral infections. Protein-based mechanisms, involving restriction factors and evolutionarily conserved signaling pathways regulating transcription factors of the NF-kB and STAT families, participate in the control of viral infections in insects. In addition, RNA-based responses play a major role in the silencing of viral RNAs. We review here our current state of knowledge on insect antiviral defense mechanisms, which include conserved as well as adaptive, insect-specific strategies. Identification of the innate immunity receptors that sense viral infection in insects remains a major challenge for the field.
Subject(s)
Host-Pathogen Interactions , Insect Viruses , Insecta/metabolism , Insecta/virology , Animals , Biomarkers , Disease Resistance/genetics , Disease Resistance/immunology , Gene Expression Regulation , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Immunity, Innate , Insect Viruses/immunology , Insecta/genetics , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction , Structure-Activity RelationshipABSTRACT
A key aspect of antiviral immunity is the distinction between "self" and "non-self" components. This distinction can be established through the detection of double-stranded RNA (dsRNA), a common sign of viral infection, by cytosolic RNA helicases. Depending on the organism, two major antiviral pathways can be induced by dsRNA helicases: RNA interference (RNAi) and interferon (IFN) signaling. In the RNAi pathway, dsRNAs are recognized by a Dicer protein, and are then used for the sequence-dependent recognition and subsequent degradation of the complementary viral RNAs. In the IFN signaling pathway, dsRNAs are recognized by a RIG-like receptor (RLR), which induces a signaling cascade in order to induce the expression of IFNs, cytokines and chemokines. In this review, we discuss the RNA features that can be used by the cell to detect a viral infection, the two aforementioned types of helicase-mediated sensing, as well as some viral escape mechanisms developed to avoid recognition.
Subject(s)
RNA, Double-Stranded , Virus Diseases , Humans , Interferons , RNA Interference , RNA, Double-Stranded/genetics , Signal TransductionABSTRACT
A key aspect of antiviral immunity is the distinction between "self" and "non-self" components. This distinction can be established through the detection of double-stranded RNA (dsRNA), a common sign of viral infection, by cytosolic RNA helicases. Depending on the organism, two major antiviral pathways can be induced by dsRNA helicases: RNA interference (RNAi) and interferon (IFN) signaling. In the RNAi pathway, dsRNAs are recognized by a Dicer protein, and are then used for the sequence-dependent recognition and subsequent degradation of the complementary viral RNAs. In the IFN signaling pathway, dsRNAs are recognized by a RIG-like receptor (RLR), which induces a signaling cascade in order to induce the expression of IFNs, cytokines and chemokines. In this review, we discuss the RNA features that can be used by the cell to detect a viral infection, the two aforementioned types of helicase-mediated sensing, as well as some viral escape mechanisms developed to avoid recognition.
Subject(s)
RNA, Double-Stranded , Virus Diseases , Humans , Interferons , RNA Interference , RNA, Double-Stranded/genetics , Signal TransductionABSTRACT
Cricket paralysis virus (CrPV) is a dicistrovirus. Its positive-sense single-stranded RNA genome contains two internal ribosomal entry sites (IRESs). The 5' untranslated region (5'UTR) IRES5'UTR mediates translation of non-structural proteins encoded by ORF1 whereas the well-known intergenic region (IGR) IRESIGR is required for translation of structural proteins from open reading frame 2 in the late phase of infection. Concerted action of both IRES is essential for host translation shut-off and viral translation. IRESIGR has been extensively studied, in contrast the IRES5'UTR remains largely unexplored. Here, we define the minimal IRES element required for efficient translation initiation in drosophila S2 cell-free extracts. We show that IRES5'UTR promotes direct recruitment of the ribosome on the cognate viral AUG start codon without any scanning step, using a Hepatitis-C virus-related translation initiation mechanism. Mass spectrometry analysis revealed that IRES5'UTR recruits eukaryotic initiation factor 3, confirming that it belongs to type III class of IRES elements. Using Selective 2'-hydroxyl acylation analyzed by primer extension and DMS probing, we established a secondary structure model of 5'UTR and of the minimal IRES5'UTR. The IRES5'UTR contains a pseudoknot structure that is essential for proper folding and ribosome recruitment. Overall, our results pave the way for studies addressing the synergy and interplay between the two IRES from CrPV.
Subject(s)
5' Untranslated Regions , Dicistroviridae/genetics , Internal Ribosome Entry Sites , Protein Biosynthesis , RNA, Viral/chemistry , Viral Proteins/chemistry , Animals , Base Sequence , Cell Line , Cell-Free System/metabolism , Dicistroviridae/growth & development , Dicistroviridae/metabolism , Drosophila melanogaster/virology , Gryllidae/virology , Host-Pathogen Interactions , Nucleic Acid Conformation , Open Reading Frames , RNA, Viral/genetics , RNA, Viral/metabolism , Ribosomes/genetics , Ribosomes/metabolism , Viral Proteins/genetics , Viral Proteins/metabolismABSTRACT
UNLABELLED: Antiviral immunity in the model organism Drosophila melanogaster involves the broadly active intrinsic mechanism of RNA interference (RNAi) and virus-specific inducible responses. Here, using a panel of six viruses, we investigated the role of hemocytes and autophagy in the control of viral infections. Injection of latex beads to saturate phagocytosis, or genetic depletion of hemocytes, resulted in decreased survival and increased viral titers following infection with Cricket paralysis virus (CrPV), Flock House virus (FHV), and vesicular stomatitis virus (VSV) but had no impact on Drosophila C virus (DCV), Sindbis virus (SINV), and Invertebrate iridescent virus 6 (IIV6) infection. In the cases of CrPV and FHV, apoptosis was induced in infected cells, which were phagocytosed by hemocytes. In contrast, VSV did not trigger any significant apoptosis but we confirmed that the autophagy gene Atg7 was required for full virus resistance, suggesting that hemocytes use autophagy to recognize the virus. However, this recognition does not depend on the Toll-7 receptor. Autophagy had no impact on DCV, CrPV, SINV, or IIV6 infection and was required for replication of the sixth virus, FHV. Even in the case of VSV, the increases in titers were modest in Atg7 mutant flies, suggesting that autophagy does not play a major role in antiviral immunity in Drosophila Altogether, our results indicate that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in insects. IMPORTANCE: Phagocytosis and autophagy are two cellular processes that involve lysosomal degradation and participate in Drosophila immunity. Using a panel of RNA and DNA viruses, we have addressed the contribution of phagocytosis and autophagy in the control of viral infections in this model organism. We show that, while autophagy plays a minor role, phagocytosis contributes to virus-specific immune responses in Drosophila This work brings to the front a novel facet of antiviral host defense in insects, which may have relevance in the control of virus transmission by vector insects or in the resistance of beneficial insects to viral pathogens.
Subject(s)
Autophagy , DNA Viruses/immunology , Drosophila/immunology , Drosophila/virology , Hemocytes/immunology , Phagocytosis , RNA Viruses/immunology , Animals , Apoptosis , Autophagy-Related Protein 7/genetics , Autophagy-Related Protein 7/metabolism , Cell Line , Drosophila/cytology , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , RNA Interference , Sindbis Virus/immunology , Vesicular stomatitis Indiana virus/immunology , Virus ReplicationABSTRACT
Virus surveillance in vector insects is potentially of great benefit to public health. Large-scale sequencing of small and long RNAs has previously been used to detect viruses, but without any formal comparison of different strategies. Furthermore, the identification of viral sequences largely depends on similarity searches against reference databases. Here, we developed a sequence-independent strategy based on virus-derived small RNAs produced by the host response, such as the RNA interference pathway. In insects, we compared sequences of small and long RNAs, demonstrating that viral sequences are enriched in the small RNA fraction. We also noted that the small RNA size profile is a unique signature for each virus and can be used to identify novel viral sequences without known relatives in reference databases. Using this strategy, we characterized six novel viruses in the viromes of laboratory fruit flies and wild populations of two insect vectors: mosquitoes and sandflies. We also show that the small RNA profile could be used to infer viral tropism for ovaries among other aspects of virus biology. Additionally, our results suggest that virus detection utilizing small RNAs can also be applied to vertebrates, although not as efficiently as to plants and insects.
Subject(s)
RNA, Small Untranslated/chemistry , RNA, Viral/chemistry , Viruses/isolation & purification , Animals , Contig Mapping , Female , Insecta/genetics , Ovary/virology , Plants/virology , Sequence Analysis, RNA , Vertebrates/virology , Viral Tropism , Viruses/geneticsABSTRACT
Localized mRNA translation is thought to play a key role in synaptic plasticity, but the identity of the transcripts and the molecular mechanism underlying their function are still poorly understood. Here, we show that Syncrip, a regulator of localized translation in the Drosophila oocyte and a component of mammalian neuronal mRNA granules, is also expressed in the Drosophila larval neuromuscular junction, where it regulates synaptic growth. We use RNA-immunoprecipitation followed by high-throughput sequencing and qRT-PCR to show that Syncrip associates with a number of mRNAs encoding proteins with key synaptic functions, including msp-300, syd-1, neurexin-1, futsch, highwire, discs large, and α-spectrin. The protein levels of MSP-300, Discs large, and a number of others are significantly affected in syncrip null mutants. Furthermore, syncrip mutants show a reduction in MSP-300 protein levels and defects in muscle nuclear distribution characteristic of msp-300 mutants. Our results highlight a number of potential new players in localized translation during synaptic plasticity in the neuromuscular junction. We propose that Syncrip acts as a modulator of synaptic plasticity by regulating the translation of these key mRNAs encoding synaptic scaffolding proteins and other important components involved in synaptic growth and function.
Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Nerve Tissue Proteins/metabolism , Neuromuscular Junction/cytology , RNA, Messenger/metabolism , RNA-Binding Proteins/metabolism , Animals , Blotting, Western , Cells, Cultured , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Immunoenzyme Techniques , Immunoprecipitation , Nerve Tissue Proteins/genetics , Neuromuscular Junction/metabolism , RNA, Messenger/genetics , RNA-Binding Proteins/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain ReactionABSTRACT
UNLABELLED: Drosophila C virus (DCV) is a positive-sense RNA virus belonging to the Dicistroviridae family. This natural pathogen of the model organism Drosophila melanogaster is commonly used to investigate antiviral host defense in flies, which involves both RNA interference and inducible responses. Although lethality is used routinely as a readout for the efficiency of the antiviral immune response in these studies, virus-induced pathologies in flies still are poorly understood. Here, we characterize the pathogenesis associated with systemic DCV infection. Comparison of the transcriptome of flies infected with DCV or two other positive-sense RNA viruses, Flock House virus and Sindbis virus, reveals that DCV infection, unlike those of the other two viruses, represses the expression of a large number of genes. Several of these genes are expressed specifically in the midgut and also are repressed by starvation. We show that systemic DCV infection triggers a nutritional stress in Drosophila which results from intestinal obstruction with the accumulation of peritrophic matrix at the entry of the midgut and the accumulation of the food ingested in the crop, a blind muscular food storage organ. The related virus cricket paralysis virus (CrPV), which efficiently grows in Drosophila, does not trigger this pathology. We show that DCV, but not CrPV, infects the smooth muscles surrounding the crop, causing extensive cytopathology and strongly reducing the rate of contractions. We conclude that the pathogenesis associated with systemic DCV infection results from the tropism of the virus for an important organ within the foregut of dipteran insects, the crop. IMPORTANCE: DCV is one of the few identified natural viral pathogens affecting the model organism Drosophila melanogaster. As such, it is an important virus for the deciphering of host-virus interactions in insects. We characterize here the pathogenesis associated with DCV infection in flies and show that it results from the tropism of the virus for an essential but poorly characterized organ in the digestive tract, the crop. Our results may have relevance for other members of the Dicistroviridae, some of which are pathogenic to beneficial or pest insect species.
Subject(s)
Dicistroviridae/growth & development , Drosophila melanogaster/virology , Intestinal Obstruction/virology , Animals , Dicistroviridae/physiology , Female , Gastrointestinal Tract/pathology , Gastrointestinal Tract/physiopathology , Gastrointestinal Tract/virology , Gene Expression Profiling , Muscle, Smooth/virology , Nodaviridae/growth & development , Sindbis Virus/growth & development , Viral TropismABSTRACT
The fruit fly Drosophila melanogaster is a good model to unravel the molecular mechanisms of innate immunity and has led to some important discoveries about the sensing and signaling of microbial infections. The response of Drosophila to virus infections remains poorly characterized and appears to involve two facets. On the one hand, RNA interference involves the recognition and processing of dsRNA into small interfering RNAs by the host RNase Dicer-2 (Dcr-2), whereas, on the other hand, an inducible response controlled by the evolutionarily conserved JAK-STAT pathway contributes to the antiviral host defense. To clarify the contribution of the small interfering RNA and JAK-STAT pathways to the control of viral infections, we have compared the resistance of flies wild-type and mutant for Dcr-2 or the JAK kinase Hopscotch to infections by seven RNA or DNA viruses belonging to different families. Our results reveal a unique susceptibility of hop mutant flies to infection by Drosophila C virus and cricket paralysis virus, two members of the Dicistroviridae family, which contrasts with the susceptibility of Dcr-2 mutant flies to many viruses, including the DNA virus invertebrate iridescent virus 6. Genome-wide microarray analysis confirmed that different sets of genes were induced following infection by Drosophila C virus or by two unrelated RNA viruses, Flock House virus and Sindbis virus. Overall, our data reveal that RNA interference is an efficient antiviral mechanism, operating against a large range of viruses, including a DNA virus. By contrast, the antiviral contribution of the JAK-STAT pathway appears to be virus specific.
Subject(s)
Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , RNA Interference/immunology , Alphavirus/immunology , Alphavirus Infections/genetics , Alphavirus Infections/immunology , Alphavirus Infections/prevention & control , Animals , Animals, Genetically Modified , DNA Virus Infections/genetics , DNA Virus Infections/immunology , DNA Virus Infections/prevention & control , Drosophila Proteins/genetics , Drosophila Proteins/immunology , Drosophila Proteins/metabolism , Drosophila melanogaster/virology , Gene Expression Regulation , Janus Kinases/metabolism , Male , Nodaviridae/immunology , RNA Helicases/genetics , RNA Helicases/immunology , RNA Virus Infections/genetics , RNA Virus Infections/immunology , RNA Virus Infections/prevention & control , Ribonuclease III/genetics , Ribonuclease III/immunology , Transcription Factors/metabolismABSTRACT
Over the past 25 years, the field of evolutionary developmental biology (evo-devo) has used genomics and genetics to gain insight on the developmental mechanisms underlying the evolution of morphological diversity of animals. Evo-devo exploits the key insight that conserved toolkits of development (e.g. Hox genes) are used in animals to produce genetic novelties that provide adaptation to a new environment. Like development, immunity is forged by interactions with the environment, namely the microbial world. Yet, when it comes to the study of immune defence mechanisms in invertebrates, interest primarily focuses on evolutionarily conserved molecules also present in humans. Here, focusing on antiviral immunity, we argue that immune genes not conserved in humans represent an unexplored resource for the discovery of new antiviral strategies. We review recent findings on the cGAS-STING pathway and explain how cyclic dinucleotides produced by cGAS-like receptors may be used to investigate the portfolio of antiviral genes in a broad range of species. This will set the stage for evo-immuno approaches, exploiting the investment in antiviral defences made by metazoans over hundreds of millions of years of evolution. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Subject(s)
Nucleotidyltransferases , Animals , Humans , Nucleotidyltransferases/metabolismABSTRACT
Viruses pose a significant threat to cellular organisms. Innate antiviral immunity encompasses both RNA- and protein-based mechanisms designed to sense and respond to infections, a fundamental aspect present in all living organisms. A potent RNA-based antiviral mechanism is RNA interference, where small RNA-programmed nucleases target viral RNAs. Protein-based mechanisms often rely on the induction of transcriptional responses triggered by the recognition of viral infections through innate immune receptors. These responses involve the upregulation of antiviral genes aimed at countering viral infections. In this review, we delve into recent advances in understanding the diversification of innate antiviral immunity in animals. An evolutionary perspective on the gains and losses of mechanisms in diverse animals coupled to mechanistic studies in model organisms such as the fruit fly Drosophila melanogaster is essential to provide deep understanding of antiviral immunity that can be translated to new strategies in the treatment of viral diseases.