Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Journal subject
Affiliation country
Publication year range
1.
J Nanobiotechnology ; 18(1): 147, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33081777

ABSTRACT

BACKGROUND: The mechanical properties of single living cells have proven to be a powerful marker of the cell physiological state. The use of nanoindentation-based single cell force spectroscopy provided a wealth of information on the elasticity of cells, which is still largely to be exploited. The simplest model to describe cell mechanics is to treat them as a homogeneous elastic material and describe it in terms of the Young's modulus. Beside its simplicity, this approach proved to be extremely informative, allowing to assess the potential of this physical indicator towards high throughput phenotyping in diagnostic and prognostic applications. RESULTS: Here we propose an extension of this analysis to explicitly account for the properties of the actin cortex. We present a method, the Elasticity Spectra, to calculate the apparent stiffness of the cell as a function of the indentation depth and we suggest a simple phenomenological approach to measure the thickness and stiffness of the actin cortex, in addition to the standard Young's modulus. CONCLUSIONS: The Elasticity Spectra approach is tested and validated on a set of cells treated with cytoskeleton-affecting drugs, showing the potential to extend the current representation of cell mechanics, without introducing a detailed and complex description of the intracellular structure.


Subject(s)
Actins/chemistry , Single-Cell Analysis/methods , Actin Cytoskeleton/metabolism , Brain , Cell Line , Elastic Modulus , Elasticity , Humans , Kinetics , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Models, Biological , Nanotechnology , Spectrum Analysis , Stress, Mechanical
2.
J Control Release ; 365: 1019-1036, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38065413

ABSTRACT

The most lethal form of skin cancer is cutaneous melanoma, a tumor that develops in the melanocytes, which are found in the epidermis. The treatment strategy of melanoma is dependent on the stage of the disease and often requires combined local and systemic treatment. Over the years, systemic treatment of melanoma has been revolutionized and shifted toward immunotherapeutic approaches. Phototherapies like photothermal therapy (PTT) have gained considerable attention in the field, mainly because of their straightforward applicability in melanoma skin cancer, combined with the fact that these strategies are able to induce immunogenic cell death (ICD), linked with a specific antitumor immune response. However, PTT comes with the risk of uncontrolled heating of the surrounding healthy tissue due to heat dissipation. Here, we used pulsed laser irradiation of endogenous melanin-containing melanosomes to induce cell killing of B16-F10 murine melanoma cells in a non-thermal manner. Pulsed laser irradiation of the B16-F10 cells resulted in the formation of water vapor nanobubbles (VNBs) around endogenous melanin-containing melanosomes, causing mechanical cell damage. We demonstrated that laser-induced VNBs are able to kill B16-F10 cells with high spatial resolution. When looking more deeply into the cell death mechanism, we found that a large part of the B16-F10 cells succumbed rapidly after pulsed laser irradiation, reaching maximum cell death already after 4 h. Practically all necrotic cells demonstrated exposure of phosphatidylserine on the plasma membrane and caspase-3/7 activity, indicative of regulated cell death. Furthermore, calreticulin, adenosine triphosphate (ATP) and high-mobility group box 1 (HMGB1), three key damage-associated molecular patterns (DAMPs) in ICD, were found to be exposed from B16-F10 cells upon pulsed laser irradiation to an extent that exceeded or was comparable to the bona fide ICD-inducer, doxorubicin. Finally, we could demonstrate that VNB formation from melanosomes induced plasma membrane permeabilization. This allowed for enhanced intracellular delivery of bleomycin, an ICD-inducing chemotherapeutic, which further boosted cell death with the potential to improve the systemic antitumor immune response.


Subject(s)
Melanoma, Experimental , Skin Neoplasms , Humans , Animals , Mice , Melanins , Cell Line, Tumor , Skin Neoplasms/drug therapy , Melanoma, Experimental/pathology , Cell Death
3.
Biomicrofluidics ; 15(1): 014102, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33456640

ABSTRACT

A low-cost device for registration-free quantitative phase microscopy (QPM) based on the transport of intensity equation of cells in continuous flow is presented. The method uses acoustic focusing to align cells into a single plane where all cells move at a constant speed. The acoustic focusing plane is tilted with respect to the microscope's focal plane in order to obtain cell images at multiple focal positions. As the cells are displaced at constant speed, phase maps can be generated without the need to segment and register individual objects. The proposed inclined geometry allows for the acquisition of a vertical stack without the need for any moving part, and it enables a cost-effective and robust implementation of QPM. The suitability of the solution for biological imaging is tested on blood samples, demonstrating the ability to recover the phase map of single red blood cells flowing through the microchip.

4.
Nanoscale ; 13(40): 17049-17056, 2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34622916

ABSTRACT

Nanoparticle-sensitized photoporation for intracellular delivery of external compounds usually relies on the use of spherical gold nanoparticles as sensitizing nanoparticles. As they need stimulation with visible laser light, they are less suited for transfection of cells in thick biological tissues. In this work, we have explored black phosphorus quantum dots (BPQDs) as alternative sensitizing nanoparticles for photoporation with a broad and uniform absorption spectrum from the visible to the near infra-red (NIR) range. We demonstrate that BPQD sensitized photoporation allows efficient intracellular delivery of both siRNA (>80%) and mRNA (>40%) in adherent cells as well as in suspension cells. Cell viability remained high (>80%) irrespective of whether irradiation was performed with visible (532 nm) or near infrared (800 nm) pulsed laser light. Finally, as a proof of concept, we used BPQD sensitized photoporation to deliver macromolecules in cells with thick phantom tissue in the optical path. NIR laser irradiation resulted in only 1.3× reduction in delivery efficiency as compared to photoporation without the phantom gel, while with visible laser light the delivery efficiency was reduced 2×.


Subject(s)
Gold , Metal Nanoparticles , Macromolecular Substances , Phosphorus , RNA, Small Interfering
SELECTION OF CITATIONS
SEARCH DETAIL