Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Proc Natl Acad Sci U S A ; 119(34): e2202653119, 2022 08 23.
Article in English | MEDLINE | ID: mdl-35969792

ABSTRACT

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and is the leading cause of enterically transmitted viral hepatitis worldwide. Ribavirin (RBV) is currently the only treatment option for many patients; however, cases of treatment failures or posttreatment relapses have been frequently reported. RBV therapy was shown to be associated with an increase in HEV genome heterogeneity and the emergence of distinct HEV variants. In this study, we analyzed the impact of eight patient-derived open reading frame 2 (ORF2) single-nucleotide variants (SNVs), which occurred under RBV treatment, on the replication cycle and pathogenesis of HEV. The parental HEV strain and seven ORF2 variants showed comparable levels of RNA replication in human hepatoma cells and primary human hepatocytes. However, a P79S ORF2 variant demonstrated reduced RNA copy numbers released in the supernatant and an impairment in the production of infectious particles. Biophysical and biochemical characterization revealed that this SNV caused defective, smaller HEV particles with a loss of infectiousness. Furthermore, the P79S variant displayed an altered subcellular distribution of the ORF2 protein and was able to interfere with antibody-mediated neutralization of HEV in a competition assay. In conclusion, an SNV in the HEV ORF2 could be identified that resulted in altered virus particles that were noninfectious in vitro and in vivo, but could potentially serve as immune decoys. These findings provide insights in understanding the biology of circulating HEV variants and may guide development of personalized antiviral strategies in the future.


Subject(s)
Hepatitis E virus , Ribavirin , Viral Proteins , Cell Line, Tumor , Hepatitis E virus/genetics , Hepatitis E virus/physiology , Hepatocytes/virology , Humans , Neoplasm Recurrence, Local/genetics , Nucleotides , RNA, Viral , Ribavirin/pharmacology , Viral Proteins/genetics , Virus Replication
2.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35131898

ABSTRACT

Type I interferons (IFN-I) exert pleiotropic biological effects during viral infections, balancing virus control versus immune-mediated pathologies, and have been successfully employed for the treatment of viral diseases. Humans express 12 IFN-alpha (α) subtypes, which activate downstream signaling cascades and result in distinct patterns of immune responses and differential antiviral responses. Inborn errors in IFN-I immunity and the presence of anti-IFN autoantibodies account for very severe courses of COVID-19; therefore, early administration of IFN-I may be protective against life-threatening disease. Here we comprehensively analyzed the antiviral activity of all IFNα subtypes against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to identify the underlying immune signatures and explore their therapeutic potential. Prophylaxis of primary human airway epithelial cells (hAEC) with different IFNα subtypes during SARS-CoV-2 infection uncovered distinct functional classes with high, intermediate, and low antiviral IFNs. In particular, IFNα5 showed superior antiviral activity against SARS-CoV-2 infection in vitro and in SARS-CoV-2-infected mice in vivo. Dose dependency studies further displayed additive effects upon coadministration with the broad antiviral drug remdesivir in cell culture. Transcriptomic analysis of IFN-treated hAEC revealed different transcriptional signatures, uncovering distinct, intersecting, and prototypical genes of individual IFNα subtypes. Global proteomic analyses systematically assessed the abundance of specific antiviral key effector molecules which are involved in IFN-I signaling pathways, negative regulation of viral processes, and immune effector processes for the potent antiviral IFNα5. Taken together, our data provide a systemic, multimodular definition of antiviral host responses mediated by defined IFN-I. This knowledge will support the development of novel therapeutic approaches against SARS-CoV-2.


Subject(s)
COVID-19 Drug Treatment , Interferon-alpha/pharmacology , SARS-CoV-2/drug effects , Transcriptome , Virus Replication/drug effects , Animals , COVID-19/immunology , COVID-19/virology , Chlorocebus aethiops , Cloning, Molecular , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression Profiling , Gene Expression Regulation , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Interferon-alpha/genetics , Interferon-alpha/immunology , Mice , Protein Isoforms/classification , Protein Isoforms/genetics , Protein Isoforms/immunology , Protein Isoforms/pharmacology , Recombinant Proteins/classification , Recombinant Proteins/genetics , Recombinant Proteins/immunology , Recombinant Proteins/pharmacology , SARS-CoV-2/genetics , SARS-CoV-2/immunology , Signal Transduction , Vero Cells
3.
Liver Int ; 44(3): 637-643, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38291853

ABSTRACT

Hepatitis E virus (HEV) is prevalent worldwide and can cause persistent infection with severe morbidity. Antiviral treatment approaches can lead to the emergence of viral variants encoding escape mutations that may impede viral clearance. The frequency of these variants remains unknown in the human population as well as environment due to limited comprehensive data on HEV diversity. In this study, we investigated the HEV prevalence and diversity of circulating variants in environmental samples, that is, wastewater and rivers from North-Rhine Westphalia, Germany. HEV prevalence could be determined with 73% of samples tested positive for viral RNA via qRT-PCR. Using high-throughput sequencing, we were able to assess the overall genetic diversity in these samples and identified the presence of clinically relevant variants associated with drug resistance. In summary, monitoring variants from environmental samples could provide valuable insights into estimating HEV prevalence and identifying circulating variants that can impact treatment outcome.


Subject(s)
Hepatitis E virus , Hepatitis E , Humans , Hepatitis E virus/genetics , Wastewater , Hepatitis E/diagnosis , Hepatitis E/drug therapy , Hepatitis E/epidemiology , Phylogeny , Prevalence , RNA, Viral/genetics
4.
J Infect Dis ; 228(9): 1227-1230, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37129073

ABSTRACT

The spread of nonzoonotic monkeypox virus (MPXV) infections necessitates the reevaluation of hygiene measures. To date, only limited data are available on MPXV surface stability. Here, we evaluate the stability of infectious MPXV on stainless steel stored at different temperatures, while using different interfering substances to mimic environmental contamination. MPXV persistence increased with decreasing temperature. Additionally, we were able to show that MPXV could efficiently be inactivated by alcohol- and aldehyde-based surface disinfectants. These findings underline the stability of MPXV on inanimate surfaces and support the recommendations to use alcohol-based disinfectants as prevention measures or in outbreak situations.


Subject(s)
Disinfectants , Monkeypox virus , Disinfectants/pharmacology , Ethanol , Temperature , Aldehydes
5.
J Med Virol ; 95(12): e29312, 2023 12.
Article in English | MEDLINE | ID: mdl-38100621

ABSTRACT

For the prevention of infectious diseases, knowledge about potential transmission routes is essential. Pathogens can be transmitted directly (i.e. respiratory droplets, hand-to-hand contact) or indirectly via contaminated surfaces (fomites). In particular, frequently touched objects/surfaces may serve as transmission vehicles for different clinically relevant bacterial, fungal, and viral pathogens. Banknotes and coins offer ample surface area and are frequently exchanged between individuals. Consequently, many concerns have been raised in the recent past, that banknotes and coins could serve as vectors for the transmission of disease-causing microorganisms. This review summarizes the latest research on the potential of paper currency and coins to serve as sources of pathogenic viral, bacterial, and fungal agents. In contrast to the current perception of banknotes and coins as important transmission vehicles, current evidence suggests, that banknotes and coins do not pose a particular risk of pathogen infection for the public.


Subject(s)
Fomites , Numismatics , Humans , Bacteria/genetics
6.
Proc Natl Acad Sci U S A ; 117(3): 1731-1741, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31896581

ABSTRACT

Hepatitis E virus (HEV) is the causative agent of hepatitis E in humans and the leading cause for acute viral hepatitis worldwide. The virus is classified as a member of the genus Orthohepevirus A within the Hepeviridae family. Due to the absence of a robust cell culture model for HEV infection, the analysis of the viral life cycle, the development of effective antivirals and a vaccine is severely limited. In this study, we established a protocol based on the HEV genotype 3 p6 (Kernow C-1) and the human hepatoma cell lines HepG2 and HepG2/C3A with different media conditions to produce intracellular HEV cell culture-derived particles (HEVcc) with viral titers between 105 and 106 FFU/mL. Viral titers could be further enhanced by an HEV variant harboring a mutation in the RNA-dependent RNA polymerase. These HEVcc particles were characterized in density gradients and allowed the trans-complementation of subgenomic reporter HEV replicons. In addition, in vitro produced intracellular-derived particles were infectious in liver-humanized mice with high RNA copy numbers detectable in serum and feces. Efficient infection of primary human and swine hepatocytes using the developed protocol could be observed and was inhibited by ribavirin. Finally, RNA sequencing studies of HEV-infected primary human hepatocytes demonstrated a temporally structured transcriptional defense response. In conclusion, this robust cell culture model of HEV infection provides a powerful tool for studying viral-host interactions that should facilitate the discovery of antiviral drugs for this important zoonotic pathogen.


Subject(s)
Hepatitis E virus/genetics , Hepatitis E virus/physiology , Hepatitis E/metabolism , Hepatocytes/virology , Animals , Antiviral Agents/pharmacology , Carcinoma, Hepatocellular , Cell Culture Techniques , Cell Line, Tumor , Genotype , Hep G2 Cells , Hepatitis E/virology , Hepatitis E virus/drug effects , Humans , Liver Neoplasms/drug therapy , Mice , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Replicon , Ribavirin/metabolism , Swine , Viral Load , Virus Replication
7.
J Infect Dis ; 226(9): 1608-1615, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35512326

ABSTRACT

BACKGROUND: The contribution of droplet-contaminated surfaces for virus transmission has been discussed controversially in the context of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic. More importantly, the risk of fomite-based transmission has not been systematically addressed. Therefore, the aim of this study was to evaluate whether confirmed hospitalized coronavirus disease 2019 (COVID-19) patients can contaminate stainless steel carriers by coughing or intensive moistening with saliva and to assess the risk of SARS-CoV-2 transmission upon detection of viral loads and infectious virus in cell culture. METHODS: We initiated a single-center observational study including 15 COVID-19 patients with a high baseline viral load (cycle threshold value ≤25). We documented clinical and laboratory parameters and used patient samples to perform virus culture, quantitative polymerase chain reaction, and virus sequencing. RESULTS: Nasopharyngeal and oropharyngeal swabs of all patients were positive for viral ribonucleic acid on the day of the study. Infectious SARS-CoV-2 could be isolated from 6 patient swabs (46.2%). After coughing, no infectious virus could be recovered, however, intensive moistening with saliva resulted in successful viral recovery from steel carriers of 5 patients (38.5%). CONCLUSIONS: Transmission of infectious SARS-CoV-2 via fomites is possible upon extensive moistening, but it is unlikely to occur in real-life scenarios and from droplet-contaminated fomites.


Subject(s)
COVID-19 , Communicable Diseases , Humans , SARS-CoV-2 , Fomites , Pandemics , Viral Load
8.
J Infect Dis ; 224(3): 420-424, 2021 08 02.
Article in English | MEDLINE | ID: mdl-33993274

ABSTRACT

The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern with increased transmission dynamics has raised questions regarding stability and disinfection of these viruses. We analyzed surface stability and disinfection of the currently circulating SARS-CoV-2 variants B.1.1.7 and B.1.351 compared to wild type. Treatment with heat, soap, and ethanol revealed similar inactivation profiles indicative of a comparable susceptibility towards disinfection. Furthermore, we observed comparable surface stability on steel, silver, copper, and face masks. Overall, our data support the application of currently recommended hygiene measures to minimize the risk of B.1.1.7 and B.1.351 transmission.


Subject(s)
Disinfection , SARS-CoV-2/physiology , COVID-19/virology , Disinfectants/pharmacology , Hot Temperature , Humans , SARS-CoV-2/drug effects , Soaps/pharmacology
9.
J Infect Dis ; 222(8): 1289-1292, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32726430

ABSTRACT

The ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic creates a significant threat to global health. Recent studies suggested the significance of throat and salivary glands as major sites of virus replication and transmission during early coronavirus disease 2019, thus advocating application of oral antiseptics. However, the antiviral efficacy of oral rinsing solutions against SARS-CoV-2 has not been examined. Here, we evaluated the virucidal activity of different available oral rinses against SARS-CoV-2 under conditions mimicking nasopharyngeal secretions. Several formulations with significant SARS-CoV-2 inactivating properties in vitro support the idea that oral rinsing might reduce the viral load of saliva and could thus lower the transmission of SARS-CoV-2.


Subject(s)
Antiviral Agents/pharmacology , Betacoronavirus/drug effects , Coronavirus Infections/drug therapy , Coronavirus Infections/virology , Mouthwashes/pharmacology , Pneumonia, Viral/drug therapy , Pneumonia, Viral/virology , Animals , Betacoronavirus/physiology , COVID-19 , Chlorocebus aethiops , Coronavirus Infections/transmission , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2 , Saliva/virology , Vero Cells , Viral Load/drug effects , Virus Replication/drug effects
10.
J Infect Dis ; 223(6): 1114-1115, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33370428
12.
PLoS Negl Trop Dis ; 18(6): e0012264, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38900788

ABSTRACT

Despite continued outbreaks of yellow fever virus (YFV) in endemic regions, data on its environmental stability or guidelines for its effective inactivation is limited. Here, we evaluated the susceptibility of the YFV 17D vaccine strain to inactivation by ethanol, 2-propanol, World Health Organization (WHO)-recommended hand rub formulations I and II, as well as surface disinfectants. In addition, two pathogenic strains were tested to compare inactivation kinetics by WHO-recommended hand rub formulations I and II. Furthermore, environmental stability of the vaccine strain was assessed. YFV 17D particles displayed infectivity half-life decay profiles of ~13 days at room temperature. Despite this extended environmental stability, YFV was efficiently inactivated by alcohols, WHO-recommended hand formulations, and four out of five tested surface disinfectants. These results are useful in defining disinfection protocols to prevent non-vector borne YFV transmission.


Subject(s)
Disinfectants , Virus Inactivation , World Health Organization , Yellow fever virus , Yellow fever virus/drug effects , Disinfectants/pharmacology , Virus Inactivation/drug effects , Humans , Yellow Fever/prevention & control , Yellow Fever/transmission , Yellow Fever/virology , Hand Disinfection/methods , Animals , Chlorocebus aethiops
13.
Nat Commun ; 15(1): 4855, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38844458

ABSTRACT

Hepatitis E virus (HEV) is a long-neglected RNA virus and the major causative agent of acute viral hepatitis in humans. Recent data suggest that HEV has a very heterogeneous hypervariable region (HVR), which can tolerate major genomic rearrangements. In this study, we identify insertions of previously undescribed sequence snippets in serum samples of a ribavirin treatment failure patient. These insertions increase viral replication while not affecting sensitivity towards ribavirin in a subgenomic replicon assay. All insertions contain a predicted nuclear localization sequence and alanine scanning mutagenesis of lysine residues in the HVR influences viral replication. Sequential replacement of lysine residues additionally alters intracellular localization in a fluorescence dye-coupled construct. Furthermore, distinct sequence patterns outside the HVR are identified as viral determinants that recapitulate the enhancing effect. In conclusion, patient-derived insertions can increase HEV replication and synergistically acting viral determinants in and outside the HVR are described. These results will help to understand the underlying principles of viral adaptation by viral- and host-sequence snatching during the clinical course of infection.


Subject(s)
Hepatitis E virus , Hepatitis E , Ribavirin , Virus Replication , Virus Replication/genetics , Hepatitis E virus/genetics , Hepatitis E virus/physiology , Hepatitis E virus/drug effects , Humans , Hepatitis E/virology , Hepatitis E/drug therapy , Ribavirin/pharmacology , Mutagenesis, Insertional , Antiviral Agents/pharmacology , RNA, Viral/genetics , Genome, Viral , Replicon/genetics
14.
STAR Protoc ; 3(2): 101188, 2022 06 17.
Article in English | MEDLINE | ID: mdl-35317333

ABSTRACT

Transmission via fomites poses a major dissemination route for many human pathogens, particularly because of transfer via fingertips. Here, we present a protocol to investigate direct transfer of infectious agents from fomites to humans via naked fingertips. The protocol is suitable for pathogens requiring highest biosafety levels (e.g., SARS-CoV-2). We used an artificial skin to touch a defined volume of virus suspension and subsequent quantification of infectious entities allows quantitative measurement of transfer efficiency and risk assessment. For complete information on the generation and use of this manuscript, please refer to Todt et al. (2021).


Subject(s)
COVID-19 , Viruses , Fomites , Humans , SARS-CoV-2 , Touch
15.
Sci Rep ; 12(1): 7193, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35505071

ABSTRACT

The current Coronavirus Disease 19 (COVID-19) pandemic has exemplified the need for simple and efficient prevention strategies that can be rapidly implemented to mitigate infection risks. Various surfaces have a long history of antimicrobial properties and are well described for the prevention of bacterial infections. However, their effect on many viruses has not been studied in depth. In the context of COVID-19, several surfaces, including copper (Cu) and silver (Ag) coatings have been described as efficient antiviral measures that can easily be implemented to slow viral transmission. In this study, we detected antiviral properties against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) on surfaces, which were coated with Cu by magnetron sputtering as thin Cu films or as Cu/Ag ultrathin bimetallic nanopatches. However, no effect of Ag on viral titers was observed, in clear contrast to its well-known antibacterial properties. Further enhancement of Ag ion release kinetics based on an electrochemical sacrificial anode mechanism did not increase antiviral activity. These results clearly demonstrate that Cu and Ag thin film systems display significant differences in antiviral and antibacterial properties which need to be considered upon implementation.


Subject(s)
COVID-19 , Silver , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , Copper/chemistry , Copper/pharmacology , Humans , SARS-CoV-2 , Silver/chemistry , Silver/pharmacology
16.
Virus Res ; 316: 198791, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35504446

ABSTRACT

The emergence of the Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) represents an unprecedented threat for the human population, necessitating rapid and effective intervention measures. Given the main infection route by airborne transmission, significant attention has been bestowed upon the use of antiseptic mouthrinses as a way to possibly reduce infectious viral titers. However, clinical evaluations are still sparse. Thus, we evaluated a wide variety of antiseptic agents that can be used as mouthrinses for their antiviral effects in vitro and their respective mode of action. One of the most promising antiseptic agents (benzalkoniumchloride, BAC) was used in a randomized placebo-controlled clinical trial with subsequent analysis of viral loads by RT-qPCR and virus rescue in cell culture. Mechanistic analysis revealed that treatment with BAC and other antiseptic agents efficiently inactivated SARS-CoV-2 in vitro by primarily disrupting the viral envelope, without affecting viral RNA integrity. However, the clinical application only resulted in a mild reduction of viral loads in the oral cavity. These results indicate that gargling with mouthrinses comprising single antiseptic agents may play a minor role towards a potential reduction of transmission rates and thus, these findings are of utmost importance when considering alternative COVID-19 prevention strategies.


Subject(s)
Anti-Infective Agents, Local , COVID-19 Drug Treatment , Anti-Infective Agents, Local/pharmacology , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans , SARS-CoV-2 , Viral Load
17.
Vet Microbiol ; 274: 109557, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36088712

ABSTRACT

Theiler's disease (TD) is a (sub-)acute hepatitis in adult horses and one of the most common causes of acute hepatic failure. Recent findings indicate that equine parvovirus hepatitis (EqPV-H) likely causes TD and that its transmission occurs via iatrogenic and/or natural routes. Following the death of an EqPV-H positive mare with TD, close-contact mares and foals in the same paddock were monitored to evaluate if there was any evidence of EqPV-H. For this purpose, the serum of close contact horses was examined 6 and 42 days after the mare's death for the presence of EqPV-H DNA and changes in liver-associated serum biochemical parameters. The foals had higher EqPV-H viral loads than the mares. Apart from the mare that was euthanized, none of the horses included in this study showed signs of severe disease and nor did they have particularly elevated liver enzymes. Nucleotide sequence analysis revealed no major differences between the viral DNA detected in the serum of the dead mare and any of the in-contact horses. In conclusion, our data confirmed previous findings that horizontal transmission of EqPV-H may occur through close contact between horses.


Subject(s)
Hepatitis, Viral, Animal , Hepatitis , Horse Diseases , Parvoviridae Infections , Parvovirinae , Parvovirus , Horses , Animals , Female , Parvovirus/genetics , Parvoviridae Infections/veterinary , DNA, Viral/genetics
18.
Front Immunol ; 13: 930975, 2022.
Article in English | MEDLINE | ID: mdl-36189209

ABSTRACT

Introduction: The ongoing COVID-19 pandemic situation caused by SARS-CoV-2 and variants of concern such as B.1.617.2 (Delta) and recently, B.1.1.529 (Omicron) is posing multiple challenges to humanity. The rapid evolution of the virus requires adaptation of diagnostic and therapeutic applications. Objectives: In this study, we describe camelid heavy-chain-only antibodies (hcAb) as useful tools for novel in vitro diagnostic assays and for therapeutic applications due to their neutralizing capacity. Methods: Five antibody candidates were selected out of a naïve camelid library by phage display and expressed as full length IgG2 antibodies. The antibodies were characterized by Western blot, enzyme-linked immunosorbent assays, surface plasmon resonance with regard to their specificity to the recombinant SARS-CoV-2 Spike protein and to SARS-CoV-2 virus-like particles. Neutralization assays were performed with authentic SARS-CoV-2 and pseudotyped viruses (wildtype and Omicron). Results: All antibodies efficiently detect recombinant SARS-CoV-2 Spike protein and SARS-CoV-2 virus-like particles in different ELISA setups. The best combination was shown with hcAb B10 as catcher antibody and HRP-conjugated hcAb A7.2 as the detection antibody. Further, four out of five antibodies potently neutralized authentic wildtype SARS-CoV-2 and particles pseudotyped with the SARS-CoV-2 Spike proteins of the wildtype and Omicron variant, sublineage BA.1 at concentrations between 0.1 and 0.35 ng/mL (ND50). Conclusion: Collectively, we report novel camelid hcAbs suitable for diagnostics and potential therapy.


Subject(s)
COVID-19 , Spike Glycoprotein, Coronavirus , Antibodies, Viral , COVID-19/diagnosis , COVID-19 Testing , Humans , Immunoglobulin G , Immunoglobulin Heavy Chains/genetics , Pandemics , SARS-CoV-2
19.
Int J Cardiol ; 362: 196-205, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35643215

ABSTRACT

INTRODUCTION: The respiratory illness triggered by severe acute respiratory syndrome virus-2 (SARS-CoV-2) is often particularly serious or fatal amongst patients with pre-existing heart conditions. Although the mechanisms underlying SARS-CoV-2-related cardiac damage remain elusive, inflammation (i.e. 'cytokine storm') and oxidative stress are likely involved. METHODS AND RESULTS: Here we sought to determine: 1) if cardiomyocytes are targeted by SARS-CoV-2 and 2) how inflammation and oxidative stress promote the viral entry into cardiac cells. We analysed pro-inflammatory and oxidative stress and its impact on virus entry and virus-associated cardiac damage from SARS-CoV-2 infected patients and compared it to left ventricular myocardial tissues obtained from non-infected transplanted hearts either from end stage heart failure or non-failing hearts (donor group). We found that neuropilin-1 potentiates SARS-CoV-2 entry into human cardiomyocytes, a phenomenon driven by inflammatory and oxidant signals. These changes accounted for increased proteases activity and apoptotic markers thus leading to cell damage and apoptosis. CONCLUSION: This study provides new insights into the mechanisms of SARS-CoV-2 entry into the heart and defines promising targets for antiviral interventions for COVID-19 patients with pre-existing heart conditions or patients with co-morbidities.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Inflammation , Myocytes, Cardiac , Oxidative Stress
20.
Viruses ; 13(7)2021 07 20.
Article in English | MEDLINE | ID: mdl-34372616

ABSTRACT

Treatment options for COVID-19, a disease caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, are currently severely limited. Therefore, antiviral drugs that efficiently reduce SARS-CoV-2 replication or alleviate COVID-19 symptoms are urgently needed. Inhaled glucocorticoids are currently being discussed in the context of treatment for COVID-19, partly based on a previous study that reported reduced recovery times in cases of mild COVID-19 after inhalative administration of the glucocorticoid budesonide. Given various reports that describe the potential antiviral activity of glucocorticoids against respiratory viruses, we aimed to analyze a potential antiviral activity of budesonide against SARS-CoV-2 and circulating variants of concern (VOC) B.1.1.7 (alpha) and B.1.351 (beta). We demonstrate a dose-dependent inhibition of SARS-CoV-2 that was comparable between all viral variants tested while cell viability remains unaffected. Our results are encouraging as they could indicate a multimodal mode of action of budesonide against SARS-CoV-2 and COVID-19, which could contribute to an improved clinical performance.


Subject(s)
Antiviral Agents/pharmacology , Budesonide/pharmacology , COVID-19 Drug Treatment , SARS-CoV-2/drug effects , Adrenal Cortex Hormones/pharmacology , Animals , Antiviral Agents/administration & dosage , Budesonide/administration & dosage , COVID-19/virology , Chlorocebus aethiops , Glucocorticoids/pharmacology , Humans , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL